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Abstract: Diffusion filters are usually modelled as partial differential equations (PDEs) and used to reduce image 
noise without affecting the image main features. However, they have a drawback of broadening object 
boundaries and dislocating edges. Such drawbacks limit the ability of diffusion techniques applied to image 
processing. Yu and Acton. introduced the speckle reducing anisotropic diffusion (SRAD) to reduce speckle 
noise from ultrasound (US) and synthetic aperture radar (SAR) images. Incorporating the instantaneous 
coefficient of variation (ICOV) as the diffusion coefficient and edge detector, SRAD gives significantly 
enhanced images where most of the speckle noise is reduced. Yet, SRAD still faces the same problem of 
ordinary diffusion filters where the boundary broadening and edge dislocation affect its overall 
performance. In this paper, we introduce a novel approach to the diffusion filtering process, where a 
memory term is introduced as a reaction-diffusion term. By applying our new memory-based diffusion to 
SRAD, we significantly reduced the boundary broadening and edge dislocation effect and enhanced the 
diffusion process itself. Experimental results showed that the performance of our proposed memory-based 
scheme surpass other diffusion filters like normal SRAD and Perona-Malik filter as well as various adaptive 
linear de-noising filters. 

1 INTRODUCTION 

Diffusion has been widely used in image processing 
for smoothing and reducing noise. Sharing the 
physical properties of the diffusion process and 
being modelled as partial differential equation 
(PDE), diffusion arises as a powerful tool in various 
fields of image enhancement. However, the usual 
drawbacks of the diffusion process (e.g., the 
broadening of objects boundaries and edges 
dislocation) are hindering its applications. Weickert 
gave an in-depth analysis of the diffusion process 
and its application in image processing(Weickert, 
1997). 

Perona-Malik introduced one of the earliest 
edge-sensitive diffusion filter for additive noise 
reduction (Perona and Malik, 1990). Using nonlinear 
anisotropic diffusion, the filter greatly reduced the 
additive noise, where weighted image gradient is 
used as the diffusion coefficient. . For correcting 
Perona-Malik feature distortion effect and 
preserving edges, a nonlinear edge enhanced 
anisotropic diffusion is introduced (Fu et al., 2005). 

Yu et. al. introduced the speckle reducing 
anisotropic diffusion (SRAD). SRAD (Yu and 
Acton, 2002) combined both, the ordinary nonlinear 
anisotropic diffusion process proposed by Perona-
Malik, as well as the adaptive speckle multiplicative 
noise filters of Lee (Lee, 1980) and Frost (Frost et. 
al., 1982). SRAD alleviates the reliance of adaptive 
filters of Lee (Lee, 1980) and Frost (Frost et. al., 
1982) on the window size (i.e. mask size) of the 
filter. 

On contrary to Perona-Malik filter, SRAD uses 
instantaneous coefficient of variation (ICOV) (Yu 
and Acton, 2004) of the image as the diffusion 
coefficient instead of the image gradient. ICOV has 
superior edge maps compared to ordinary edge 
detectors due to its incorporation as the diffusion 
coefficient into SRAD. SRAD enhances the 
reduction of speckle noise while ICOV extracts 
edges. 

However, SRAD suffers from the drawbacks of 
ordinray diffusion (boundary broadening and edges 
migration). It produces a set of a coarse to fine 
images. The features identified at the finer scale are 
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distorted and having dislocated edges. Meanwhile, 
features identified at coarse scale are noisy.  

Trying to limit SRAD boundary broadening 
effect, a more robust diffusion coefficients tensor is 
introduced to further stop diffusion across main 
edges (Tauber et al., 2004). Acton introduced 
deconvolutional SRAD (DeSpeRADo) filter (Acton, 
2005), where a deblurring is performed at at the 
same time with diffusion. DeSperado showed 
significant improved results when applied to 
synthesized images. However, the poor estimation of 
the point spread function (PSF) of the imaging 
device (assumed to cause the boundary broadening 
effect) limited its application on real data. Yu et. al. 
developed a regularized SRAD (Reg-SRAD) for 
enhancing point, linear and regional features (Yu 
and Yadegar, 2006). Reg-SRAD required the correct 
estimation of a threshold value for bright image 
features. 

