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Abstract:  Regular textures can be modelled as consisting of periodic patterns where a fundamental unit, or texel, 
occurs repeatedly. This paper explores the use of a representation of texel geometry for classification and 
comparison of regular texture images. Texels are automatically extracted from images and the distribution 
of texel shape and orientation is modelled. The application of this model to image retrieval and browsing is 
discussed using examples from a database of art and textile images. 

1 INTRODUCTION 

Regular textures can be modelled as consisting of 
periodic patterns where a fundamental unit (texel) 
occurs repeatedly. Texture periodicity analysis has 
attracted much attention recently and has been used 
for texture tracking (Lin et al., 2007), synthesis 
(Charalampidis, 2006), and retrieval (Liu et al., 
1996; Lin et al., 1999; Lee et al., 2005).   

In common with much of the previous work, this 
paper focuses on the study of so-called wallpaper 
patterns. There exist 17 wallpaper groups which 
together account for all patterns generated by two 
linearly independent vectors (Liu et al., 2004). Here, 
regular textures generated by translation only are 
considered, as shown in Figure 1. A pair of vectors 
with shortest length (two linearly independent 
directions), ( 1t , 2t ) define a parallelogram which is 
called the texel. The texel repeatedly tiles the image 
to form a lattice structure. 1t  and 2t  define the size, 
shape, and orientation of the texel.  

Texel extraction is key to understanding regular 
texture. Starovoitov et al. (1998) used features 
derived from co-occurrence matrices to extract the 
texel. Charalampidis (2006) achieved this in the 
frequency domain based on the assumption that 
fundamental frequencies hold the basic structure 
information of regular texture. Lin et al. (1997) 
obtained texels by detecting salient peaks in the 
autocorrelation (AC) function of a texture image.  
Liu et al. (2004) extended the work of Lin et al. 
(1997) by adopting more dominant peaks of the AC 
function.  

 
Figure 1: A wallpaper pattern example with its two 
placement vectors and lattice structure. 

Several applications are based on the results of 
texel extraction from regular texture. Chetverikov 
(2000) and Leu (2001) measured the regularity 
degree of images using features derived from the AC 
function and similarity among texels, respectively. 
The regularity measurement can be applied to 
classify regular and irregular texture images. Texture 
image retrieval and browsing systems have been 
proposed in which the features used are related to 
texture periodicity (Liu et al., 1996; Lin et al., 1999; 
Lee et al., 2005). Charalampidis (2006) implemented 
texture synthesis using extracted texels. Lin et al. 
(2006) designed a geometric regularity score that 
depended on both the magnitudes and directions of 

1t  and 2t to evaluate various texture synthesis 
algorithms. Recently, Hays et al. (2006) and Lin et 
al. (2007) extended regular texture models to extract 
and track texels of near-regular texture, respectively. 

As can be seen from Figure 1, texel geometry 
indicates the spatial arrangement of a regular 
texture. Lin et al. (2006) adopted texel geometric 
information for the purpose of comparing 
synthesized texels and original texels. The 
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comparison was based on a Euclidean distance 
without taking the intrinsic distribution of texels into 
consideration.  

This paper presents a method that takes 
advantage of the geometric information from texels 
to retrieve and browse images. Firstly, texels are 
automatically extracted from regular texture images. 
Then, aspects of the texel geometry are represented 
as feature vector. Based on the distribution of a 
collection of images in the resulting feature space, 
clusters are defined such that each cluster 
corresponds to a type of texel. Each cluster is 
modelled as Gaussian and Bayes’ rule is used to 
estimate the probability that a regular texture has a 
certain texel type. The estimated distributions are 
also used to measure similarity between texels. 
Finally, the proposed techniques are applied to 
perform image retrieval and browsing.   

