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Abstract: We introduce a new likelihood function for window-based stereo matching. This likelihood can cope with
unknown textures, uncertain gain factors, uncertain offsets, and correlated noise. The method can be fine-
tuned to the uncertainty ranges of the gains and offsets, rather than a full, blunt normalization as in NCC
(normalized cross correlation). The likelihood is based on a sound probabilistic model. As such it can be
directly used within a probabilistic framework. We demonstrate this by embedding the likelihood in a HMM
(hidden Markov model) formulation of the 3D reconstruction problem, and applying this to a test scene. We
compare the reconstruction results with the results when the similarity measure is the NCC, and we show that
our likelihood fits better within the probabilistic frame for stereo matching than NCC.

1 INTRODUCTION

Stereo correspondence is the process of finding pairs
of matching points in two images that are generated
by the same physical 3D surface in space, (Faugeras,
1993). The classical approach is to consider image
windows around two candidate points, and to eval-
uate a similarity measure (or dissimilarity measure)
between the pixels inside these windows. Such an ap-
proach is based on the constant brightness assumption
(CBA) stating that, apart from noise, the image data in
two matching windows are equal. If the noise is white
and additive, then the SSD measure (sum of squared
differences), or the SAD (sum of absolute differences)
is appropriate. Often, the gains and offsets with which
the two images are acquired are not equal, and are not
precisely known. Therefore, another popular similar-
ity measure is the NCC (normalized cross correlation)
which neutralizes these offsets and gains. An alterna-
tive is the mutual information, (Egnal, 2000), which
is even invariant to a bijective mapping between the
grey levels of the left and right images.

In a probabilistic approach to stereo correspon-
dence, the similarity measures become likelihood
functions being the probability density of the ob-
served data given the ground truth. For the applica-
tion of stereo correspondence (and related to that mo-
tion estimation) several models have been proposed
for the development of the likelihood function, but
none of them consider the situation of uncertain gains

and offsets. In this paper, we introduce a new likeli-
hood function in which the unknown texture, and the
uncertainties of gains and offsets are explicitly mod-
elled.

The solution of stereo correspondence is often
represented by a disparity map. The disparity is
the difference in position between two correspond-
ing points. In the classical approach, the disparity
map is estimated point by point on an individual base.
Better results are obtained by raising additional con-
straints in the solution space. For instance, neigh-
bouring disparities should be smooth (except on the
edge of an occlusion), unique, and properly ordered.
Context-dependent approaches, such as dynamic pro-
gramming (Cox et al., 1996) and graph-cut algorithms
(Roy and Cox, 1998), embed these contextual con-
straints by raising an optimization criterion that con-
cerns a group of disparities at once, rather than in-
dividual disparities. For that purpose, an optimization
criterion is defined that expresses both the compliance
of a solution with the constraints, and the degree of
agreement with the observed image data.

The Bayesian approach has proved to be a sound
base to formulate the optimization problem on (Cox
et al., 1996; Belhumeur, 1996). Here, the optimiza-
tion criterion is expressed in terms of probability den-
sities. A crucial role is the likelihood function, i.e. the
conditional probability density of the data given the
disparities. Suppose that a given point has a disparity
x, and that for that particular point and disparity the

603
van der Heijden F., J. Spreeuwers L. and Damjanovic S. (2009).
A NEW LIKELIHOOD FUNCTION FOR STEREO MATCHING - How to Achieve Invariance to Unknown Texture, Gains and Offsets?.
In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, pages 603-608
DOI: 10.5220/0001793606030608
Copyright c© SciTePress



pixels in the corresponding image windows are given
by z1 and z2. Then the likelihood function of that
point is by definition the pdfp(z1,z2|x).

The usual expression for this likelihood is again
based on the CBA, and assumes Gaussian, additive
white noise. Application of this model leads to the
following likelihood:

p(z1,z2|x) ∝ exp

(

− 1
4σ2

n
‖z1− z2‖2

)

(1)

Here,‖z1− z2‖2 is the SSD. The likelihood function
in eq. (1) is a monotonically decreasing function of
the SSD. It is used by (Cox et al., 1996) and (Bel-
humeur, 1996) albeit that both have an additional pro-
vision for occluded pixels. However, the function is
inappropriate if the gains and offsets are uncertain.
Yet, the differences between the grey levels in two
corresponding windows is often more affected by dif-
ferences in gains and offsets than by noise. This paper
introduces new expressions which do include these ef-
fects. The NCC and the mutual information similarity
measures are also invariant to these nuisance factors.
However, these measures are parameters derived from
the pdfs. But in a true probabilistic approach we really
need the pdfs themselves, and not just parameters.

