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Abstract: In this paper, we extend the Maximum uncertainty Linear Discriminant Analysis (MLDA), proposed recently
for limited sample size problems, to its kernel version. The new Kernel Maximum uncertainty Discriminant
Analysis (KMDA) is a two-stage method composed of Kernel Principal Component Analysis (KPCA) fol-
lowed by the standard MLDA. In order to evaluate its effectiveness, experiments on face recognition using the
well-known ORL and FERET face databases were carried out and compared with other existing kernel dis-
criminant methods, such as Generalized Discriminant Analysis (GDA) and Regularized Kernel Discriminant
Analysis (RKDA). The classification results indicate that KMDA performs as well as GDA and RKDA, with
the advantage of being a straightforward stabilization approach for the within-class scatter matrix that uses
higher-order features for further classification improvements.

1 INTRODUCTION

The primary purpose of Linear Discriminant Analy-
sis (LDA) is to separate samples of distinct groups
by maximizing their between-class separability while
minimizing their within-class variability (Fukunaga,
1990; Devijver and Kittler, 1982).

However, in limited sample and high dimensional
problems, such as face recognition, the within-class
scatter matrix is either singular or mathematically un-
stable and the standard LDA cannot be used to per-
form the separating task. In the last years, a number of
linear methods have been proposed to overcome this
difficulty (Swets and Weng, 1996; Belhumeur et al.,
1997; Chen et al., 2000; Yu and Yang, 2001; Yang
and Yang, 2003; Thomaz et al., 2006), making LDA
applicable to limited sample size problems that have
been assumed to be linearly separable in the original
space.

More recently, in order to make LDA applicable
to non-linearly separable data as well, kernel-based
methods have been applied. The main idea of kernel-
based methods is to map the original input data to a
feature space by a non-linear mapping where inner
products in the feature space can be computed by a

kernel function without knowing the non-linear map-
ping explicitly (Park and Park, 2005). Works in this
area include the Kernel Principal Component Anal-
ysis (KPCA) (Scholkopf et al., 1998), Generalized
Discriminant Analysis (GDA)(Baudat and Anouar,
2000), and Regularized Kernel Discriminant Analy-
sis (RKDA) (Lu et al., 2003), among others. In the
specific case of GDA, it has been demonstrated in
(Yang et al., 2004) that GDA is in fact equivalent to
the two-stage method composed of KPCA followed
by the standard LDA.

In this paper, we extend the Maximum uncer-
tainty Linear Discriminant Analysis (MLDA) ap-
proach (Thomaz et al., 2006), proposed recently for
solving limited sample size problems in discriminant
analysis, to its kernel or non-linear version. This non-
linear version of MLDA, here called Kernel Maxi-
mum uncertainty Discriminant Analysis (KMDA), is
a two-stage method composed of Kernel Principal
Component Analysis (KPCA) followed by the stan-
dard MLDA. The effectiveness of KMDA is evaluated
on face recognition through comparisons with KPCA,
GDA and RKDA, using the well-known Olivetti-
Oracle Research Lab (ORL) (Samaria and Harter,
1994) and FERET face databases (Phillips et al.,
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1998). One advantage of the proposed method for
face images is the possibility of improving classifica-
tion performance by using more non-linear interme-
diate features than pixels in the images. In addition,
KMDA does not require the selection of parameters,
like RKDA, for within-class scatter matrix stabiliza-
tion.

The paper is organized as follows. In section 2
we review briefly the LDA and MLDA approaches.
Then, in section 3, we explain how we have extended
the MLDA approach to its non-linear version using
the mathematical result described in (Yang et al.,
2004). The set up of the experiments carried out in
this work as well as the classification results on face
recognition are presented respectively in sections 4
and 5, comparing the KMDA recognition rates with
KPCA, GDA and RKDA. In section 6, we analyze and
discuss the non-linear classification results of KMDA
with the MLDA ones published in (Thomaz et al.,
2006). Finally, in section 7, we conclude the pa-
per, summarizing its main contribution and indicating
possible future work.

