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Abstract: We present a fast closed form solution for estimating the exact joint locations inside the human body from 
motion capture data. The new closed-form solution is more robust and faster. For example, the formulae are 
as much as about 100 times faster than the traditional non-linear Maximum Likelihood Estimator and about 
9 times faster than linear least squares methods. The methods are proven to be statistically efficient when 
measurement error is smaller than the joint-marker distance. Unbiased Generalized Delogne-Kása (UGDK), 
multiple radii solution, and incremental GDK are important contributions of our research providing closed 
form fast solutions for skeleton extraction from motion capture data. Skeletal animation sequences are 
generated using the CMU and Eric Camper’s motion capture database. 

1 INTRODUCTION 

Skeleton extraction methods use temporal marker 
positions from motion capture data to predict the 
joint locations. These predicted joint locations then 
define the skeleton. Recently, O’Brien et al., in 2000 
(Brian, 2000) and with Kirk (Kirk, 2005) have 
produced a fast method for skeleton extraction using 
a linear least squares method assuming there is a 
relatively stationary point between two segments, 
and then solving for that point, which is essentially 
the rotation point. Some years ago, Leendert de 
Witte (Witte, 1960) found a solution for a circle in 
3-D space. The Maximum Likelihood Estimator 
(MLE) was the first solution for finding the sphere 
parameters. In 1961 Stephen Robinson (Robinson, 
1967) presented the iterative method of solving the 
sphere and developed a closed form solution for the 
radius estimator but not for the center estimator. In 
1972, Delogne presented (Delogne, 1972) a method 
for solving a circle for the purposes of determining 
reflection measurements on transmission lines. 
István Kása (Kasa, 1976) was the first to recognize 
the bias in the answer and produced better error 
analysis. Vaughan Pratt (Pratt, 1987) produced a 
very generic linear least squares method for 

algebraic surfaces. Gander (Gander, 1994) produced 
the linear least-squares method for circle fitting. 
Samuel Thomas (Thomas, 1995) created a formula 
for the Cramér-Rao Lower Bound for the circle 
estimation. Lukács (Lukas, 1997) produced some 
improvements on non-linear minimization for 
spheres. Corral et al. (Corral, 1998) analyzed Kása’s 
formula in more detail and a way to reject the 
answer if the confinement angle got too small. 
Strandlie et al. (Strandlie, 2000) transformed a 
Riemann sphere into a plane and fit the plane using 
standard methods involving the eigenvalues of the 
sample covariance matrix. Zelniker (Zelnicar, 2003) 
reformulated the circle equation to solve directly for 
the center using the pseudo-inverse (#) of a 2xN 
matrix. Michael Burr et al. (Burr, 2004) created a 
geometric inversion technique which far surpassed 
the complexity needed to solve for a hypersphere. 
Knight et al. (Knight, 2007) published the initial 
results from the research for this dissertation in 
which a skeleton was formed from a closed-form 
solution of generic motion capture data. 
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2 SKELETAL EXTRACTION 

Producing a skeleton involves finding the centers of 
joint rotations, the hierarchy of segmentation, and 
the orientation of each segment. The hierarchy of 
segmentation is known ahead of time such as in 
human animation. The orientation of a segment is 
determined by one of two methods. Either it is given 
in the raw data, e.g. magnetic trackers, or it is 
calculated by the fastest technique known. One of 
the earliest uses found in motion capture were 
published by Herda et al. (Herada, 2000). The most 
common approach to calculating a skeleton from 
motion capture data is through minimization until 
the skeleton fits where the rotation points have been 
approximated. The minimization involves squishing 
segments and moving joints until all joints are 
nearest to the calculated rotation points. O’Brien et 
al. (O’Brian, 2000) uses a linear least-squares 
minimization that produces the rotation points from 
a collection of time frames. In their study, magnetic 
motion tracking devices are used which contain both 
position and orientation. This is akin to solving for 
the best-fit sphere around a center. 3D marker 
trajectories are also analyzed in (de-Aguiar, 2006). 

In the following section, we start with 
explanation of symbols and conventions. In Section 
4, we visit some methods which have been used in 
various techniques as a prelude to generalized 
Generalized Delogne-Kása (GDK) method in 
Section 5 which include three contributions of our 
paper – unbiased GDK (Section 6), multiple radii 
solution (Section 7), and incremental GDK (Section 
8). A comparison of all techniques is in Section 10 
along with further research (Section 11). 