The paper is organized as follows. Section 2 in-
troduces the new likelihood function. Here, a prob-
abilistic model is formulated that explicitly describes
the existence of an unknown texture, and uncertain
gains and offsets. The final likelihood is obtained
by marginalization of these factors. Section 3 anal-
yses the expression that is found for the likelihood.
In Section 4, we present some experimental results
where the likelihood function is used within a HMM
framework. A comparison is made between the newly
derived likelihood and the NCC when used in a for-
ward/backward algorithm. Section 5 gives conclud-
ing remarks and further directions.

2 THE LIKELIHOOD OF TWO
CORRESPONDING POINTS

We consider two corresponding points with dispar-
ity x. The image data within two windows that sur-
round the two points are represented byz1 and z2.
The grey levels (or colours) within the windows de-
pend on the texture and radiometric properties of the
observed surface patch, but also on the illumination
of the surface, and on the properties of the imaging
device. We model this by:

zk = αks+ nk + βke k = 1,2 (2)

Here,s is the result of mapping the texture on the sur-
face to the two image planes. According to the CBA,
this mapping yields identical results in the two im-
ages.αk are the gain factors of the two imaging de-
vices. βk are the offsets.e is the all 1 vector.nk are
noise vectors. We assume Gaussian noise with co-
variance matrixCn. Furthermore, we assume thatn1
is not correlated withn2.

Strictly speaking, the CBA can only hold for
fronto-parallel planar surface patches. In all other
cases the local geometry of the surface around a point
of interest is mapped differently to the two image
planes. Thus, the texture on the surface will be ob-
served differently in the images. This problem be-
comes more distinct as the size of the window in-
creases. The problem can be solved by backmap-
ping the image data within the two windows to the
3D surface before applying the similarity measure,
(Spreeuwers, 2008). In the sequel, we will assume
that either such a geometric correction has taken
place, or that the windows are so small that the aper-
ture problem can be neglected.

In order to get the expression for the likelihood
function we marginalize the pdf ofz1 andz2 with re-
spect to the unknown textures. Next, we marginalize
the resulting expression with respect to the gainsαk.
The offsets can be dealt with by regardingnk + βke
as one additive noise term. Thus, a redefinition ofCn
suffices. This will be looked upon in more detail in
Section 2.3, but for the moment we can ignore the ex-
istence of offsets.

2.1 Texture Marginalization

The likelihood function can be obtained by marginal-
ization of the texture:

p(z1,z2|x,α1,α2) =

∫

s

p(z1,z2|x,s,α1,α2)p(s|x)ds

(3)
The pdfp(s|x) represents the prior pdf of the textures.
For simplicity, we assume a full lack of prior knowl-
edge, thus leading to a prior pdf which is constant
within the allowable range ofz1 andz2. This justi-
fies the following simplification:

p(z1,z2|x) = K
∫

s

p(z1,z2|x,s,α1,α2)ds (4)

K is a normalization constant that depends on the
width of p(s). Any width will do as long asp(s) cov-
ers the range of interest ofz1 andz2. Therefore,K is
undetermined. This is not really a limitation sinceK
does not depend onx, z1 or z2.

With s fixed, z1 andz2 are two uncorrelated, nor-
mal distributed random vectors with means, and co-
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variance matrixCn. Thereforep(z1,z2|x,α1,α2) =
G(z1 − α1s)G(z2 − α2s), whereG(·) is a Gaussian
distribution with zero mean and covariance matrix
Cn. This expression can be further simplified by the
introduction of two auxiliary variables:h ≡ z1

α1
− s

andy ≡ z1
α1

− z2
α2

so thath− y = z2
α2

− s. The likeli-
hood function can be obtained by substitution:

p(z1,z2|x,α1,α2) = K
∫

h
G(α1h)G(α2(h−y))dh

and by rewriting this in the Gaussian form:

p(z1,z2|x,α1,α2) ∝
1√

α2
1+α2

2

exp
(

− (α2z1−α1z2)TCn
−1(α2z1−α1z2)

2(α2
1+α2

2)

)

(5)

Note that forα1 = α2 = 1 andCn = σ2
nI the likelihood

simplifies to eq. (1). The resulting likelihood function
is the same as in (Cox et al., 1996; Belhumeur, 1996)
although the models on which the expression is based
differ.