2 LINEAR DISCRIMINANT
ANALYSIS (LDA)

Let the scatter matrices between-class Sb and within-
class Sw be defined, respectively, as

Sb =
g

∑
i=1

Ni(xi−x)(xi−x)T (1)

and

Sw =
g

∑
i=1

(Ni−1)Si =
g

∑
i=1

Ni

∑
j=1

(xi, j−xi)(xi, j−xi)T ,

(2)
where xi, j is the n-dimensional pattern (or sample) j
from class i, Ni is the number of training patterns from
class i, and g is the total number of classes or groups.
The vector xi and matrix Si are respectively the un-
biased mean and sample covariance matrix of class i
(Fukunaga, 1990). The grand mean vector x is given
by

x =
1
N

g

∑
i=1

Nixi =
1
N

g

∑
i=1

Ni

∑
j=1

xi, j, (3)

where N is the total number of samples, that is, N =
N1 + N2 + . . . + Ng. It is important to note that the
within-class scatter matrix Sw defined in equation (2)
is essentially the standard pooled covariance matrix
Sp multiplied by the scalar (N−g), where Sp can be

written as

Sp =
1

N−g

g

∑
i=1

(Ni−1)Si

=
(N1−1)S1 +(N2−1)S2 + . . .+(Ng−1)Sg

N−g
.

(4)

The main objective of LDA is to find a projection
matrix Wlda that maximizes the ratio of the determi-
nant of the between-class scatter matrix to the deter-
minant of the within-class scatter matrix (Fisher’s cri-
terium), that is,

Wlda = argmax
W

∣∣WT SbW
∣∣

|WT SwW|
. (5)

The Fisher’s criterium described in equation (5)
is maximized when the projection matrix Wlda is
composed of the eigenvectors of S−1

w Sb with at most
(g− 1) nonzero corresponding eigenvalues (Fuku-
naga, 1990; Devijver and Kittler, 1982).

However, in limited sample and high dimensional
problems, such as face recognition, Sw is either singu-
lar or mathematically unstable and the standard LDA
cannot be used to perform the separating task. To
avoid both critical issues, Thomaz et al. have cal-
culated Wlda by using a maximum uncertainty LDA-
based approach (MLDA) that considers the issue of
stabilizing the Sw estimate with a multiple of the iden-
tity matrix (Thomaz et al., 2004; Thomaz et al., 2006).

The MLDA algorithm can be described as fol-
lows:

1. Find the Ψ eigenvectors and Λ eigenvalues of Sp,
where Sp = Sw

N−g ;

2. Calculate the Sp average eigenvalue λ, that is,

λ =
1
n

n

∑
j=1

λ j =
Tr(Sp)

n
; (6)

3. Form a new matrix of eigenvalues based on the
following largest dispersion values

Λ
∗ =

diag[max(λ1,λ),max(λ2,λ), . . . ,max(λn,λ)];
(7)

4. Form the modified within-class scatter matrix

S∗w = S∗p(N−g) = (ΨΛ
∗
Ψ

T )(N−g). (8)

The MLDA method is constructed by replacing Sw
with S∗w in the Fisher’s criterium formula described in
equation (5).
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3 A KERNEL MLDA (KMDA)

Since the non-linear mapping of the original space to
a higher dimensional feature space would commonly
lead to an ill-posed within-class scatter matrix, the
aforementioned MLDA approach might be suitable
for solving not only the singularity and instability is-
sues of the linear Fisher methods, but also the Fisher
discriminant analysis with kernels.