 

 
Figure 1: Skeleton from motion capture data. 

3 SYMBOLS  

O y( ) -- on the order of (i.e. size of) y 
N -- number of measurements 
CRLB-- Cramér-Rao Lower Bound covariance of 
estimator 
D -- dimension of hypersphere 
FLOP-- floating point operation 
xi --- i

th measurement of position 

x  --- average of all measurements of positions 
μi --- expectation of the ith position 
μ  --- average of expectations of all positions 
Σ  -- measurement covariance of each position 
ˆ Σ  -- measurement covariance estimator 
σ  -- measurement standard deviation 
C -- sample covariance 
C0  -- true covariance of expected positions 
S -- sample third central vector moment 
S0 -- true third central moment of expected positions 

0F  -- true 4th central moment of expected positions 

ˆ c  --- center estimator 
c0-- true center of hypersphere 
ˆ r  -- radius estimator 
r0  -- true radius of hypersphere 
λ  -- eigenvalue of matrix 
v  -- eigenvector of matrix 
xT  -- transpose of column vector into row vector 
A−1 -- multiplicative inverse of matrix 
AT  -- transpose of matrix 
∇  -- vector gradient operator 
x  -- magnitude of vector 

A  -- determinant of matrix 

N3 μ,Σ( ) -- 3D vector Normal Distribution 

ρ A( ) -- spectral radius of matrix 

Tr A( )  -- trace (sum of diagonals) of matrix 

E A( ) -- expectation of random variate 

Var A( ) -- variance of random variate 

      Cov A,B( ) -- covariance of two variates  

4 SPHERICAL CURVE FITTING 
APPROACHES  

There are three techniques in use today: iterative; 
least squares; and algebraic best fits. They each have 
their advantages and disadvantages. Iterative 
techniques are good for accuracy, least squares are 
faster than iterative but slower than algebraic, and 
algebraic techniques are good for speed. 

4.1 Monte-Carlo Experiments  

In order to compare the methods, a Monte-Carlo 
experiment was run using 1000 trials, each of which 
had anywhere from 4 to 1,000,000 samples. The 
runs took over a week of computational effort to 
collect. Each trial had a fixed standard deviation of 
the samples from the sphere with values ranging 
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from 10-13 to 1014. The sample must be confined to 
be within an angle from a fixed point on the sphere. 
This experiment allows for the in-depth analysis of 
the error in the answer from four different 
estimators. The four techniques are Maximum-
Likelihood Estimator (MLE) (Section 4.3), Linear 
Least-Squares (LLS) (Section 4.4), Generalized 
Delogne-Kása Estimator (GDKE) (Section 5), and 
the new Unbiased Generalized Delogne-Kása 
estimator (UGDK) explained in Section 6. The first 
three are established formulae and has been used for 
two hundred years (MLE (Shakarji, 1998)) to as 
young as three years (GDKE (Zelnicker, 2003)). 
UGDK is new method proposed in this paper. The 
following graph (Figure 2) shows the errors in the 
estimators compared to the standard deviation of the 
samples indicating that UGDK performs closest to 
CRLB. The graph shows that the relative error 
versus relative standard deviation is a line for each 
of these methods. The error is thus proportional to 
the standard deviation on a log-log display showing 
a power law. What is also clear from the graph is the 
comparison. The outliers on the graph have been 
circled. The obvious differences between the 
estimators show up in the graph by deviations from 
the straight line when error equals standard 
deviation. From the graph, it appears that there is a 
common limitation to the error in the estimator. This 
common limitation is named the Cramér-Rao Lower 
Bound to the covariance of an estimator. The 
following sections discuss the limit to all estimators 
for this particular problem. The MLE has outliers 
when the error equals the radius. This is due to 
multiple solutions when the error equals the radius. 
The LLS has outliers when the standard deviation is 
below about 10-6 times the radius and greater than 
1010 times the radius. These are due to numerical 
instability during the extremes of using finite 
representation of decimal numbers. The GDKE 
seems to be on par with the MLE except for the 
MLE outliers. The UGDK is consistently close to 
the CRLB indicating that it is more accurate than 
other methods. 
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Figure 2: Shows relative error comparison. 

