

iTILE FRAMEWORK FOR CONSTRUCTING INTERACTIVE
TILED DISPLAY APPLICATIONS

Seokhwan Kim
Department of Computer Science, College of Software, Sangmyung University

7 Hongji_dong, Jongno_gu, Seoul, Republic of Korea

Minyoung Kim, Yonjoo Cho
Department of Digital Media Technology, College of Software, Sangmyung University

7 Hongji_dong, Jongno_gu, Seoul, Republic of Korea

Kyoung Shin Park
Multimedia Engineering, Division of Computer, College of Engineering, Dankook University

San 29, Anseo_dong, Dongnam_gu, Cheonan, Choongnam, Republic of Korea

Keywords: Tiled Display Framework, Large-sized and high-resolution display, Interaction.

Abstract: We describe a new scalable display framework, called iTILE, designed to help ease the development of
interactive graphics applications that run on a large tiled display. The framework supports the execution of
multiple interactive scene-graph applications, synchronized rendering, distributed data sharing, and unified
user interface mechanism on a cluster-driven tiled display. It enables the application window launching,
moving and resizing on a tiled display that requires a dynamic reconfiguration of rendering nodes. It also
provides the standardized method to support various input devices for the interactive contents. This paper
presents the design and the implementation of iTILE architecture and a few applications built using this
framework.

1 INTRODUCTION

Nowadays, there are many large public information
displays available in public spaces, such as the
airports, banks, and shopping centers. Such displays
are also found in the subway stations or at the bus
stops to provide information about the map of the
near district and other public transportation
schedules. However, current public information
displays are dedicated for display only, and so they
do not allow users to interactively acquire more
detailed information.

Recently, large high-resolution wall displays
have been used in some industry fields, such as the
military situation room, the 1:1 scale design of
mechanics, high-definition video streaming, and the
visualization of three-dimensional massive dataset.
(Ni et. al., 2006). The high-resolution display helps
users improve the efficiency of their tasks since it

allows users to see the fine detail view of the
contents if they get close to the displays and the
overview of the overall contents at a distance.

The scalable high-resolution displays can be built
using multiple projectors or multi-screen tiled
displays. Relatively large-sized and medium
resolution display is constructed with a few beam
projectors. It can generate a seamless display that
looks like one large single display if the projectors
are aligned perfectly well. The tiled display
constructed using many LCD panels does not need
recalibration. In addition, LCDs are relatively cheap,
and the colour variations across multiple screens are
low. The LCD tiled display is most widely adopted
because of its cost effectiveness and scalability.

There are several frameworks developed to
support scalable high-resolution tiled display. The
examples include SAGE (Jeong et. al., 2006),
WireGL/Chromium (Humphreys et. al., 2002),

 367
Kim S., Kim M., Cho Y. and Park K.
iTILE FRAMEWORK FOR CONSTRUCTING INTERACTIVE TILED DISPLAY APPLICATIONS.
DOI: 10.5220/0001794603670372
In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications (VISIGRAPP 2009), page
ISBN: 978-989-8111-67-8
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Garuda (Nirnimesh and Narayanan, 2007), and
Equalizer (http://www.equalizergraphics.com).
However, these works mostly focused on scalability
or distributed rendering of the tiled display and not
much considered user interaction. With the advent of
technology, we envision that the large high-
resolution tiled displays will allow users to
interactively view and use the multiple applications
simultaneously at the same time.

Figure 1: iTILE applications running on the tiled display
system.

In this paper, we describe a new interactive tiled
display framework, called iTILE, designed for
supporting easy construction of interactive
applications that can run on a scalable high-
resolution tiled display. Figure 1 shows iTILE
applications running on a 4x3 tiled display system
that uses one master and six slave computers. On the
left is the Field educational virtual reality application
running on three slave nodes and on the right is the
Super Pang interactive 3D game that runs on all six
slave nodes.

The main features of iTILE framework are the
execution of multiple three dimensional scene graph
applications, synchronized rendering and distributed
data sharing across the screens, and standardized
way to support various input devices on a PC-cluster
driven distributed tiled display system. It also
supports the application window launching, moving
and resizing on a tiled display that requires a
dynamic reconfiguration of rendering node in real-
time.