In this paper, we propose memory-based SRAD 
(MSRAD) where memory is integrated into the 
diffusion process through the reaction term. The 
incorporated memory provides feedback between 
diffusion stages, reminding the newly diffused 
image with the correct edge location found in 
previously diffused images. MSRAD will enhance 
the diffusion process providing a balance between 
diffusion and correct edge localization by maintaing 
features’ sizes. 

The organization of this paper is as follows; in 
Section 2, we first give a brief introduction to the 
diffusion process, its physical background and the 
Perona-Malik diffusion model. Then, we outline the 
original SRAD and ICOV models, and previous 
refinements made to them. In Section 3, we 
introduce our MSRAD technique. In Section 4, we 
outline the results obtained by MSRAD. Finally, In 
Section 5, we conclude our work. 

2 DIFFUSION FILTERING 

Diffusion is a physical process that equilibrates 
concentration differences without creating or 
destroying mass. One of the well known physical 
diffusion equation is Fick’s law (Weickert, 1997) 
stating that a concentration gradient causes a flux in 
order to compensate for this gradient. A diffusion 
tensor (D) governs the relation between 
concentration gradient and the produced flux.  

In image processing, the concentration gradient 
can be expressed as image gradient. A constant 
diffusion tensor (D) applied over the whole image 
domain causes homogenous diffusion or isotropic 

diffusion. In addition, a space-dependant D on the 
image domain causes inhomogeneous (anisotropic) 
diffusion. Linear diffusion happens when D is a 
function of the differential structure (image gradient) 
of the original image, while non-linear diffusion has 
the diffusivity matrix D dependant on the 
successively diffused image differential structure 
(Weickert, 1997). 

Throughout this proposal, the notation used for 
diffusion time is t, where a time dependent variable 
will have t as its superscript. I indicates the original 
image, u refers to the diffused image, ut indicates the 
diffused image at time t, where ut=0 is the original 
image I. The subscript x is used to represent the 
pixel coordinates (i,j) of the image in the Cartesian 
domain, and it is assumed to exist wherever I or u 
terms are used. 

The general diffusion equation is given by (1), 

where div is the divergence operator, D is the 
diffusivity tensor, u is the diffused image, u is the 
image gradient. Changing the diffusivity tensor 
defines the kind of diffusion applied to the image 
whether linear, nonlinear, isotropic, or anisotropic. 

The Perona-Malik model uses a rapidly 
decreasing diffusivities D as shown in (2), 

where λ is the edge magnitude parameter, D is a 
function that gives low values (near zero) for 
gradient values >> λ inhibiting diffusion near edges 
(Perona and Malik, 1990). Using (2) as the 
diffusivity coefficient of (1), the model sharpens 
edges if their gradient is larger than the edge 
magnitude parameter λ by inhibiting diffusion. For 
gradient values << λ, D approaches one and isotropic 
diffusion smoothes homogenous regions of the 
image converging equation (2) to a linear 
homogenous diffusion similar. The correct choice of 
λ greatly affects the filter operation. As for large 
values of λ, D will be always close to one 
independent on the gradient value. While for smaller 
values of λ, D will be nearly equal to zero inhibiting 
diffusion. 
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2.1 Instantaneous Coefficient of 
Variation (ICOV) 

Yu and Acton (2002) (2004) introduced ICOV as the  
edge detector operator. ICOV operator is given by 
(3), 

where |.| is the absolute operator, ||.|| is the 
magnitude operator,  is the gradient operator, 2 is 
the Laplacian operator, δ, ω, and, χ are weighting 
parameters responsible for sharpening edge response 
and reduce edge position bias. They are usually 
taken to be equal 1/2, 1/16 and, 1/4, respectively. 

ICOV is an edge detector utilizing the 
normalized gradient and Laplacian operators. It 
optimizes edge detection in speckle imagery through 
decreasing the probability of false edge detection 
and improving the edge localization accuracy. 

2.2 Speckle Reducing Anisotropic 
Diffusion (SRAD) 

Yu et. al. incorporated Lee (Lee, 1980) and Frost 
(Frost et. al., 1982) filters along with the anisotropic 
diffusion filter of Perona-Malik to come up with a 
novel speckle de-noising partial differential equation 
called speckle reducing anisotropic diffusion 
(SRAD) filter (Yu and Acton, 2002). SRAD is given 
by (4), 

where, t is diffusion time index where u t=0 is the 
original image I. ∆t is the time step (usually taken in 
the range from 0.05 to 0.25) and it is responsible for 
the convergence rate of the diffusion process, g(.) is 
the diffusion tensor function and is given by (5), 

P is a function in the ICOV of the diffused image as 
shown in (6), 

where qt is the measure of speckle coefficient of 
variation in a homogenous region of the image. 

