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Abstract: In this paper, we address the problem of the analysis of cellular phenotype from time-lapse image sequences 
using object tracking algorithms and feature extraction and classification.  We discusses the application of 
an object tracking algorithm for  in the analysis of high content cell-migration time-lapse image sequence of 
extremely motile cells; these cells are captured at low time-resolution.. The small size of the objects and 
significant deformation of the object during the process renders the tracking as a non-trivial problem. To 
that end, the ‘KDE Mean Shift’, a real-time tracking solution, is adapted for our research. We illustrate that 
in a simulation experiment with artificial objects, with our algorithm an accuracy of over 90% can be 
established.  Based on the tracking result, we propose several morphology and motility based measurements 
for the analysis of cell behaviour. Our analysis requires only initial manual interference; the majority of the 
processing is automated. 

1 INTRODUCTION 

Cytomics is the study of cell systems, referred to as 
the cytome, at the level of the single cell; it attempts 
to understand the molecular architecture and the 
functionality of the cell system. Much of this is 
achieved by using a combination of molecular and 
imaging techniques allowing the various components 
of a cell to be visualised by time-lapse image 
sequence either in vivo or in vitro. When applied to 
larger volumes of cells studied under different 
experimental conditions, such a study is usually 
referred to as a screen. 

An automated cell screening for a 200-target 
RNA study will result in 400 image sequences; each 
of the sequences contains over 100 cells. Manually 
analyzing these videos is virtually impossible. 
Therefore, video tracking and data analysis are used; 
smart application of these techniques is crucial. 

Existing studies of cell tracking (Rogers, et al, 
2006) illustrate physical solutions to cell tracking; 

this research focuses on in vivo cell tracking using 
Magnetic Resonance Imaging (MRI). This approach 
is complex and requires advanced MRI equipment 
suitable for high-resolution imaging. Computer 
vision studies (Li and Kanade, 2007) also show that 
level-set based tracking algorithms can produce good 
tracking results directly from sequences as captured 
from a fluorescence or bright field microscope. In 
these studies, the tracking accuracy reaches an 
average of 85%. The method can deal with cell 
proliferation by splitting trajectories.  

To date, measurements on cell-phenotype have 
not been extracted from time-lapse image sequences. 
Moreover, the phenomena that are captured in time-
lapse in image sequences, e.g. metastatic behaviour 
of a target cell-line, are often subtle and therefore it 
requires a range of features be evaluated. The image 
sequence is captured such that the relevant 
observations on behaviour can be deduced from the 
measurements. Sampling below the standard video-
rate is also necessary as otherwise; the amount of 
data will not be manageable. Challenges regarding 
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the analysis of such image sequences are addressed 
in this paper. 

The structure of this paper is as follows: In 
section 2, we describe the pre-processing of raw 
image data; this includes segmentation of the images 
and subsequent object extraction. The objects that we 
extract are cells and these behave as non-rigid bodies 
while moving. In section 3, we present our approach 
to non-rigid objects tracking and explain our 
algorithm for a metastatic/motile cell model based on 
time-lapse image sequences of sparse time sampling 
(6 min/frame). We estimate the robustness and 
accuracy by introducing a test with artificial 
images/objects. In section 4, we illustrate our method 
with a data set typical for cytomics in which cell 
migration is analysed using cell tracking and 
phenotypic characterisation. 

In this paper, sequence images are obtained at a 
fixed rate of 6 min/frame from a CCD camera 
mounted on a fluorescence microscope. In case of 
artificial images, the situation with the fluorescence 
microscope is simulated, i.e. bright objects on a dark 
background. The algorithm is implemented as an 
ImageJ plug-in in JAVA. Data analysis is performed 
by PRTOOLS, a pattern recognition library for 
MATLAB. 

2 IMAGE PREPROCESSING 

In order to be able to trace the objects in our image 
sequence, i.e. the cells, all objects must be labelled. 
Therefore a segmentation algorithm including the 
object labelling was developed. The segmentation 
and labelling need to operate in concert as sometimes 
the objects appear in clusters. In our algorithm, we 
identify these clusters are and then properly separate 
them.  