In following section, we will review some works
related to our framework and then describe the
design of iTILE system architecture and some
details implementations. Next, we briefly describe
some applications developed using iTILE
framework and future research directions.

2 RELATED WORK

WireGL is a parallel rendering framework on a
cluster computer system, designed to help render
three dimensional graphics by maximizing their
graphics power. It was not specifically designed for
tiled display, and more aims at parallel rendering
utilizing the distributed systems. It, however, could
support a sufficiently large image rendered on the
tiled display by dividing the large image into the
small sized image fit to each monitor. In WireGL,
when all node computers complete the rendering of
their part, they send the image to the central server.
Then, the server makes one large image and then
divides it to the small pieces of images for each
node. However, the performance is degraded when
the image gets very large. For example, if the image
resolution is 3200 X 2400 then the frame rate gets
below 20. WireGL also supports the hardware
implementation of tiled display rendering using
Lightning-2. (Stoll et. Al., 2001). Chromium is the
successor of WireGL; also designed for parallel
rendering framework. However, its performance and
mechanism for tiled display rendering is the same as
WireGL.

Equalizer developed by University of Zurich is
another parallel rendering framework similar to
WireGL and Chromium. Its rendering engine is also
based on OpenGL. Moreover, it sends the additional
rendering factors (such as, the location and the
orientation of virtual camera, and the viewport) to
each node, and then each node renders to show its
own part of the image. Equalizer provides the user
interface class for event handling. However, the
events are controlled by the GUI system rather than
directly from the operating system. That is, the event
processing routine for the input device should be
embedded to the GUI system’s loop. Thus, if a new
input device driver does not support transferring
inputs to the GUI system, the Equalizer application
developers have to implement this feature.

Garuda developed by Deemed University is an
Open Scene Graph (OSG) based three dimensional
graphics application framework for the tiled display.
Its performance is fairly good even under the 100
MB/s Ethernet and nVidia’s 6600GT graphics
chipset. The main purpose of this framework is to
support OSG application without any modification,
on the low-end PC cluster system. This framework
synchronizes all the nodes using a message passing
mechanism through a network. However, it does not
support multiple windows on the tiled display and
only support a mouse and keyboard as input devices.

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

368

SAGE, developed by EVL, University of Illinois
at Chicago, is a high-resolution video streaming
middleware through an extremely fast network.
SAGE uses “the virtual frame buffer.” That is, the
images (generated from one computer or cluster
computers) are transferred to the virtual frame
buffer, and then the display nodes read the frame
buffer via a network and present the image. SAGE
also supports adjusting the size or location of the
image. Its virtual frame buffer is similar to
WireGL’s distributed rendering mechanism in which
it gathers the image from the nodes and redistributes
to them. SAGE uses an optical network to improve
the performance by reducing network delay.

Most of existing tile display frameworks focused
on scalability or distributed rendering, and hence
they provide limited user interaction schemes.
SAGE is designed to stream the screenshots of the
various applications from other computers onto the
tiled display system. SAGE supports multiple
windows using scripts, and it also allows moving
and resizing the application window. The primary
goal of WireGL/Chromium and Equalizer is to
distribute and balance the rendering loads to
multiple distributed computers. Equalizer supports
heading tracking of user to interact with the
application on the tiled display. Garuda aims at
running standalone Open Scene Graph applications
on a low-cost tiled display system without
modifying any source code. Garuda only supports
keyboard and mouse interaction to interact with the
application.

3 ITILE FRAMEWORK

The goal of iTILE framework is to support easy
construction of multiple interactive graphics
applications running on a tiled display system. It

also provides dynamic application window
management on the tiled display as well as user
interaction mechanism for iTILE applications.
Figure 2 shows the architecture of iTILE framework.
The framework consists of iTILE master, slave, and
framework utility service modules.

Figure 2: The Overall Architecture of iTILE Framework.