The main contributions of this paper are: 1) A 
3D representation is proposed to characterize texel 
geometry and embody the spatial arrangement 
information of regular texture in a manner that is 
invariant to translation and scaling in the image 
plane. 2) Texel clusters are defined and modelled 
based on the distribution of a collection of data. 3) 
Instead of using Euclidean distance, texel 
comparisons are made based on the probabilities that 
the image belongs to each cluster and the intrinsic 
cluster distributions. Finally, we show how these 
methods can be applied to image retrieval and 
browsing.  

The rest of the paper is organized as follows. 
Section 2 summarises the texel extraction algorithm. 
Section 3 proposes a model of texel types based on 
the distribution of a collection of images. Section 4 
applies the model to image browsing and retrieval. 
Experiments are presented in Section 5. Finally, 
conclusions are drawn in Section 6. 

2 TEXEL EXTRACTION 

A previously published method (Han et al., 2008) 
was used to extract texels, i.e. to estimate ( 1t , 2t ). 
The algorithm is described here briefly for 
completeness.  

The texel extraction algorithm contains two 
steps: texel hypotheses generation and hypothesis 
comparison. The first step begins by computing the 
AC function. Peaks in AC functions are always 
associated with texture periodicity. Following the 
ideas of Lin et al. (1997) and Liu et al. (2004), 
salient AC peaks are selected and used to obtain 

texels. Changing the number of peaks considered 
can result in different texel candidates.   

The second step compares all of the texel 
candidates obtained from the first step using a 
Bayesian model comparison framework. Let I  be 
an image and ),( 21 tt≡H  denote a texel hypothesis 

for I , kH  the thk  in a set of hypotheses, and kM  
a statistical model defined based on kH  with 
parameters kθ . Texel extraction can be formulated 
as choosing the most probable texel hypothesis 
given the image. By Bayes’ theorem, the posterior 
probability is proportional to the likelihood of the 
hypothesis times a prior:  

( | ) ( )( | ) ( | ) ( )
( )
k k

k k k
p I H p Hp H I p I H p H

p I
= ∝  (1) 

In the absence of prior knowledge favouring any 
particular hypothesis, the prior is taken to be 
uniform. For each kH , we define a unique 

kM deterministically so )|( kk HMp  is a delta 
function. Hence,  

( | ) ( | ) ( | , ) ( | )k k k k k k kp H I p I M p I M p M dθ θ θ∝ = ∫  (2) 

The integral in Eq. (2) can be approximated 
using Bayes Information Criterion (BIC). The details 
of BIC approximation can be found in Raftery 
(1995). The BIC for the model is:  

ˆ( ) log ( | , ) ( / 2)log log ( | )BIC M p I M d N p I Mθ= − + ≈ −  (3) 

where d  is the number of parameters and θ̂  is a 
maximum likelihood parameter estimate.  

 The hypothesis with the model that has the 
largest marginal likelihood is selected. Using the 
BIC approximation, hypothesis kH  is selected by 

)}({argmin)|(argmaxˆ
kk

kk MBICIHpk ==  (4) 

The texel model kM should be able to account 
for both regularity from periodic arrangement and 
statistical photometric and geometric variability. 
Here a Gaussian with covariance matrix of the form 

I2σ  was used to model a texel’s appearance. The 
reader is referred to Han et al. (2008) for further 
details.  

3 TEXEL GEOMETRY 

This paper focuses on modelling the geometry of a 
texel, ( 1t , 2t ), and not its pixel values. We opt for a 
representation that is scale invariant since the 
physical scale of the imaged objects is unknown. 
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The following three features are used to describe the 
spatial arrangement: 

 α : the angle between 1t and the image x-axis; 
 φ : the angle between 1t  and 2t ; 

 r : the ratio of lengths, i.e. 
||
||

2

1
t
t

=r . 

Note that the angle between 1t and the x-axis is 
not larger than the angle between 2t  and the x-axis, 
by construction. Figure 2 shows an example.  The 
value of α  ranges from 0 to 90 degrees. 2t  is the 
texel vector that subtends the smallest angle with 1t , 
and that angle is φ .  The value of φ  for a wallpaper 
pattern always lies between 60 and 90 degrees.  