2.2 Marginalization of the Gains

In order to neutralize the unknown gains we marginal-
ize overα1 andα2:

p(z1,z2|x)=

∫

α1

∫

α2

p(z1,z2|x,α1,α2)p(α1)p(α2)dα2dα1

(6)
The prior pdfsp(αk) should reflect the prior knowl-
edge about the gainsαk. Usually, the gain factors
do not deviate too much from 1. For that reason, we
chose forp(αk) a normal distribution, centred around
1, and with standard deviationsσα. In order to make
the analytical integration of eq. (5) possible, we ap-
proximate the term 1/(α2

1+α2
2) by its value atαk = 1,

that is 1
2. This approximation is rough, but not too

rough. Forαk < 1, the factor 1/(α2
1 + α2

2) is under-
estimated, but forαk > 1 it is overestimated. Since
the integration takes place on both side ofαk = 1, the
error is partly compensated for.

Under the assumptionαk ∼ N(1,σα), the approx-
imation leads to the following result:

p(z1,z2|x) ∝
exp
(

− σ2
α(ρ11ρ22−ρ2

12)+ρ11+ρ22−2ρ12

σ4
α(ρ11ρ22−ρ2

12)+2σ2
α(ρ11+ρ22)+4

)

√

σ4
α(ρ11ρ22−ρ2

12)+2σ2
α(ρ11+ ρ22)+4

(7)
where:

ρkℓ = zT
k C−1

n zℓ with : k, ℓ = 1,2 (8)

In the limiting case, asσα → 0, we have

p(z1,z2|x) ∝ exp
(

− 1
4 (ρ11+ ρ22−2ρ12)

)

(9)

which coincides with eq. (1). Intuitively, this is cor-
rect since the uncertainties aboutα1 andα2 is zero
then. In the other limiting case, asσα → ∞, the like-
lihood becomes:

p(z1,z2|x) ∝
1

√

ρ11ρ22−ρ2
12

(10)

We will analyse these expressions further in Section
3.

2.3 Neutralizing the Unknown Offsets

We assume that the offsetsβk have a normal distribu-
tion with zero mean, and standard deviationσβ. The
vectorsβke have a covariance matrixσ2

βeeT . Since
the random vectors are additive, we may absorb them
in the noise vectorsnk. Effectively this implies that
the covariance matrixCn now becomesCn + σ2

βeeT .
Consequently, the variableρkℓ in eq. (8) should be
redefined byρkℓ = zT

k (Cn + σ2
βeeT)−1zℓ This can be

rewritten in:

ρkℓ = zT
k

(

N

∑
n=1

vnλ−1
n vT

n

)

zℓ (11)

λn are the eigenvalues of the covariance matrix.vn are
the corresponding eigenvectors. Suppose thatNσ2

β is
large relative to all other eigenvalues ofCn (N is the
dimension ofzk). In case of white noise, the equiva-
lent assumption isNσ2

β ≫σ2
n ). Then one of the eigen-

values ofCn + σ2
βeeT is close toNσ2

β, while all other
eigenvalues are considerably smaller. The eigenvector
that corresponds toσ2

β is close toe. The contribution
of this particular eigenvalue/eigenvector toρkℓ in eq.
(11) is about:

zT
k eeTzℓ

Nσ2
β

. (12)

The limit case,σβ → ∞, represents the situation of
full lack of prior knowledge of the offsets. In this cir-
cumstance, the approximations above become exact.
Thus, the full contribution in eq. (12 ) becomes zero.

There is no need to embedσ2
βeeT in Cn. The fac-

tor zT
k e is the projection ofzk on e. We just need to

remove this projection fromzk beforehand, and then
its contribution is zero anyhow. This can be obtained
by subtracting the average of the elements of the vec-
tor. Thus, if z̄k is the average of the elements of the
vectorzk, then:

ρkℓ = (zk− z̄ke)TC−1
n (zℓ − z̄ℓe) (13)

Note that this approach to cope with unknown offsets
is equivalent to the normalization of the mean, just as
in the NCC procedure.
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Figure 1: The likelihood function with varyingα1. Other
parameters are:α2 = 1, σn = 1, N = 225
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Figure 2: The likelihood ratio with varyingN. Other pa-
rameters are:α1 = 1, α2 = 1, σn = 1