The master is in charge of dynamic application
window management and input event processing to
control the applications running on the slave nodes.
The slaves render the scenes of tiled display
applications. The framework utility services support
the features needed by both master and slaves, such
as shared database, shared database manager, and
shared memory. The master, slave, and framework
utility service are communicating each other via
message passing over the network. The framework
is written in C++ and Microsoft winsock2 and
QUANTA networking library. (DeFanti et. al.,
2003). The rendering modules of the slaves are used
Open Scene Graph (OSG) graphics library.
(http://www.openscenegrap.org).

The communication mechanism is implemented
in the Network Transfer Module, using QUANTA
networking library. We also use PGM Reliable
Transport Protocol Specification (RFC 3208) for
reliable multicast. PGM guarantees the transmission
and the order of packet like TCP protocol does.
However, it needs to resend the data packet to all
computers in a multicast group even if only one host
computers does not receive the packet. Consequently,
the host which already gets the packet also receives
the same packet twice when this retransmission
occurs. iTILE gets around this retransmission
problem by limiting the size of the data packet and
putting packet number.

iTILE FRAMEWORK FOR CONSTRUCTING INTERACTIVE TILED DISPLAY APPLICATIONS

369

3.1 Utility Service

The framework utility service has a set of
independent modules like shared DB, shared DB
manager and shared memory.

The shared DB is used for sharing data among
all slave nodes, and the shared DB manager makes
sure to maintain data consistency and
synchronization in shared DB. Shared memory is
considered as a shared DB on a local machine.
Shared memory is independent to the master but it
runs on the same master computer. If the application
writes data in shared memory, the framework reads
the data and executes specified routine.

Shared DB is an implementation of distributed
shared memory (under we will use the term DSM).
When the users navigate in the virtual world that
consists of static objects, the master’s input
processor is used to distribute the virtual camera
information according to the viewing perspectives
required in the slave nodes. However, when the
world is more dynamic, DSM is used to share the
dynamic object’s state changes synchronously across
all slaves. Shared DB is an independent process that
can run on any slave machine, and the synchronized
data in shared DB can be accessed by any process at
any time.

Shared DB manager provides the
synchronization mechanism for data in shared DBs.
iTILE’s shared DB manager enhances the weak
consistency model. (Dubois et. al., 1986). In our
implementation, the slave node first asks the shared
DB manager to get a lock to the shared memory.
Then, the slave can access the critical memory
section if the shared DB manager allows it. After
updating the data, the slave node needs to release the
lock back to the shared DB manager.

Our implementation of shared memory service is
a wrapper of shared memory served by operating
system. Shared memory is used in shared DB to
enable accessing data across multiple processes. It is
also used for new input device. The master’s input
processor reads the specific range of shared memory
for a new input device and then executes the
interaction routine. The map between interaction
routine and data needs to be specified in the program.
Using the iTILE’s shared memory, it is easy to
create a routine that writes the input data into the
shared memory.

3.2 Master Module

The master module is composed of window manager,
input processor and synchronizer. Master’s window
manager processes the windowing events, such as

moving or resizing application windows. Master’s
input processor handles the application events, such
as user navigation and manipulation of virtual
objects. Master’s synchronizer works with slaves’
counterparts to update the application’s screen
rendering simultaneously.

Master’s window manager controls the
information about the application windows for all
slave nodes, such as window location and viewport.
It enables dynamic creation and removal of multiple
application windows on the tiled display system at
run-time. It keeps monitoring whether the window
events are happened or not. If so, the window
manager re-configures the location and size of the
window as well as recalculates the graphical
viewport and view frustum to properly render three
dimensional environments in each slave’s
application window. The window manager sends the
window information via multicast protocol to each
slave’s input processor.

Master’s input processor is another core module
of iTILE framework. Input processor receives events
based on the values from input devices. If it reads
out the values from input devices, it generates a
message (in pre-defined form) and sends it to the
slave nodes. It also sends the virtual camera
information such that slave nodes can render right
view perspectives. As shown in Figure 2, the
messages from both input processor and window
manager are sent to slave’s input processor.

When a new application window is launched
from the master, new synchronizer threads get also
created in both master and slaves. When each slave
node renders a scene and is ready to swap the frame
buffer, it sends a notification to the master’s
synchronizer. When the master’s synchronizer
receives the notifications from every rendering node,
it sends a rendering message to all slaves so that
they can actually draw on their screens.