Let a non-linear function φ that maps the input
sample space Rn into the feature space F, as follows:

φ : x ∈ Rn→ φ(x) ∈ F. (9)
The between-class and within-class scatter matri-

ces in the feature space F can be defined, respectively,
as

S̃b =
g

∑
i=1

Ni(φi−φ)(φi−φ)T (10)

and

S̃w =
g

∑
i=1

Ni

∑
j=1

(φ(xi, j)−φi)(φ(xi, j)−φi)
T , (11)

where φi is the mean of the training samples of class i
mapped into the feature space, that is,

φi =
1
Ni

Ni

∑
j=1

φ(xi, j), (12)

and φ is the grand mean vector of all the training sam-
ples mapped into the feature space, that is,

φ =
1
N

g

∑
i=1

Ni

∑
j=1

φ(xi, j). (13)

It is important to note that when φ(x) = x equations
(10) and (11) reduce to their corresponding linear ver-
sions described in equations (1) and (2), respectively.

Thus, according to the Fisher’s criterium de-
scribed in equation (5), the kernel LDA projection
matrix W̃lda can be determined by calculating the
eigenvectors of S̃−1

w S̃b with at most (g− 1) nonzero
corresponding eigenvalues. These eigenvectors are
then the optimal linear discriminant directions on the
feature space, which represent non-linear discrimi-
nant directions in the input sample space.

To extend the MLDA approach to its non-linear
(or kernel) version, we need essentially to replace S̃w
with S̃∗w, using the MLDA algorithm described in the
previous section. One way to do this would be to
perform the eigen-analyzes of S̃b and S̃w in the fea-
ture space, as proposed in (Lu et al., 2003). Alterna-
tively, we could use the more intuitive mathematical
result described in (Yang et al., 2004). According to

Yang et al. (Yang et al., 2004), the kernel LDA is in
fact equivalent to the two-stage method composed of
KPCA (Scholkopf et al., 1998) followed by the stan-
dard LDA.

Therefore, instead of solving the eigenvalue prob-
lem of S̃b and S̃∗w directly in the feature space, we
perform firstly KPCA (Scholkopf et al., 1998) in the
input sample space, changing the dimension of fea-
ture space to m, and next the standard MLDA to ex-
tract the linear discriminant features in the non-linear
transformed space Rm given by the KPCA projection.
The whole process is summarized in Figure 1.

Figure 1: Pipeline of the KMDA method. Firstly, the ker-
nel matrix is generated from input samples and KPCA is
applied. Then, the standard MLDA is used to extract the D
discriminant features in the space given by KPCA projec-
tion, where D≤ (g−1).

The goal of KPCA is to diagonalize the covariance
matrix S̃ defined as (Zheng et al., 2005):

S̃ =
1
N

g

∑
i=1

Ni

∑
j=1

(φ(xi, j)−φ)(φ(xi, j)−φ)T . (14)

For simplicity, let us suppose that φ = 0. So, we
must find the eigenvectors v and the corresponding
eigenvalues λ≥ 0, solutions of the eigenequation:

λv = S̃v. (15)

However, in kernel methods we do not know the
function φ explicitly but a kernel k such that k (x,y) =
φ(x)T · φ(y). Thus, we must obtain a kernel version
of expression (15). In fact, it can be shown that the
eigenvectors v can be written as follows (Scholkopf
et al., 1998):
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v =
g

∑
i=1

Ni

∑
j=1

αi jφ(xi, j) = F(X)α, (16)

where F(X) =
[
φ(x1,1)φ(x1,2) · · ·φ(xg,Ng)

]
, and

α =
[
α11α12 · · ·α1N1 · · ·αg1αg2 · · ·αgNg

]
. By substi-

tuting (16) into (15), we obtain the KPCA eigenvalue
problem:

Nλα = Kα, (17)

where K =
(
kω,γ = k (xi, j,xs,t)

)
, with ω = j +Ni−1 +

Ni−2 + ...+N1 and γ = t +Ns−1 +Ns−2 + ...+N1, is a
N×N matrix called kernel matrix.

The proposed strategy, that is KPCA+MLDA or
simply KMDA, is particularly useful when solving
limited sample and high-dimensional problems, be-
cause m is upper bounded by N, i.e. m ≤ (N − 1).
Since the MLDA approach deals with the singular-
ity and instability of the within-class scatter matrix in
such limited sample size situations, we have selected
m = (N− 1) to reproduce the total variability of the
samples in the feature space.