The original images are slightly smoothed using a 
standard Gaussian filter to remove speckle noise. 
Imperfections in the illumination of the field of view 
are corrected through a rolling ball 
algorithm.(Sternber, 1983) 

For the visualization of the cells under the 
microscope, a staining procedure is applied. 
Variations in the staining of individual cells result in 
different intensity profiles of the cells. Consequently, 
a global segmentation is less effective for the object 
extraction. Therefore, instead, we have implemented 
a local adaptive version of the isodata method. This 
method employs a spherical kernel with a radius in 
the range of [15-20] pixels; this radius depends on 
settings derived from the imaging protocol. A 
convolution with this kernel results in a in a local 

threshold value for each pixel.  In order to prevent 
problems in large areas of background, the global 
average intensity is used a lower boundary of the 
threshold; pixels evaluated under that boundary are 
set to background. Next, we evaluate the set of 
labelled objects resulting from the segmentation as 
being part of a cluster of cells or not. To that end, the 
initial binary objects are used as a mask in the 
original image and a gray-value watershed is 
employed to provide further separation in case cells 
are clustered (cf. Fig.1). The gray-value watershed 
results in a more accurate separation as compared to 
the binary watershed (cf. Fig.2).  
Now, each separated foreground object is labelled as 
a cell and the binary mask of these cells with the 
corresponding intensity information will be used as 
the initial model for KDE Mean Shift tracking 
algorithm. 

 
Figure 1: Left to Right (1) Original Image (2) Binary mask 
(3) Watershed without Gaussian filter (4) Watershed with 
Gaussian filter. 

 
Figure 2: Left to Right (1) Original Image (2) Binary 
watershed (3) Gray-value watershed. 

3 CELL TRACKING 

We chose the Kernel Density Estimation (KDE) 
Mean Shift with Steepest Descent Tracking (KDE 
Mean Shift) as a tracking solution due to its 
robustness and recognized performance in real-time 
tracking (Yang et al., 2003). Although initially 
designed for real-time tracking, the algorithm 
demonstrates outstanding performance in time-lapse 
imaging applications as typical for cytomics. 

3.1 KDE Mean Shift with Steepest 
Descent Tracking 

In computer vision, KDE mean shift (Yang, et al, 
2003) is a popular kernel based tracking algorithm 
and considered as real world application of an 
approach to localization. KDE Mean Shift Tracking  
consists of two steps:  
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 non-parametric density estimation using an 
initial module. 

 steepest descent to locate the local maximum in 
a gradient space of density estimation. 

Each trajectory begins with cells in the first 
frame. These cells are converted into initial model 
defined in a 3D feature space: (1) the x coordinate of 
a binary mask of a cell, (2) the y coordinate of a 
binary mask of a cell, (3) the intensity value at each 
pixel (x, y).   

Given n data points xn in the d-dimensional space 
Rd, the kernel density estimator with kernel function 
K(x) and window bandwidth h, can be expressed as: 
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A generally used class of kernels is the radial 
symmetric kernels, expressed as: 
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The mean shift estimation is completed by 
steepest descent through iterative computation of: 

•  the mean shift vector ( )kxm   
•  the shift module by ( )kkk xmxx +=+1  
The steepest descent requires estimation of a 

gradient space ( ) ( )xkxg '−= , where term ( )kxm  is 
the new mean shift (cf. Eq. 3). Due to the shape 
change (deformation) of the cells, the steepest 
descent does not necessarily converge at the centre 
of mass of the true candidate. We chose the cell 
closest to the stationary point as a true candidate.  
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We perform cell tracking on time-lapse image 
sequences with different levels of magnification (cf. 
Fig.3 and Fig.4). If proper segmentation is applied to 
the cell regions then KDE Mean Shift is resistant to 
morphology and motility behaviour of cancer cells. 

In Figure 4, an estimation of cell motion is 
illustrated. Still, estimation of the performance of 
KDE using time-lapse image sequences from real 
cells is subjective.  Therefore, we have developed an 
objective and reproducible estimation method. We 
initiated this development by testing tracking 
accuracy using a time-lapse series containing 
artificially generated objects. 

 
Figure 3: Tracking of tumour cells at 40X fluorescence. 

 
Figure 4: Tracking of tumour cells at 20X fluorescence. 