 
Figure 2: An example of the geometry of a texel. 

The three-dimensional feature vector ),,( rφα  is 
automatically extracted from each regular texture 
image using the method described in Section 2. A 
distribution of 200 images in this 3D feature space is 
shown in Figure 3. See Section 5 for details of the 
dataset. Inspection of this distribution suggests 
clusters. Each cluster can be considered to 
correspond to a type of texel. Specifically, five 
clusters of texels might be defined according to the 
following five rules: 

 Cluster 1: texels are rectangles with 
90  ,0 ≈≈ φα ; 

 Cluster 2: texels are parallelograms with 
90  ,45 <≤ φα ; 

 Cluster 3: texels are parallelograms with 
90  ,0 ≈> φα ; 

 Cluster 4: texels are parallelograms with 
90  ,45 <> φα ; 

 Cluster 5: texels are parallelograms with 
90  ,0 <≈ φα . 

Any image in the dataset can be classified into a 
cluster based on the defined rules. However, a model 
of the cluster distributions is more useful, enabling 
the clusters to be parameterised and meaningful 
texel similarity measures to be defined. Each cluster 
can be modelled as a three-dimensional Gaussian 
distribution with a probability density function 

3/2 1/2

1

( | ) (2 ) | |
1         exp ( ) ( )
2

i

T
i i i

p C π − −

−

=

⎧ ⎫⋅ − − −⎨ ⎬
⎩ ⎭

x Σ

x μ Σ x μ
 (5) 

where ),,( rφα=x  denotes the feature vector of an 
image, }5,4,3,2,1{, ∈iCi , denotes the cluster index 
or class, iμ  denotes the mean for class i, and iΣ  
denotes the covariance matrix for class i. The 
parameters iμ  and iΣ  can be estimated using 
maximum likelihood. The class posterior probability 
can then be estimated via Bayes’ theorem,  

)(
)()|(

)|(
x

x
x

P
CPCP

CP ii
i =   (6) 

where the prior )( iCP  can be estimated from the 
frequencies of the classes in the data.  

4 IMAGE BROWSING AND 
RETRIEVAL  

Due to the rapidly growing number of digital images 
in our lives, there is a great need for effective image 
retrieval techniques. Content-based image retrieval 
using image features such as color, shape, and 
texture can be effective when the user has a query 
image to hand. However, when the user’s intention 
is ambiguous, image browsing can be more useful. 
Browsing supposes that the images can be 
categorized and ordered in meaningful ways. In the 
case of retrieval and browsing of images exhibiting 
regular texture, the spatial arrangement is obviously 
quite an important feature. In this section, we 
illustrate how the technique for describing and 
modelling texel geometry (the spatial arrangement 
of regular texture) can be applied to content-based 
retrieval and browsing. 
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Figure 3: A distribution of 200 regular texture images in the 3D texel feature space.  

4.1 Browsing a Texel Class 

One approach to organising an image database for 
browsing is to categorise the images and to then 
display images within a category in a meaningful 
way.There are then two problems: (i) how to 
categorise images, and (ii) how to lay out images 
within a category meaningfully for display. It is 
proposed that regular texture images can be 
categorised according to texel geometry. As shown 
in Figure 3, data points within a cluster tend to be 
scattered along a one-dimensional trend. This 
corresponds to the direction of maximal intra-class 
variance which is given by the principal component 
of the class distribution. This direction gives a good 
feature for intra-class discrimination and motivates 
projecting data onto these principal components. 
Ranking images according to the projected values 
will reflect the intra-class variation of texel 
geometry. More formally, 

1. Given a set of training images from a texel 
class, estimate the class mean μ , the 
covariance matrix Σ , and the eigenvector 
v of this matrix that corresponds to the 
largest eigenvalue λ .   

2.  For each test image from the same texel 
class, project the texel ),,( rφα=x  onto the 

first eigenvector: Tμxv )( −=y .  