 

4.2 Cramér-Rao Lower Bound (CRLB) 

The Cramér-Rao Lower Bound (CRLB) is the 
proven lower bound for any estimator’s covariance. 
It is equal to the inverse of the Fisher Information. It 
is an important measure when dealing with any 
estimator because it is the best error that an 
estimator can achieve. All estimators will have at 
best an error of the CRLB. 

4.3 Non-linear Maximum Likelihood 
Estimator (MLE) 

According to the National Institute of Standards and 
Technology (NIST) (Shakarji, 1998) the best way to 
find the center of a sphere is through non-linear 
minimization of the variance of the radius. This is 
also called the Maximum-Likelihood Estimator 
(MLE) for the center ˆ c  and radius ˆ r . The 
minimization is usually carried out by iterative 
methods like the Levenberg-Marquardt Method 
(Shakarji, 1998) and cannot be solved directly.  

4.4 Linear Least Square Method (LLS)   

The next best thing to the very slow MLE method is 
through linear least-squares solution. This is usually 
an over-constrained problem since there are N 
equations and four (i.e. D+1) unknowns. The N 
equations can be put into a single matrix equation to 
solve with standard linear algebra techniques. When 
LLS and CRLB are compared, once again, the 
outlier cases show that the answer erroneously lies 
on the sphere. For the most part, the answer error is 
proportional to the square root of the CRLB. The 
next fastest algorithm is the linear least squares 
method which has been analyzed in floating point 
operations (FLOPS) in (Knight, 2008) with D=3 as 

FLOPs 3( )= N 236 + 709  

An estimator of a parameter is considered biased 
if it is expected to be a little off of the real answer. 
Zelniker (Zelnicker, 2003) has shown that the bias of 
the GDKE is on the order of the measurement 
standard deviation. Our statistical analysis has 
shown that there are cases when the bias is quite 
significant and does not disappear even when more 
samples are taken. The dashed bar in Figure 3 show 
that the true center is not anywhere within the error 
ellipsoid of the estimate. This is due solely to the 
bias in the estimator. This is a good example of why 
the GDKE has not been adopted as much as the 
others. 
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Figure 3: GDKE error ellipse. 

5 GENERALIZED 
DELOGNE-KASA EXPOSITION 

The Generalized Delogne-Kása (GDK) estimator 
(Strandlie, 2000) is the starting basis for our new 
formulae. This estimator is a general solution for 
finding the best-fit hypersphere from measurements 
on the surface. However until now the estimator has 
limited uses as the estimator is biased and can 
produce significantly different answers from the 
solution. The GDK estimator provides a good 
estimate if the data is evenly distributed over the 
entire surface of the hypersphere. The estimate falls 
farther away as the data gets clumped to one side. 
The GDK estimator is derived from surface 
measurements xi and their deviation from a fixed 
distance from the center. The deviation for N 
measurements is written as 

sGDK
2 ĉ, r̂( )= 1

N −1 xi − ĉ( )T xi − ĉ( )− r̂2( )2

i=1

N

∑    (1) 

The minimization of this (Knight, 2008) 
produces estimations for the center and the radius 

ĉ = x + 1
2 C−1S    (2) 

r̂ 2 = 1
N xi − ĉ( )T xi − ĉ( )

i=1

N

∑  
 (3) 

where the intermediate quantities include the 
arithmetic vector mean 

x = 1
N xi

i=1

N

∑   (4) 

and the variance-covariance matrix 

C = 1
N−1 xi − x ( ) xi − x ( )T

i=1

N

∑  (5) 

and the third central vector moment 

S = 1
N−1 xi − x ( ) xi − x ( )T xi − x ( )

i=1

N

∑  (6) 

This estimation of the hypersphere is very fast 

due to the Cholesky inverse. The floating point 
operations for a D-dimensional hypersphere can be 
counted as 

   FLOPs = N D 2 + 6D − 1( )+ 1

3
D D + 1( ) D + 8( ) + 1   

(7) 

which, for the sphere, is 

FLOPs= N26+ 45   (8) 