3.2 Error Estimation of the Tracking 

Our artificial object test, referred to as ‘virtual cell 
test’, is utilized for error estimation of the tracking 
algorithm. The test of artificial objects rules out 
complex situations that occur in “live cells”. 
Moreover, the imaging is ideal and illumination 
deficiencies do not occur whilst the behaviour of the 
virtual “cell” can be controlled completely. The 
virtual cell test simulates two basic cell migration 
behaviours: (1) shifting position and (2) extending 
protrusion.  

Table 1. 

Parameter name Description 
minT Minimum travel distance of a cell 
maxT Maximum travel distance of a cell 

minH Minimum extension in y-axis 
direction, can be shrinkage 

maxH Maximum extension in y-axis 
direction 

minW Minimum extension in x-axis 
direction, can be shrinkage 

maxW Maximum extension in x-axis 
direction 

R Initial radius of virtual cell 
(equivalent to size) 

Cell Number of virtual cells in video 

Seq Length of the time-lapse 
sequence 

Each “virtual cell test” object has several 
predefined parameters to control their behaviour (cf. 
Table 1). Once created, a virtual cell object will 
randomly shift or extend and is restricted by these 
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parameters. The motion and shape change of the 
objects is self-organizing without any predefined 
motion model (cf. Fig. 5). In pseudo code, this is 
expressed as follows: 
 
Pseudo Code: #virtual cell extending 

With a existing virtual cell; 
Generate a width in (minW, maxW); 
Generate a height in (minH, maxH); 
 

Pseudo Code: #virtual cell position        
shift 

Do{ 
Generate a step size in (mint, maxT)  
If(causes collision){ 

Discard the step size; 
} 
Else{ 

Keep the step size; 
} 

}while(step size is not feasible); 
 

Pseudo Code: #generate cell shape 
For i in x-width to x+width step 1{ 

For j in y-height to y+height step 1{ 
If (i,j) in the range of ellipse 
defined by width, height, x, and 
y position{ 

pixel(i,j) is given a 
intensity value weighted 
by the distance between 
(i,j) and mass centre 

  } 
 } 
} 
 
Image sequences are acquired by recording the 

motion of these virtual objects; in this manner, the 
true trajectory of cell migration can be captured and 
used in error estimation. The score system in our 
error estimation consists of two factors, i.e.: 

(1) The accomplish ratio ‘T’ between the total 
number ‘n’ of trajectory determined by tracking 
algorithm and the total number ‘N’ of trajectory 
captured during the video generation:  

( )
NTrajectory

NnTrajectoryT
∈
∩∈

=  (4) 

(2) The percentage ‘O’ of identical ‘Node’ 
between each trajectory s determined by the tracking 
algorithm and trajectory S as captured from the 
image frames: 

( )
SNode

SsNodeO
∈
∩∈

=  (5) 

From these factors, the final score is computed: 
( )

SNode
SsNode

N
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∈
∩∈
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By adding the accomplished ratio ‘T’, require the 
tracking algorithm to correctly tracking each 
trajectory and capable of identify all possible 
trajectories (cf. Fig. 5). Under different behaviour 

parameters, KDE mean shift shows an overall 
performance above 90% (cf. Table 2). 

 
Figure 5: A sample of cell tracking using virtual cell video. 

Table 2: Virtual cell test using different parameters. Each 
set generate 10 videos with the same length (30 frames). 
The mean error is the average of 10 videos, similarly, the 
std error. 

Set minT maxT minH maxH minW 
1 5 10 20 40 30 
2 10 20 20 40 30 
3 5 10 20 40 30 
4 10 20 20 40 30 
5 5 10 20 40 30 
6 10 20 20 40 30 
7 5 10 20 40 30 
8 10 20 20 40 30 
            

Set maxW R cell 

Avg 
Corr
% 

Std 
Corr
% 

1 60 30 5 99.4 1.87 
2 60 30 5 96 6.1 
3 60 30 20 86.51 3.66 
4 60 30 20 74.4 6.89 
5 60 30 5 100 0 
6 60 30 5 99.26 1.61 
7 60 30 20 97.05 2.91 
8 60 30 20 89.47 3.91 
  Mean     92.76 3.37 

3.3 Feature Measurements 

We have divided the feature measurements into 
motility and morphology measurements based on 
biological meaning. Area, perimeter, centre of mass 
are used as basic features to describe cell size and 
position. In addition, shape is described by 
Extension, Dispersion and Elongation which are 
derived from moment invariants (Huang, et al, 
2003)(Gonzalez, et al, 2004)(Verbeek, 1995)( van 
der Putten, et al, 2007)  [4][5][7][8]; These features  are 
calculated from normalized moments:   
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and the first and second moment invariant 
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henceforth condensed in: 
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These three measurements (cf. Eqs. 14-16) are 
shape descriptors, that are, due to internal 
normalization, scale-free and resistant to noise. 
Extension measures roughness of a long protrusion 
and dispersion measures roughness of the small 
protrusions. Elongation measures how cell is 
elongated in its major axis. An active cell line 
intends to have a high value in all three invariants. 