3 LIKELIHOOD ANALYSIS

In this section, we examine the behaviour of the pro-
posed likelihood in different circumstances. For sim-
plicity, we consider only the white noise case,Cn =
σ2

nI. First we examine the behaviour of the likelihood
function under the null hypothesis with varyingα1.
Other parameters are kept constant. Substitution of
eq. (2) in eq. (8) yields:

ρkk = (α2
ksT s+2αksTnk + nT

k nk)/σ2
n

ρ12 = (α1α2sT s+ α1sTn1 + α2sT n2 + nT
1 n2)/σ2

n
(14)

We regards as a nonrandom signal. The energyσs is
defined asσ2

s ≡ sT s/N. We examine the behaviour by
replacing the inner products in eq. (14) by their root
mean squares. That is:

sT nk ∼
√

E
[

(sTnk)
2
]

=
√

Nσsσn

nT
k nk ∼

√

E
[

(

nT
k nk
)2
]

=
√

N2 +2Nσ2
n

nT
1 n2 ∼

√

E
[

(

nT
1 n2
)2
]

=
√

Nσ2
n

(15)

Figure 1 shows the likelihood functionp(z1,z2|x) for
σα = ∞, conform eq. (10), and forσα = 0.1, con-
form eq. (7) for varyingα1. Of course, a substitution

by RMSs is not exact, but nevertheless, the resulting
figure gives a good impression of the behaviour. As
expected, ifσα is very large, the likelihood function
covers a wide range ofα1. If σα is small, then the
function is narrowly peaked aroundα1 = 1.

In order to check whether the new likelihood func-
tion is able to distinguish between similar textures and
dissimilar textures, we also examined the ratio of the
likelihood function under these two different cases.
For that purpose, we also considered the alternative
model:

zk = αksk + nk + βke k = 1,2 (16)

In this situation,s1 ands2 are two different textures,
but with the same signal energyσs. If we models1
ands2 as realizations from two independent random
signals, then E[(sT

1 s2)
2]1/2 = σ2

s

√
N. Thus, if the tex-

tures are dissimilar, the RMS of the factorsTs in ρ12
in eq. (14) should be replaced accordingly. The ratio
between the likelihoods in the two cases is:

Λ(z1,z2) ≡
p(z1,z2|x,similar textures)

p(z1,z2|x,dissimilar textures)
(17)

Figure 2 shows this ratio for varyingN. We see that
the ratio’s withσα = 0.5 are always larger than the
one with σα = ∞, but for largeN the ratio’s with
σα = 0.5 approaches the other one and becomes con-
stant on the long run. The reason for this typical be-
haviour is that in the factorρ11ρ22−ρ2

12 the contribu-
tion of the signalα1α2sT s is cancelled out, while the
contribution of the noise, i.e.nT

k nk, is proportional to
N, and thus keeps growing asN increases.

4 EXPERIMENTS

A preliminary experiment is conducted to demon-
strate the abilities of our newly proposed likelihood.
For that purpose, two rectified stereo images were se-
lected. See Figure 3. In order to embed the likeli-
hood function within a probabilistic framework, we
treat the stereo correspondence along the epipolar line
as a state estimation problem using a HMM (Hidden
Markov Model). The reconstruction is done using the
FwBw (forward-backward) algorithm (van der Heij-
den et al., 2004). The Viterbi algorithm is also appli-
cable, but in our experiments, FwBw outperformed
Viterbi. We calculated the disparity map using the
new likelihood function as the observation probabil-
ity, and compared this map with a map obtained from
the same HMM, but with an other likelihood function
plugged in.
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(a) right image

(b) left image

(c) disparity map of right image

Figure 3: Two stereo images and the corresponding refer-
ence disparity map.

4.1 The Hidden Markov Model

Each row of the left image is considered as a HMM.
Thus, the running variable is the row indexi. The
state variable of the HMM is taken to be the dis-
parity xi . The set of allowable states is:xi ∈ Ω =
{Kmin , ..., Kmax}. Kmin and Kmax are the minimum
and the maximum disparities between the two im-
ages. The number of different states isK = Kmax−
Kmin + 1. The transition probabilities between con-
secutive states are given by the transition probability
Pt(xi+1 = n|xi = m).