4 EXPERIMENTS

To evaluate the effectiveness of KMDA on face recog-
nition, comparisons with KPCA (Scholkopf et al.,
1998), GDA (Baudat and Anouar, 2000), and RKDA
(Lu et al., 2003), were performed using the well-
known Olivetti-Oracle Research Lab (ORL) (Samaria
and Harter, 1994) and FERET (Phillips et al., 1998)
face databases. Figure 2 shows some samples of these
datasets.

(a)

(b)
Figure 2: (a) A set of ten images of one subject from the
ORL face database. (b) Sets of four images of two subjects
from the FERET database.

We have implemented the KPCA, GDA and
RKDA using the respective authors’ Matlab codes
available at the following website: http://www.kernel-
machines.org/software.

For simplicity, an Euclidean distance classifier
was used to perform classification in the non-linear
feature space. Also, we have used only the well-
known Gaussian kernel

k(x1,x2) = exp(
−‖ x1−x2 ‖2

δ
) (18)

to compute indirectly the non-linear transforma-
tions, where the δ parameter range was taken to be
[0.001,0.002,0.004,0.008,0.01, ...,1.0] times the di-
mension of the input sample space n for all the afore-
mentioned algorithms tested.

To determine the regularization parameter η of
the RKDA approach (Lu et al., 2003), experimen-
tal analyzes were carried out based on the best clas-
sification accuracy given the following parameter
set [0.001,0.01,0.1,0.2, ...,0.9,0.99,0.999,1.0]. The
best results were obtained when η = 0.001 for both
ORL and FERET experiments.

Each experiment was repeated 25 times using sev-
eral features. Distinct training and test sets were ran-
domly drawn, and the mean and standard deviation of
the recognition rate were calculated. The classifica-
tion of the ORL 40 subjects was computed using for
each individual 5 images to train and 5 images to test.
In the FERET database with 200 subjects, the train-
ing and test sets were respectively composed of 3 and
1 frontal images.

Analogously to the experiments carried out in
(Thomaz et al., 2006), to represent a recognition prob-
lem where the within-class scatter matrix is singular,
the ORL face images were resized to 32x32 pixels,
that is, the total number of training observations was
N = 200 and the dimensionality of the original im-
ages was n = 1024. The FERET images were resized
to 16x16 pixels in order to pose an alternative pat-
tern recognition problem where the within-class scat-
ter matrix is non-singular but poorly estimated, i.e.,
N = 600 and n = 256.

5 RESULTS

Table 1 shows the maximum test average recognition
rates with standard deviation (std) of the ORL and
FERET datasets over the Gaussian kernel parameter
δ, and the corresponding number of principal (F1)
and discriminant (F2) features. The notation ’—’ in
the rows of Table 1 indicates that the corresponding
method has been calculated using either F1 or F2
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features, but not both. In fact, KMDA is the only
discriminant kernel method investigated in this work
that is explicitly composed of a two-stage non-linear
transformation.

As we should expect, all non-linear discriminant
methods (GDA, RKDA and KMDA) led to higher
classification results than KPCA.

Table 1: ORL and FERET classification results.
Dataset Features
Method δ F1 F2 % (std)
ORL

KPCA 0.02*1024 160 — 93.0 (1.9)
GDA 0.08*1024 — 39 96.5 (1.3)

RKDA 1.00*1024 — 31 95.7 (1.3)
KMDA 1.00*1024 199 39 96.2 (1.6)

FERET
KPCA 0.10*256 599 — 92.3 (1.3)

GDA 1.00*256 — 104 95.0 (1.0)
RKDA 0.20*256 — 159 97.8 (0.8)
KMDA 1.00*256 599 20 98.3 (0.9)

In the ORL experiments, the best classification
result was reached by GDA (96.5%), followed by
KMDA (96.2%) and RKDA (95.7%). Given the
similarity of these recognition rates and their corre-
sponding standard deviations, we cannot see clearly
an overall best classification performance of any ker-
nel discriminant method in these experiments. Since
the ORL face database contains only 40 subjects to
be separated, the discriminant features of the kernel
Fisher-based methods were limited to 39 components.
Although in such experiments, where n(= 1024) >
N(= 200), the intermediate KPCA transformation
of KMDA allows the within-class and between-class
scatter matrices to be calculable in computers with a
standard memory size, KMDA requires a two-stage
final transformation that uses more features than the
GDA and RKDA one-stage methods.