Further, Absolute Position Shift is calculated 
as the position shift of one cell between first frame 
(cell position ( )00 , yx ) and last frame (cell 
position ( )mm yx , ): 
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2
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Trajectory Length is the total length of 
trajectory: 
Current position  ( )ii yx ,  

Next position ( )11, ++ ii yx  
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Velocity is calculated by the shift of centre of 
mass divided by time-interval:   
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Motion Linearity is the ratio between absolute 
position shift and trajectory length; normalized by 
trajectory length, motion linearity is scale-free: 

Since we aim to characterize the cellular 
phenotype, the study of feature measurements in one 
cell in one particular frame has little biological 
meaning. Therefore, we generalized the frame-based 

measurement into a cell-based measurement.  
Considering measurements as a discrete signal (cf. 
Fig. 4), it can be generalized by:  

( ) ( ) TtACostf ++= ωα  (20) 

The amplification A, the frequency α , and shift 
T may well preserve the majority structure of such 
discrete signal (measurement vs. time). With these 
cell-based measurements (cf. Table 3), we are able to 
compare cell behaviour and establish significant 
changes in behaviour. In the next section, a test for 
reliability of our principles is discussed. 

Table 3: The cell-based measurements. 

Cell-based 
measurement 

Description 

Average size Average size for one cell through 
all frames 

Average extension Average extension for one cell 
through all frames 

Std extension Standard deviation of extension for 
one cell through all frames 

Average dispersion Same as average extension 
Std dispersion Same as std extension 

Average elongation Same as average extension 
Std elongation Same as std extension 

Average velocity Average velocity for one cell 
through all frames 

Average motion 
linearity 

Average motion linearity for one 
cell through all kernel window 

4 RELIABILITY TEST AND 
BIOLOGICAL EXPERIMENTS  

In Figure 6, we show the result of an experiment 
with motility stimulation. In two groups, cells are 
treated with a growth factor (experiment) and 
expected to move faster with respect to the control 
group (control). The effect of this stimulation is 
observed in our measurement results. (Alberts, et al, 
1994) 

Average Velocity of All Cell in Ctrl Group vs. Experiment Group
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Figure 6: Control vs. EGF treated. 

In  addition,  multiple  subgroups  of  cells  from   the 
same sample culture are determined using K-Mean 
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Clustering (cf. Fig. 7). The number of clusters is 
validated by the lowest Davies-Bouldin Index (DBI) 
score (cf. Fig. 8). The result of DBI score confirms 
three natural subgroups: (1) Normal cells (2) 
Correctly treated cells (3) Incorrectly treated cells. 
These measurements are consistent with results from 
similar experiments on different dates. 
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Figure 7: Cell behaviour clustering. 
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Figure 8: Clustering validation using Davies-Bouldin 
validity index. 

5 CONCLUSIONS 

Object tracking has been studied comprehensively in 
computer vision. We investigated object tracking 
algorithms to support cytomics research and we 
demonstrated how these can be successfully applied. 
Our results, i.e. object tracking and data analysis, on 
real data illustrate application on image sequences 
depicting a metastatic/motile cell model. 

We developed an artificial object test and this test 
shows that our approach of the KDE Mean Shift can 
provide an accuracy over 90% (85% in level set 
tracking); for cell-tracking analysis this is acceptable. 
The measurements on the cells resulting from the 
tracking present correct conclusions in relation to the 
biological experiment. The feedback from the “wet-
lab” indicates that labour time of post-experiment 
data analysis is reduced enormously (≥ 300%) while 
accuracy of cell-migration analysis has significantly 
increased. Moreover, automation allows processing 
of large volumes of data. 

Finally, the tracking analysis of migrating 
(tumour) cells provides sufficient confidence to 
continue further research on structural level tracking.  
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