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Abstract:  The primary objective of this paper is to carry out a performance comparison of two models to generate 
simplified meshes representing 3D objects, the GNG3D model and the Quadric Error Metrics (QEM) 
model. The QEM model constitutes a well-known classical algorithm based on interactive contraction of 
vertex pairs and represents perhaps the best balance yet between speed, fidelity, and robustness of the 
proposed models and algorithms for mesh simplification in the last years. The GNG3D model is based on a 
neural network algorithm and a reconstruction phase of the object. For the purpose of comparison, several 
error measurements are proposed and motivated in order to evaluate the quality of the approximations that 
both models produce. It is justified with numerical results that the GNG3D model exhibits better 
performance for several 3D objects with different topologies and geometric properties. 

1 INTRODUCTION 

Mesh simplification has emerged as a critical step 
for handling such huge meshes. A great work for a 
neural network based approach related to the 
problem of mesh simplification has been performed 
during the last years (Fritzke, 1994; Ivrissimtzis, 
Jeong & Seidel, 2003). We have developed the 
GNG3D model (Alvarez, Noguera, Tortosa & 
Zamora, 2007) to simplify any three-dimensional 
mesh, with the primary characteristics that it allows 
to establishing the total number of vertices that the 
simplified object will have, that is, the level of detail 
of the resulting mesh, and that it allows to set a 
maximum running time to obtain the simplified 
mesh. 

In order to check the efficiency of this neural 
network method, we compare it with the well known 
Quadric Error Metrics (QEM) by Garland (Garlang 
& Heckbert, 1997). The reason to choose QEM is 
that it constitutes perhaps the best balance yet 
between speed, fidelity, and robustness of the 
proposed models and algorithms for mesh 
simplification in the latest years. See Luebke (2001) 
for a more detailed comparison of classical 
algorithms for mesh simplification. 

 

2 THE GNG3D MODEL 

The GNG3D algorithm has been designed taking as 
a basis the GNG model, with an outstanding 
modification consisting on the possibility of 
removing some nodes or neurons that do not provide 
relevant information about the original model. 
Besides, a reconstruction phase has been added in 
order to construct the faces of the optimized mesh.  

Therefore, the GNG3D algorithm consists of two 
different phases: a Mesh Optimization Phase and a 
Mesh Reconstruction Phase. 

A. Phase 1. Mesh Optimization. The primary 
objective of this optimization phase is the 
calculation of the best distribution of vertices that 
shapes the new simplified mesh. To perform this 
task an optimization algorithm  has been 
implemented. For a detailed description of the 
algorithm, see the paper (Alvarez, Noguera, Tortosa 
& Zamora, 2007). 

B. Phase 2. Reconstruction of the 3D Object. 
In general, phase 1 can be seen as a training process 
based on neural networks. At the end of this process 
a set of nodes, which represent the new vertices of 
the optimized mesh is computed. The edges 
connecting these nodes show the neighboring 
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relations among the nodes generated by the 
optimization algorithm.  

The reconstruction phase constitutes a post-
process which uses the information on new nodes 
provided by the optimization phase and the 
information on the nodes of the original model. With 
these sets of nodes, a concordance process can be 
carried out between the nodes of the original object 
and the nodes generated by the optimization 
algorithm. This concordance process allows us to 
reconstruct the faces of the new optimized mesh.  

3 THE QEM MODEL 

The QEM algorithm provides a useful 
characterization of local surface shape, and it has 
modest computational and storage requirements. 
Combining quadric error metrics with iterative 
vertex pair contraction results in a fast algorithm for 
producing high-quality approximations of polygonal 
surfaces. The main characteristic of this algorithm is 
that is based on the iterative contraction of vertex 
pairs, proceeding by iteratively merging pairs of 
vertices, which need not be connected by an edge. 
Candidate vertex pairs include all vertex pairs 
connected by an edge, plus all vertex pairs separated 
by less than a user specified distance threshold t. It is 
introduced the quadric error metric to represent the 
error introduced by a sequence of vertex merge 
operations. The error introduced by a vertex-merge 
operation can be quickly derived from the sum of the 
quadric error metrics of the vertices being merged 
and that sum will become the merged vertex quadric 
error metric. The resulting algorithm is extremely 
fast. The visual fidelity of the resulting 
simplifications tends to be quite high, even at drastic 
levels of simplification. The advantages of this 
model can be summarized in the Efficiency (the 
algorithm is able to simplify complex models quite 
rapidly) and the Quality (the approximations 
maintain high fidelity).  