This estimator is about as fast as you can get for 
this problem but it has one fatal flaw. The estimator 
has been shown to be biased providing an answer 
that is offset even under fairly normal conditions. 
The bias is proportional to the variance of the data 
(Zelniker, 2004) but analysis here shows the 
multiplication factor can outweigh an accurate 
measurement. The bias comes from the fact that one 
of the variables in the center equation is biased. We 
consider a measurement system that has a consistent 
error for each measurement on the surface of the 
sphere. The measurement is expected to be on the 
surface but varies from it by the multi-dimensional 
Gaussian distribution thus 

xi = GaussianD μi ,Σ( )   (9) 

The covariance matrix is then expected to be 

E C( )= C0 + Σ   (10) 

C0 = 1
N−1 μi − μ ( ) μi − μ ( )T

i=1

N

∑   (11) 

E S( )= S0  (12) 

S0 = 1
N−1 μi − μ ( ) μi − μ ( )T μi − μ ( )

i=1

N

∑  (13) 

 
E ˆ c ( )= c0 + 1

2 C0 + Σ( )−1 − C0
−1( )S0 +L (14) 

6 UNBIASED GDK 

Unbiased GDK provides a quick method to draw a 
skeleton from motion capture data. The main 
contribution to the state of the art is that the 
estimator explained below is asymptotically 
unbiased. Asymptotically unbiased is defined as an 
inversely proportional relationship with the sample 
count: E ˆ q ( )= q0 + O 1

N( ) where q0 is the parameter 
that the estimator is trying to estimate. This basically 
says that the estimator is expected to get closer to 
the true answer if more samples are taken. It is 
shown in (Knight, 2008) that the GDKE estimators 
for center and radius do not satisfy this requirement. 
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Our algorithm uses a simple substitution that turns 
the GDKE into one with a diminishing bias. It 
involves the use of an a-priori estimate of the 
measurement error in the samples. This is very 
reasonable since most systems of measurement have 
some kind of estimate to the measurement error. 
Since the sample covariance matrix C is the only 
biased term in the equation for the GDKE center, 
this is what will be altered.   

′ C = C − ˆ Σ   (15) 

E C − Σ̂( )= C0 + Σ − Σ̂  (16) 

ĉu = x + 1
2 C − Σ̂( )−1

S  (17) 

r̂u = N −1
N Tr C − Σ̂( )+ x − ĉu( )T x − ĉu( )   (18) 

Tr ˆ Σ ( )= 1
N xi − c0( )T xi − c0( )

i=1

N

∑ − r0
2 (19) 

This leads to fastest, asymptotically unbiased 
estimator of a hypersphere in (Knight, 2008) as 

ˆ ′ c = x + 1
2 C − ˆ Σ ( )−1

S
 (20) 

ˆ ′ r = N −1
N Tr C − ˆ Σ ( )+ x − ˆ ′ c ( )T x − ˆ ′ c ( )  (21) 

A typical use of these new estimators can be 
displayed using Mathematica, with exactly the same 
data as used for displayed for the GDKE. The true 
center is within the error ellipsoid (Figure 4). This 
data contains 100 points generated with a diagonal 
measurement covariance with all diagonals equal to 
0.052. The Leontief condition ( ρ <1) is satisfied with 
the spectral radius in question equal to 0.557238. 
These equations show that there still is a bias, but it 
is asymptotically unbiased. We implemented (results 
in Figure 4). A Monte-Carlo run that explicitly 
shows the 1/√N dependency. The error in the 
estimate is compared with how many points were 
analyzed for a particular joint in given motion 
capture data.  

 
Figure 4: UGDK error ellipse. 

An example analysis using MLE, UGDK and 
GDKE is presented in Figure 5. The figure clearly 
shows the improvement over the GDKE with same 
FLOP count for UGDK as GDKE. The figure shows 

the bias is removed using the UGDK and results 
produced by UGDK are close to MLE. The FLOP 
counts for UGDK remains same as GDK (Knight 
2008). Our analysis in (Knight 2008) also shows that 
there is a case when all methods have troubles in 
estimating the joint location – this is the case when 
measurement error is actually bigger than the item 
being measured. This situation is a bit impractical, 
as no one wants such a system of measurement. 

 
Figure 5: Comparison of methods. 