ICOV serves as the edge detector for the 
diffusion process. It gives high response at edges 
and low response in homogenous regions. qt weights 
the amount of diffusion applied by SRAD to the 
image similar to λ in (2). For simplicity, the form in 
(7) is used for D, 

The behaviour of SRAD allows diffusion in the 
direction parallel to the edge. Negative diffusion is 
allowed in the direction normal to the edge. SRAD 
outperforms normal anisotropic diffusion filters by 
enhancing edge strength and reducing speckle noise 
along image contours. However, SRAD still suffers 
from ordinary diffusion drawbacks distorting the 
size of image features with the increase of diffusion. 
In the following section, we introduced our 
modification to SRAD to lower its smoothing effect. 

3 MEMORY-BASED SPECKLE 
REDUCING ANISOTROPIC 
DIFFUSION (MSRAD) 

SRAD efficiently reduces speckle noise from 
images, where the incorporation of ICOV as the 
diffusion coefficient provides clear edge maps. 

Memory-based SRAD provides features tracking 
feedback between the generated set of images 
through diffusion varying from coarse to fine scale. 
At the beginning of the diffusion process, the coarse 
images produce noisy edge maps and provide 
correctly located edges, as the effect of feature 
broadening is not yet severe. As the diffusion 
proceeds with time, the finer images are smoother 
and generate more enhanced, highly connected edge 
maps but they suffer from dislocated edges due to 
feature broadening.  

MSRAD introduced memory reminds each 
diffused image with the correct edge location and 
feature size from previously diffused images. 
MSRAD enhance the diffusion process providing 
memory feedback balancing diffusion (smoothing), 
edge localization, and, feature allocation throughout 
different diffusion stages. 

MSRAD equation is given in 0,  
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where α is a weighting parameter. Comparing 0 to 
memory-less SRAD in (4), MSRAD incorporates the 
weighted average of the currently diffused image 
with the set of the previously generated diffused 
images. It requires the determination of a single 
weighting parameter α. 

The proper choice of α favours either more 
diffusion or more adhering to image features. The 
original and successively the coarse images exhibit 
correct edge locations and feature sizes. As diffusion 
proceeds with time towards the finer set of images α 
provides coupling between the fine and coarse 
images. We empirically choose α to be in the range 
from 0.15 to 0.85 depending on the amount of 
diffusion needed. 

3.1 MSRAD as Diffusion-Reaction 
Term 

Reformulating MSRAD as a diffusion-reaction term 
0 can be rewritten as 0,  
where MSRAD resembles the diffusion-reaction  

model (Weickert, 1997). Memory-less SRAD and 
consequently ICOV extracted edge maps are highly 
sensitive to the time step ∆t determining SRAD rate 
of convergence (stopping criteria). MSRAD 
alleviate this reliance by incorporating memory to 
the diffusion process through the reaction term as 
shown in 0. 

3.2 MSRAD versus DeSpeRADo and 
Reg-SRAD 

MSRAD along with DeSpeRADo (Acton, 2005) and 
Reg-SRAD (Yu and Yadegar, 2006) tackled the 
problem of feature broadening and edge dislocation 
exhibited by normal SRAD. 

DeSpeRADo required the exact estimation of the 
PSF of the imaging device assumed to cause speckle 
noise. This estimation makes the real utilization of 
DeSpeRADo impractical and dependant on the 
imaging device. 

Reg-SRAD depends on the determination of a 
threshold value along with other two weighting 
parameters. The threshold value depends on the 
bright regions intensity of the image. Thus, the 
correct choice of the threshold value is highly 
dependant on the processed image. 

MSRAD requires only the determination of a 
single weighting parameter. This parameter is 

independent neither of the imaging device used nor 
of the image features’ intensities. Thus, MSRAD 
provides more convenient and easy to determine 
weighting parameter providing balance between 
diffusion and features perseverance. The lack of 
code and/or test data for both DeSpeRADo and Reg-
SRAD limited our ability to compare our results 
with theirs. However, in Section 4 we give a 
thoroughly measure of MSRAD performance. 