3.3 Slave Module

The slave module consists of Open Scene Graph
renderer and slave’s window. The slave’s window
consists of input processor and synchronizer. We
employ the Open Scene Graph open-source graphics
APIs for graphics rendering. Slave’s input processor
identifies the appropriate message handler for the
application windows running on the slave node. The
slaves also have a synchronizer for each iTILE
application window to make sure all slaves
rendering updated simultaneously.

Slave’s input processor manages both
windowing events and application specific events.

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

370

When the input processor receives the messages
from the master, the input processor’s message
dispatcher determines the appropriate module for
those messages. If the message is from master’s
window manager, the slave’s window updates its
size and location changes. If the message is from the
master’s input processor, the slave’s input processor
analyzes the message and then executes the message
handler routine.

Slave’s synchronizer sends the rendering status
(such as, ready to render new frame buffer) to the
master’s synchronizer. Then, the master sends the
allowance message to the slaves when all slaves are
ready to swap their frame buffer. The slave’s display
buffer swapping is blocked until slave’s
synchronizer receives the allowance message from
the master.

4 APPLICATIONS

Figure 3 shows users interactive with three iTILE
framework applications on the 4x3 tiled display
system, which was constructed with 12 LCD panels
and one master and six slave computers. In this
section, we will briefly discuss some applications
written using iTILE framework: the Field
educational virtual environment, the Moyangsung
virtual heritage environment, the Super Pang
interactive 3D game, and the simple OSG model
viewer controlled by a Nintendo Wii remote
controller.

4.1 Field Virtual Environment

Field is an educational virtual reality application
originally developed by Electronic Visualization
Laboratory, University of Illinois at Chicago for
helping elementary students to teach scientific
inquiry learning skills. There are many kinds of
flowers and plants in the virtual field that consists of
grass, gravel, and sand area. In field, users can freely
navigate the world and observe the natural
phenomena for scientific inquiry. This application is
originally developed by using SGI Performer
graphics library and YG virtual reality scripting
framework (http://www.evl.uic.edu/yg/). We have
re-implemented Field written using iTILE
framework and OSG library.

iTILE framework provides several derived
modules for the OSG rendering and input processing
classes. Hence, simple OSG applications containing
static object models and navigation can easily be
ported to the iTILE applications by simply replacing

the viewer and the manipulator classes for the
master or the slave nodes. The efforts required
converting this kind of OSG applications to iTILE’s
are relatively low – In the Field application, for
example, less than ten lines of the source code are
changed.

Figure 3: Users interact with three iTILE applications on
the 4x3 iTILE tiled display system.

4.2 Moyangsung Virtual Environment

Moyangsung is a virtual reality cultural heritage
environment designed for users to learn cultural
background story of a Korean war-defensive castle.
It is constructed on a hill as a fortress. There are four
main gates and about twenty-two traditional
buildings inside the castle, and bamboo and pine tree
forests. Users can freely walk around the virtual
Moyangsung to experience various cultural sites.
This application is also written using SGI Performer
graphics library and YG virtual reality scripting
framework. Similar to Field, the Moyangsung
application is simply re-written using OSG library
and iTILE framework’s master/slave viewer and
manipulator classes.

4.3 Super Pang Interactive 3D Game

Our framework’s distributed shared memory
mechanism helps developers easily translate more
dynamic VR applications, such as Super Pang, to the
tiled display system. Super Pang is a simple OSG-
based interactive 3D game developed by
Sangmyung University. This game starts with a
character agent and a balloon floating in the world; a
player uses a keyboard or wii remote controller to
move the character and shoot the laser beam to hit
the balloon. The balloon would get split if the beam
crosses it. Then, the player continues to shoot the
balloons until all balloons get removed within a
limited time.

iTILE FRAMEWORK FOR CONSTRUCTING INTERACTIVE TILED DISPLAY APPLICATIONS

371

Unlike Field, the Super Pang game world is more
dynamic with moving objects and user interactions.
We employed the iTILE’s shared DB class to share
the user input data and the game character’s position,
across the slave nodes to render the correct contents
in the tiled display. The DSM is also used to update
the state of all moving objects (i.e., balloons) in the
3D world across the slave computers.