4 EVALUATION OF THE 3D 
MESHES 

Garland, Heckbert (1997) developed a surface 
simplification algorithm based on iterative 
contraction of vertex pairs to simplify models and 
maintains surface error approximations using 
quadric metrics. 

They observed that, given a simple plain (n, d) 
one can express the squared distance from the plane 

to a point x by error(x) = xTAx + 2 bTx + c, where 
(A,b,c) = (nnT, dn, d2) is the fundamental quadric of 
the plane (n,d).  

We have chosen two methods of error 
evaluation. For the first one, we use a metric that 
measures the squared distance between the 
approximation and the original model. We define the 
distance d(v,A) = minp∈A ||v − p|| as the minimum 
distance from v to the closest vertex p in the 
optimized mesh. This metric provides two error 
measurements that permit us to evaluate the 
approximations we are generating. These error 
measurements are: 

• Mean error value of the minimum squared 
distance, given by 

Eavg =
1
M

d 2(v, A)
v∈K
∑  

• Maximum error value of the minimum squared 
distance, given by 

Emax = maxv∈K d 2(v, A){ }. 

Remember that K is the set of vertices of the 
original model, |M| is the number of elements of K, 
and A is the set of vertices of the simplified object. 
The second error measurement method computes the 
difference between the area comprised by the faces 
of the original object and the area corresponding to 
the faces of the simplified object (Cignoni, Rocchini, 
& Scopigno, 1998). Taking that the faces of the 
three-dimensional models considered here are 
triangular, this metric can be computed by the 
expression Esur = SK − SA, with 

 

 

SX =
1
2

va ⋅ vb ⋅ senα =
f ∈X
∑ 1

2
r v a ⊗

r v b
f ∈X
∑ . 

 
X is the set of faces of the original mesh and va, vb 
the vectors joining the vertices belonging to face f. 

The quality of the mesh being generated can be 
known at any time employing the metric of the 
distance to the vertices on any iteration during the 
training of the neural network in phase 1. The area 
difference metric can only be computed after 
applying phase 2 because there are no faces in the 
mesh being optimized during phase 1. 

Using the three error measurements exposed in 
this section, Eavg, Emax, Esur, we have performed 
numerical experiments for a variety of models with 
different geometric characteristics. 
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5 NUMERICAL RESULTS 

To perform the comparisons between QEM and 
GNG3D models, we have tested more than twenty 
3d models with different topologies and levels of 
complexity. Besides, we have registered 
measurements for the average error, the maximum 
error and the surface error for both models. 

Because of the characteristics of the GNG3D 
model, we are able to obtain error values for 
different iterations during the training process; the 
error values in QEM model are obtained once the 
simplification process has been performed. The 
example we show in Table 1 is a 3D model named 
gargoyle, which has 21379 vertices and 40348 faces. 
In the table we summarize the error values Eavg, 
Emax, and Esur obtained for the GNG3D and QEM 
methods when the number of iterations in the 
GNG3D algorithm is increasing. The error values 
for the QEM algorithm have been determined once 
the mesh has been simplified. 

The second and third columns show us the 
number of vertices and faces of the simplified mesh 
for the corresponding number of iterations in the 
first column. Therefore, we can see that when the 
optimization algorithm in the GNG3D method 
performs 149653 iterations, and we run the 
reconstruction phase, we obtain a simplified mesh 
with 4009 vertices and 7234 faces. For that mesh, 
the error values are:  Eavg = 0.050,  Emax = 0.690,  
and Esur = 3.64. The constant error values for the 
QEM algorithm  are  Eavg = 0.010,  Emax = 0.443,  
and  Esur = 27.321. From Table 1, we remark: 
• comparing the simplified meshes obtained from 
GNG3D and QEM models, it can be concluded that 
the approximations generated by the GNG3D model 
are better than those generated by the QEM model, 
since the error values are lower for GNG3D model, 
comparing the corresponding columns. 
• it is observed that the surface error for the 
GNG3D model is always lower than the 
corresponding value for QEM algorithm, even when 
the number of iterations is extremelly small. In the 
case of the Eavg and Emax measurements, it is 
observed that from a number of iterations (256548 
for Eavg and 128274 for Emax), the error values for the 
GNG3D model are much better than the measured 
for the QEM model. 
• for the gargoyle 3d object in Table 1, the 
differences in the error measurements are very 
important, with the GNG3D model being always 
better. This is particularly evident in the case of the 
surface error, meaning that the mesh obtained by the 
neural network algorithm is of higher quality than 

the generated by the classical algorithm. 
More than thirty 3d objects have been used to 

test both models. In most cases, the GNG3D model 
produces higher quality approximations than the 
QEM algorithm. 