The disparityxi along an image row is a piecewise
continuous function ofi. Sudden jumps are caused by
occlusions and boundaries between adjacent objects
of different depth in the scene, but for the remain-

(a) the new likelihood function

(b) NCC based likelihood

Figure 4: Reconstructed depth maps.

ing part the depth tends to be smooth. We can model
this prior knowledge by selectingPt(xi+1 = n|xi = m)
such that the next statexi+1 is likely to be close to the
current statexi . The variable has the highest probabil-
ity to stay in the same state. The probability should
decrease as the absolute difference∆ ≡ |xi+1−xi | in-
creases. However, the probability should also allow
the large jumps that are caused by occlusions and ob-
ject boundaries.

In our experiments,Pt consists of two modes.
Large jumps are modelled with an overall probabil-
ity Poutlier uniformly distributed over the rangexi −
Jmax, · · · ,xi +Jmax. In this mode, each state within this
range is reached with a probabilityPoutlier/(2Jmax+
1). Inliers are modelled with an overall probability
of 1− Poutlier. Here, the transition probability lin-
early decreases with∆ up to where∆ is larger than
a thresholdTmax. We chosePoutlier = 0.05, Jmax= 8,
andTmax = 3. Note, however, that the choice ofPt
could be refined by, for instance, using the uniqueness
constraint on the disparities (Faugeras, 1993).

4.2 Reconstruction

The selected rectified stereo pair is shown in Figure
3. These images are taken from (Hirschmller and
Scharstein, 2007). The scene, ’bowling1’, is chosen
because our intention is to apply the algorithm for
the reconstruction of textureless and smooth surfaces
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so that later the application can be extended to the
3D reconstruction of faces. The minimum and max-
imum disparities of these images areKmin = 374 and
Kmax = 446, which means that the state-space model
hasK = 73 states.

The reconstruction is done by applying the
forward-backward algorithm to an HMM with the
transition probability described above and with the
observation probability given by eq. (7). For the cal-
culation of the likelihood expression, we consider that
the noise variance isσ2

n = 0.05, the gain variances
σ2

α1 = σ2
α1 = 0.25. We performed the calculations on

the pixels within 31x31 windows. Thus,N = 961.
The reconstruction is also performed using the

NCC as similarity measure. Since this measure is
not a probability density, it possibly should undergo
a rescaling to make it more suitable for a substitute of
the observation probability. After some experimenta-
tion, we found that the following mapping of the NCC

(1
2 (1+NCC)

)γ
(18)

is a suitable choice. The best reconstruction was ob-
tained withγ = 6. We applied this expression within a
HMM with the transition probability described above.
The windows that were used are also 31x31.

4.3 Results

The reconstructed disparity maps are shown in Fig-
ure 4. A comparison with the ground truth (Figure 3)
shows that the reconstruction based on the new likeli-
hood function is more accurate and more robust than
the one based on the NCC measure. The new likeli-
hood expression is better able to deal with, especially,
the steplike transitions due to occlusion. The NCC-
based result is oversmoothed, and cannot locate this
transitions accurately. Note that the large error on the
right-hand side of the disparity maps are caused by
missing data in the left image.

5 CONCLUSIONS

We have found an expression for a likelihood function
that can cope with unknown textures, uncertain gain
factors and uncertain offsets. In contrast to the classi-
cal approaches this likelihood is not based on some
arbitrary selected heuristics, but on a sound proba-
bilistic model. As such it can be used within a prob-
abilistic framework. The likelihood can be fine-tuned
by setting a limited range of allowable gain factors
rather than just any gain factor.

Using the model we were able to show that cop-
ing with unknown offsets can safely be done by nor-

malizing the means of the data, as done in other ap-
proaches such as the normalized correlation coeffi-
cient. Unknown gain factors and unknown textures
are dealt with in a way that differs a lot from other
approaches. Yet, the computational complexity of
the proposed metric is quite comparable with, for in-
stance, the computational load of the NCC.

We demonstrated stereo reconstruction within the
probabilistic framework by the forward-backward al-
gorithm with a suitably chosen HMM and showed
that it is a resourceful approach. We showed that
the newly proposed likelihood is more suitable for
stereo reconstruction within the probabilistic frame-
work than the NCC. The reconstruction using the
new likelihood deals better with occlusion, while the
NCC tends to oversmooth the area with greater abrupt
change in depth.
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