3. List the images in ascending order of their 
y value. 

Figure 4 shows an example of browsing an 
image class. The original image is shown first, 
followed by its lattice structure. In this category, 
there were a total of 60 images. Due to limited 
space, only a few images are shown. The first row 
shows the three images placed at the front of the 
ranking list, the second row shows the middle three, 
and the third row shows the last three images. Texels 
of this image class differ mainly in the value of 
φ which varies from approximately 60 degrees to 
approach 90 degrees. Projecting the image data to 
the trend of the first principal component retains the 
‘most important’ variation. Images in this category 
are thus sorted in order of increasingφ .  

4.2 Image Retrieval 

Key to image retrieval and browsing is to measure 
similarity between images, whether between a query 
and the database for retrieval, or between images in 
the database for structuring the data for indexing and 
visualisation. Consider the case of query-by-
example in which a query image Q is to be 
compared to an image A  from the database. 
Assume that A  has been classified as belonging to 
the class }5,4,3,2,1{, ∈jC j . The similarity between  
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Q  and A  is estimated as follows.  
1. Calculate the probability )|( QCP j that Q  

belongs to class jC . (See Eqs. (5) and (6)).  
2. Project Q  and A  onto the principal 

component of class jC  to obtain 
Tμv )( jjQ Qy −= and Tμv )( jjA Ay −= . 

3. The similarity of Q to A  is computed as:   
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The above processing is repeatedly performed to 
every image in the database to yield a similarity to 
the query. Then, the images are ranked in decreasing 
order of similarity to the query. The similarity 
measure in Eq. (7) takes into account the probability 
that the query belongs to the same class and the 
distance between the images in that class 
(appropriately scaled).   

Figures 5 and 6 show examples of the proposed 
image retrieval algorithm.  In each of these Figures, 
the query image is shown at the top-left, and the top 
eight returned images are shown. The images are 
ordered from left to right and from top to bottom. 
Recall that the texel geometry is represented in a 
way that is scale invariant. Therefore, the similarity 
measure is in terms of shape and orientation. As can 
be seen, the returned images have their basic texture 
units repeated in similar ways to the query images. 

5 EXPERIMENTS 

Three experiments were performed to evaluate the 
proposed methods. The first experiment tested the 
performance of the texel extraction algorithm. The 
second experiment tested the ability of the Gaussian 
cluster models to yield correct classification of 
texels. The final experiment explored the ability of 
the principal components to represent the clusters.     

A dataset of 200 regular texture images was used 
for evaluation, comprising 147 images of textiles 
from a commercial archive and 53 images taken 
from three public domain databases (the Wikipedia 
Wallpaper Groups page, a Corel database, and the 
CMU near-regular texture database). The images 
ranged in size from 300× 225 pixels to 2648 × 1372 
pixels. The number of texel repeats per image 
ranged from five to a few hundreds. This data set 

includes images that are challenging because of (i) 
appearance variations among texels, (ii) small 
geometric deformations, (iii) texels that are not 
distinctive from the background and are large non-
homogeneous regions, (iv) occluding labels, and (v) 
stains, wear and tear in some of the textile images. 

5.1 Evaluation of Texel Extraction 

Two volunteers (one male and one female) 
qualitatively scored and rank ordered the algorithms. 
In cases of disagreement, they were forced to reach 
agreement through discussion. (Disagreement 
happened in very few cases). The observers were 
shown extracted texels overlaid on images and were 
asked to label each texel as obviously correct (OC), 
obviously incorrect (OI), or neutral. They were to 
assign OC if the texel was exactly the same or very 
close to what they expected, OI if the result was far 
from their expectations, and neutral otherwise. In 
our texel extraction algorithm, variance of the 
Gaussian model was the only free parameter and it 
was set as 1002 =σ . The numbers of OC, OI, and 
neutral results were 164, 17 and 19, respectively. 
Thus, the accuracy of texel extraction was 
164/200=82%. Figure 7 shows some example 
results. 