6 CONCLUSIONS 

We have performed comparisons between two 
different models to simplify meshes representing 3D 
objects. To compare the resulting simplified meshes 
from both models we implement three error 
measurements, Eavg, Emax, and Esur, which allow us to 
evaluate the quality of the approximations generated. 
The numerical experiments with more than thirty 3D 
objects with different topologies and geometric 
characteristics shows that we can afirm that the 
quality of the approximations generated by the 
GNG3D model are better than the generated by the 
QEM model. For the particular objects detailed in 
the paper we observe significant differences in the 
error measurements in favor of the GNG3D model, 
especially when the number of iterations is high.  
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Table 1: Comparing GNG3D with QEM for the model gargoyle. 

Iteration Vertices Faces Eavg  Emax Esur 
QEM 
Eavg 

QEM  
Emax 

QEM 
Esur 

21379 563 0 2,6744 5,3053 25,63 0,01003 0,443243 27,321686 
42758 1118 1252 0,7069 1,7517 16,86 0,01003 0,443243 27,321686 
64137 1660 2458 0,3242 1,1269 9,25 0,01003 0,443243 27,321686 
85516 2228 3670 0,1813 0,6825 2,52 0,01003 0,443243 27,321686 

106895 2868 4885 0,1026 0,4889 3,58 0,01003 0,443243 27,321686 
128274 3462 6128 0,0685 0,2093 3,45 0,01003 0,443243 27,321686 
149653 4009 7234 0,0499 0,6902 3,64 0,01003 0,443243 27,321686 
171032 4722 8308 0,0341 0,1586 2,31 0,01003 0,443243 27,321686 
192411 5378 9613 0,0248 0,1205 2,09 0,01003 0,443243 27,321686 
213790 5961 10844 0,0188 0,1068 0,64 0,01003 0,443243 27,321686 
235169 6584 12041 0,0147 0,1058 1,80 0,01003 0,443243 27,321686 
256548 7297 13137 0,0113 0,0760 1,96 0,01003 0,443243 27,321686 
277927 7833 14318 0,0089 0,0754 2,14 0,01003 0,443243 27,321686 
299306 8545 15399 0,0070 0,0554 0,85 0,01003 0,443243 27,321686 
320685 9074 16601 0,0057 0,0437 1,44 0,01003 0,443243 27,321686 
342064 9787 17761 0,0045 0,0390 0,99 0,01003 0,443243 27,321686 
363443 10499 18895 0,0036 0,0390 1,50 0,01003 0,443243 27,321686 
384822 10690 19952 0,0032 0,0390 1,20 0,01003 0,443243 27,321686 
406201 10690 20667 0,0031 0,0390 1,12 0,01003 0,443243 27,321686 
427580 10401 20801 0,0035 0,1432 1,02 0,01003 0,443243 27,321686 
448959 10690 20875 0,0029 0,0390 1,25 0,01003 0,443243 27,321686 
470338 10690 21216 0,0029 0,0368 1,36 0,01003 0,443243 27,321686 
491717 10690 21327 0,0028 0,0292 1,24 0,01003 0,443243 27,321686 
513096 10690 21408 0,0028 0,0331 1,12 0,01003 0,443243 27,321686 
534475 10674 21412 0,0032 0,1431 1,38 0,01003 0,443243 27,321686 
555854 10690 21449 0,0028 0,1054 1,12 0,01003 0,443243 27,321686 
577233 10690 21506 0,0028 0,1054 0,97 0,01003 0,443243 27,321686 
598612 10690 21471 0,0029 0,0327 1,12 0,01003 0,443243 27,321686 

 

 
Figure 1: Error surface measurements for the gargoyle 3D object using GNG3D and QEM. 

 

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

102