7 NEW SOLUTION: MULTIPLE 
RADII SOLUTION  

For multiple markers going around the same center 
of rotation, another formula can be achieved by the 
same analysis of least squares. This technique is 
good to use when more than one marker is available. 
It has the ability to average out errors when one 
marker is too close to the rotation point or has other 
systematic problems. Excluding the derivation, we 
have the following equations for center and radius 
estimates where M is the number of markers and 
subscript p indicates values that utilize the single 
marker’s positions: 

ĉm = Cp − Σ̂( )
p=1

M

∑
⎛

⎝⎜
⎞

⎠⎟

−1

Cp − Σ̂( )xp + 1
2 Sp

p=1

M

∑  (22) 

r̂p = N −1
N Tr C p − Σ̂( )+ xp − ĉm( )T

xp − ĉm( ) (23) 

Symbols and conventions are given in Section 2. 
The matrix that is to be inversed here is still a 

positive-definite matrix since positive-definite 
matrices added together still produce a positive-
definite matrix. This allows for the speedier 
Cholesky decomposition and the singular values can 
be excluded. An example of the MGDK method is 
presented in Figure 6. This example shows what 
happens when the individual circles are compared to 
that when combined in the MGDK. The outer circle 
solution is drawn in red; the inner circle solution is 
drawn in blue, and the MGDK solution is drawn in 
green. The example shows a dramatic improvement 
over both of the individual circle calculations. FLOP 
count analysis is in (Knight, 2008). 

NEW CLOSED FORM SOLUTIONS FOR SKELETAL EXTRACTION FROM MOTION CAPTURE

253



 

 
Figure 6: Comparison of methods. 

8 NEW SOLUTION: IGDK  

A more refined answer can be achieved when using 
a incremental improvement GDK (IGDK) formula.  
The idea here is a group of samples are collected and 
an answer is retrieved from the GDKE or UGDK 
formulae. Excluding the derivation, we have the 
following equations. Equations for S and C for 
(n+1)th sample are defined in (Knight, 2008) and are 
calculated using recurrence relationship. Below are 
the final equations for the center and radius. The 
advantage is that no new matrix inverse is needed 
and the storage requirements are of constant order. 

ĉn+1 = xn+1 + 1
2 Cn+1

−1 Sn+1  (24) 

ˆ r n +1
2 = n

n +1 Tr Cn +1( )+ x n +1 − ˆ c n +1( )T x n +1 − ˆ c n +1( ) (25) 

When compared to the FLOPs for the GDKE 
method, this incremental approach is about four 
times slower. This makes the incremental approach a 
last resort when a few extra points need to be added 
to a previously calculated center and radius. This 
new estimator has the distinct advantage of constant 
memory requirements no matter how many points 
are analyzed. 

9 EXPERIMENTS 

9.1 Case Study – CMU Data 

The CMU Graphics Lab produced a one minute long 
motion capture data-set of a salsa dance in 60-08. 
The data file contains 3421 time slices for 41 
markers on two figures. This case study will 
concentrate on analyzing the performance of the 
UGDK in determining the rotation points in the 
female subject. Four data sets were created by 
removing random samples from the CMU data sets. 
400 rotation points were collected. The calculated 
constants are the relative rotation points as 
referenced in each segment’s parent’s coordinate 
system. The 400 calculations were averaged and the 
standard deviations were calculated as well. Details 
results are analyzed in (Knight, 2008) Most of the 

standard deviations are less than one centimeter, but 
there are some significant outliers like the right 
ankle. Further analysis of the calculated points for 
the ankles and elbows shows that the four runs 
produced two answers due to different orientations 
of the parent’s reference frame. As can be readily 
seen from the above graph, a statistically significant 
amount of calculations are within one centimeter of 
accuracy when analyzing more than about 200 
samples. The accuracy gets better on average with a 
power law close to 1/√N (Figure 7). Skeletal 
animation of our results is provided in mpeg files. 
 

Deviation From Mean Rotation Point
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Figure 7: Inverse Power Law. 

9.2 Case Study of Eric Camper’s 
ACCAD Data 

The motion capture data in the ericcamper.c3d 
(Motion was analyzed to produce a skeleton. The 
subject did various martial arts maneuvers that 
moved every joint involved in drawing. One time 
frame is presented in the following figure. We show 
a frame of animation in Figure 1 which shows what 
appears to be a natural pose for all joints during a 
karate exercise. 