4 RESULTS 

In this section, the performance of MSRAD is 
compared to adaptive linear noise reduction filters of 
Lee (Lee, 1980), Frost (Frost et. al., 1982), and, 
Weiner (Wiener, 1976). Also, MSRAD is compared 
to the diffusion filters of Perona-Malik and normal 
SRAD. The evaluation will be made in terms of 
feature perseverance and noise reduction. 

For evaluating the MSRAD performance, we 
generated a synthesized image shown in Figure 1(a). 
The synthesized image is of 150 column width and 
150 column height. It consists of a unit step function 
in the range from column 15 to column 65 and a  
ramp function from column 85 to column 135. A 
speckled version of the synthesized image is shown 
in Figure 1(b), where a Gaussian distributed speckle 
noise of zero mean and variance of 0.1 is added.  

In terms of noise reduction and feature 
perseverance, Figure 1(c), (d), (e), and (f) shows the 
results of de-noising the synthesized speckled image 
shown in Figure 1(b) by Lee, Frost, Wiener, and 
Perona-Malik filters, respectively. The results where 
obtained using 3×3 window for Lee and Frost filters 
and 5×5 for Weiner filter. For Perona-Malik filter 
the edge magnitude parameter λ, was taken equal to 
0.03, with a time step ∆t = 0.1. MSRAD, SRAD, 
and, Perona-Malik results were obtained after 200 
iterations, where SRAD result is shown in Figure 
1(g), and MSRAD result shown in Figure 1(h). Both 
MSRAD and SRAD results were obtained using a 
time step ∆t = 0.25. 

Compared to adaptive linear filters (i.e. Frost, 
Lee, Wiener) and Perona-Malik filter, MRSAD 
showed superior noise reduction effect. Original 
SRAD suffer from boundary broadening and 
distortion of features. MSRAD result showed 
significant perseverance of the features’ sizes. 

Figure 2 inspects the results of applying Lee, 
Frost, Wiener, Perona-Malik, SRAD, and MSRAD 
over a horizontal scan line extracted from the images 
at row 71 in Figure 1. The results show that MSRAD 
virtually approximated the original signal shown in 
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Figure 2(a). Lee, Frost, Wiener and, Perona-Malik 
filters have limited noise reducing responses. Yet, 
they do not suffer from feature broadening effects. 
While SRAD suffer from severe boundary 
broadening and feature merging effect. MSRAD 
shows more consistent features along with good 
approximation of original signal. 

The adaptive linear filters of Lee, Frost, Weiner 
depend totally on the window (mask) size. Perona-
Malik filter depends on the edge magnitude 
parameter λ, while SRAD depends on the diffusion 
step ∆t. MSRAD depends only on a single weighting 
parameter, α, maintaining a good balance between 
image smoothing and boundary allocation. 

5 CONCLUSIONS 

In this paper, memory-based SRAD was introduced 
as feature perseverance SRAD. The introduced 

memory through the reaction term balanced the 
effect of diffusion and correct boundaries allocation. 
MSRAD showed significant noise reduction effect 
over linear filters of Lee, Frost, and, Wiener, as well 
as over the diffusion filter of Perona-Malik. 
Compared to the original SRAD, MSRAD 
maintained the correct sizes of features and reduced 
speckle noise. MSRAD requires the determination of 
a single weighting parameter compared to estimating 
PSF of DEspeRADo or the image dependant 
threshold parameter controlling Reg-SRAD. 
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Figure 1: Synthesized image along with the results of applying various de-noising filters and MSRAD. (a) Original 
synthesized image. (b) Speckled synthesized image. (c) Lee filter result (d) Frost filter result. (e) Wiener filter result (f) 
Perona-Malik filter result. (g) SRAD result (h) MSRAD result. 
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Figure 2: MSRAD versus various de-noising filters in terms of smoothing over a horizontal scan line of the images in 
Figure 1. (a) Original signal. (b) Speckled signal. (c) Lee filter signal result. (d) Frost filter signal result. (e) Wiener filter 
signal result. (f) Perona-Malik signal result. (g) SRAD result signal. (h) MSRAD signal result. 
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