5.2 Evaluation of Gaussian Model  

A classification experiment was performed to assess 
the suitability of the assumption of Gaussian 
clusters. Images were classified as belonging to the 
cluster with the largest posterior probability as 
computed using Equations (5) and (6).  

The data set of 200 images was divided into two 
disjoint sets of 100 images each. One was used as a 
training set and the other as a test set. The 
experiment was then repeated after switching the 
training and test sets. Training data and ground truth 
were labelled using the rules in Section 3.2. The 
classification rates for the two test sets were 91% 
and 96% giving an average rate of 93.5%.  The 
confusion matrix averaged over the two test sets is 
shown in Table 1. Regular textures from classes 2, 3, 
and 4 were more likely to be misclassified, as would 
be expected from inspection of Figure 3. 

5.3 Evaluation of Texel Comparison 

It was proposed that texels be represented by 
projection onto their class-specific principal 
component. The intra-class distribution is thus 
modelled  as  a  1D  Gaussian. An   experiment   was 
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Figure 4: Image browsing example for class 4. 

  

 
Figure 5: Query-by-example based on texel geometry. The query is top-left followed by the seven best matches. 

  

   
Figure 6: Query-by-example based on texel geometry. The query is top-left followed by the seven best matches. 

performed to explore the effect of this projection. 
Texels from class i can be generated from this model 
by: 

ii avμx +=                                (8) 
where a  is an appropriately set weight. Weights 
with large magnitudes result in texels far from the 
mean. In practice, data will fall in a range such as 

λλ 33 ≤≤− a                         (9) 

where λ  is the eigenvalue for eigenvector iv . 
Table 2 shows texels synthesised from each of the 

five classes by setting λλ 2,,0 ±±=a . 

Table 1: Confusion matrix for texel classification. 

   Predicted 

True 

 
1 

 
2 

 
3 

 
4 

 
5 

1 29.5 0.5 0.0 0.0 0.0 
2 0.0 22.0 2.0 0.0 0.0 
3 0.0 1.5 21.5 0.0 0.0 
4 0.0 1.5 1.0 10.0 0.0 
5 0.0 0.0 0.0 0.0 10.5 
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Table 2: Synthetic texels generated by the model. 

a -2 λ  - λ  0 λ  2 λ  
 
 

Class 1 

  
 
 

Class 2 

  
 
 

Class 3 

  
 
 

Class 4 

  
 
 

Class 5 

  
 

     

    
Figure 7: Some results from the texel extraction algorithm. 

It can be seen that the major mode of variation for 
class 1 was the ratio of the lengths of 1t  and 2t . 
The major mode of variation for class 3 combined 
the ratio of the lengths of 1t  and 2t , and the 
direction of 1t . The major mode of variation for 
classes 2 and 4 involved all three features. These 
synthetic data suggest that the proposed model is 
able   to   capture   the   variability   of   each   class  

 effectively.  

6 CONCLUSIONS 

In this paper, a systematic study of the texel 
geometry of regular textures has been presented. A 
fully automatic algorithm using Bayesian model 
comparison was used to extract texels. A feature 
vector defined on the obtained texel was proposed to 
characterize the geometry of a texel. The distribution 
of a set of regular texture images in the feature space 
was modelled. The proposed model is easy to 
implement and was applied to guide image browsing 
and retrieval effectively. Experiments on a collection 
of regular texture images have demonstrated the 
promise of the approach. 

Various extensions to this work would be 
interesting to investigate in future work. 1) It would 
be useful to analyse other regular texture data sets to 
investigate the breadth of applicability of the 
proposed clustering model. 2) Evaluations of image  
retrieval and browsing should be conducted on a 
large-scale database combining the proposed 
technique with other features that model the 
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appearance of the texels. 3) The proposed work has 
been applied to image retrieval and browsing in this 
paper. We believe it can also be extended to help 
fabric designers to categorize and manage their 
digital archives, and provide them with interesting 
sources to spark and fuel design inspiration. 
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