10 RESULTS  

A Monte-Carlo experiment was set up to determine 
the speed of the various sphere-fit algorithms. Up to 
a million samples were chosen on a sphere with 
varying measurement error, confinement angle, 
sphere-center and sphere-radius. The measurement 
error varied from 1x10-11 to 1x1012. The confinement 
angle varied from 0 to 180°. The sphere center 
varied as much as 2 around the origin. The radius 
varied 0 to 37. The linear algebra algorithms were 
all implemented from well-accepted 
implementations presented in Numerical Recipes in 
C (Press, 1992) The code was compiled optimized 
for a PowerPC G4 processor and run on a 1GHz 
Apple PowerBook 12”.    
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As discussed in (Knight, 2008), the GDKE, and 
therefore UGDK, is always faster with FLOP count 
as 26 N. The GDKE/UGDK is 2.17 times faster than 
IGDK on average. Based on FLOP counts as 
explained in (Knight, 2008) in detail, the 
GDKE/UGDK is 11.05 times faster than the LLS 
method and about 80 times faster than the MLE 
when the measurement error is less than one.   

10.1 Summary of Important Results 

Three new closed-form methods have been 
presented to find rotation points of a skeleton from 
motion capture data. A generic skeleton can be 
directly extracted from noisy data with no previous 
knowledge of skeleton measurements. The new 
methods are ten times faster than the next fastest and 
a hundred times faster than the most widely accepted 
method. Two phases are used to produce an accurate 
skeleton of the captured data. The first phase, fitting 
the skeleton, is robust even with noisy motion 
capture data. As explained earlier, the formulae use 
an asymptotically unbiased version of the 
Generalized Delogne-Kása (GDKE) Hyperspherical 
Estimation (i.e UGDK). The second estimator takes 
advantage of multiple markers located at different 
distances from the rotation point (MGDK) thereby 
increasing accuracy. The third estimator 
incrementally improves an answer and has 
advantages of constant memory requirements 
suitable for firmware applications (IGDK). The 
UGDK produces the answer faster than any previous 
algorithm and with the same efficiency with respect 
to the Cramér-Rao Lower Bound for fitting spheres 
and circles. The UGDK method significantly 
reduces the amount of work needed for calculating 
rotation points by only requiring 26N flops for each 
joint. The next fastest method, Linear Least-Squares 
requires 236N flops. In-depth statistical analysis 
shows the UGDK method converges to the actual 
rotation point with an error of O(σ/√N) improving 
on the GDKE’s biased answer of O(σ). The second 
phase is a real-time algorithm to draw the skeleton at 
each time frame with as little as one point on a 
segment. This speedy method, on the order of the 
number of segments, aids the realism of motion data 
animation by allowing for the subtle nuances of each 
time frame to be displayed. Flexibility of motion is 
displayed in detail as the figure follows the captured 
motion more closely. With the reduced time 
complexity, multiple figures, even crowds can be 
animated. In addition, calculations can be reused for 
the same actor and marker-set allowing different 
data sets to be blended.  

11 CONCLUSIONS  

In our effort to try to speed up skeleton extraction 
from motion capture date we discovered a new 
asymptotically unbiased GDK (UGDK) formulation 
which fills the vital low-level hole and makes GDK 
formulation practical. This paper presents the fastest 
known general method for calculating the rotation 
points and can be as much as ten times faster than 
the next fastest method available as explained in 
(Knight, 2009) The UGDK method has further 
impact in a vast collection of fields as diverse as 
character recognition to nuclear physics where an 
algorithm is needed for the speedy recovery of the 
center of a circle or sphere. The UGDK is expected 
to play a vital role in the process of determining a 
skeleton from motion capture data. The MGDK adds 
robustness to the equations allowing to use every bit 
of available data. The IGDK further has the 
application of being an ideal algorithm to burn into a 
silicon chip whose memory requirements are 
constrained.  

The UGDK estimators are an improvement on 
existing science but they are strictly dependent on a-
priori knowledge of the measurement error. It has 
been shown that the measurement error trace can 
itself be estimated but not the whole measurement 
covariance matrix. An estimator for the whole 
matrix would be most ideal but was not found in the 
course of this study and should be a topic of future 
research. The main contributions are the new 
unbiased center formulae; the full statistical analysis 
of this new formula; and the analysis of when the 
best measurement conditions are to initiate the 
formula. The research further establishes the 
application of these new formulae to motion capture 
to produce a real-time method of drawing skeletons 
of arbitrary articulated figures. is advisable to keep 
all the given values. 

 

Figure 8: A sample of File menu interface. 
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