4.4 3D Model Viewer

We extended a simple OSG application, osgViewer,
to allow it to manipulate 3D object models with a
Nintendo Wii remote controller (often called
Wiimote). In this application, we developed a
specialized input processor class,
CMasterOSGTrackballManipulatorWithIO, for the
master node. This specialized input device handling
module simply reads Wiimote data and put them in
the shared memory as specified in the master node’s
input processor. Then, users can use the new device
for several user interactions, such as zooming in/out,
moving the object model left/right/up/down, and
rotating the model within the viewer application
without modifying any source code of the program.
This application demonstrates the convenience of
our framework, which provides a mechanism to
easily add new input device handling without
changing any code in the application program.

5 CONCLUSIONS

Tiled displays offers scalability, large-format, and
high-resolution used for various applications, such
as high-resolution image, massive scientific
visualization, video streaming, and design
prototyping. However, the development of tiled
display applications requires a lot of efforts. While
several scalable high-resolution tiled display
frameworks have been developed, they mostly focus
on scalability or distributed rendering of computer
graphics and not much considered user interaction.

This paper presented the design and
implementation of iTILE framework. iTILE
framework is designed to support easier and faster
development of the interactive graphics applications
for the scalable tiled display. This framework works
on the PC-cluster driven tiled display system
consisting of a master and multiple slave computers.
It provides the window manager for executing
multiple application windows, synchronized
rendering, distributed data sharing using shared DB
manager, and standardized mechanism to support
various input devices.

We have also showed some examples where
existing OSG applications can easily be ported to
run on the tiled display using our framework.
However, current iTILE framework is little tightly
coupled to Open Scene Graph library and hence it
only supports OSG-based applications. In our
current framework, the interaction with the input
device is needed to be specified in the application
program. In the future, we will continue to improve
our framework to decouple it from Open Scene
Graph library and add the new standardized
component structure for interaction scheme.

ACKNOWLEDGEMENTS

This research was supported by the Collaboration
Research Project program, supervised by the Korea
Research Council of Fundamental Science and
Technology under the Korea Institute of Science and
Technology Information.

REFERENCES

T, Ni., G, Schmidt., O, Staadt., M, Livingston., R, Bell.,
1999. A Survey of Large High-Resolution Display
Technologies, Techniques, and Applications. In VR
Conference 2006. IEEE.

B, Jeong., L, Renambot., R, Jagodic., R, Singh., J,
Aguilera., A, Johonson., J, Leight., 2006. High-
Performance Dynmaic Graphics Streaming for
Scalable Adaptive Graphics Environment. In SC.
IEEE.

G, Humphreys., M, Houston., R, Ng., R, Frank., S, Ahen.,
P, D, Kirchner., J, T, Klosowski., 2002. Chromium: a
stream-processing framework for interactive rendering
on clusters. In ACM Transactions on Graphics. ACM.

H, P, Nirnimesh., P, J, Narayanan., 2007. Garuda: A
Scalable Tiled Display Wall Using Commodity PCs.
In IEEE Transactions on Visualization and Computer
Graphics. IEEE.

G. Stoll., M. Eldridge., D, Patterson., A, Webb., S,
Berman., R, Levy., C, Caywood., M, taveira., S, Hunt.,
P, Hanrahan., 2001. Lightning-2: a high-performance
display system for PC clusters, In Proceedings of the
28th annual conference on Computer graphics and
interactive techniques. ACM.

E, He., J, Alimohideen., J, Eliason., N, Krishaprasad., O,
Yu., Leigh., T, Defanti., J, 2003. Quanta: a toolkit for
high performance data delivery over photonic
networks. In Future Generation Computer Systems.
ACM.

M, Dubois., C, Scherurich., F, A, Briggs., 1986. Memory
Access Buffering in Multiprocessors. In 13th Annual
International Symposium on Computer Architecture.
ACM.

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

372