One advantage of using a non-linear two-stage
method such as KMDA in limited sample and high
dimensional problems can be seen in the FERET re-
sults. In this case, the discriminant features of the ker-
nel Fisher-based methods were limited to 199 compo-
nents, because the FERET dataset contains only 200
subjects to be separated. However, since N(= 600) >
n(= 256), the classification performance of KMDA
can be further improved by using more non-linear in-
termediate features (N−1 = 599) than there are pix-
els in the 16x16 images. In this application, where
the within-class scatter matrix was non-singular but
poorly estimated, KMDA achieved the best classifi-
cation accuracy (98.3%) using a higher-order KPCA
transformation with 599 principal components fol-
lowed by an MLDA transformation composed of only

20 discriminant components.
Another KMDA advantage, comparing specifi-

cally with the other regularized Fisher discriminant
method RKDA, is the fact that KMDA is based on a
straightforward stabilization approach for the within-
class scatter matrix, avoiding the RKDA optimization
for which the user has to select experimentally the
best η regularization parameter.

6 DISCUSSION

We have used the same ORL and FERET face
databases and carried out the same training and test
experiments described in (Thomaz et al., 2006) for
the standard MLDA. So, it is possible to compare
the classification results of KMDA with the ones pre-
sented in (Thomaz et al., 2006) for MLDA.

Table 2 highlights the MLDA maximum test aver-
age recognition rates with standard deviation (std) of
the ORL and FERET datasets over the corresponding
number of principal (F1) and discriminant (F2) fea-
tures, as published in (Thomaz et al., 2006), and also
the KMDA results described previously in Table 1.

Table 2: MLDA versus KMDA classification results.
Dataset Features
Method F1 F2 % (std)
ORL
MLDA — 39 95.8 (1.6)
KMDA 199 39 96.2 (1.6)

FERET
MLDA — 10 95.4 (1.4)
KMDA 599 20 98.3 (0.9)

As can be seen, for the ORL dataset with face im-
ages resized to 32x32 pixels, there is no significant
classification improvement in using KMDA rather
than MLDA in these experiments, because the corre-
sponding MLDA and KMDA recognition rates (and
standard deviations) are very similar. In such small
sample and high-dimensional problem, where the
two-stage KMDA could not extract higher-order fea-
tures because N(= 200) < n(= 1024), MLDA seems
the best choice because it is simpler and much faster
to compute.

However, the superiority of KMDA compared to
MLDA is clear in the FERET dataset with face im-
ages resized to 16x16 pixels. The KMDA classi-
fier performed better than its linear version, achiev-
ing a higher maximum average classification accuracy
with lower standard deviation. In these experiments,
KMDA outperformed MLDA by seeking discrimi-
nant hyperplanes not in the 256-dimensional origi-
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nal space, but in a much higher 599-dimensional fea-
ture space composed of non-linear transformations of
the original pixels. In such limited sample and high-
dimensional problem, where N(= 600) > n(= 256),
it seems that we can further improve the classification
accuracy by exploring more features than is possible
in the linear case.

7 CONCLUSIONS

In this work, we extended the MLDA approach to its
non-linear version. This non-linear version of MLDA,
here called KMDA, is a KPCA+MLDA two-stage
method. To evaluate the KMDA effectiveness, ex-
periments on face recognition using the well-known
ORL and FERET face databases were carried out
and compared with other existing kernel discrimi-
nant methods, such as GDA and RKDA. The classi-
fication results indicate that KMDA performs as well
as GDA and RKDA, with the advantages of being a
straightforward stabilization approach for the within-
class scatter matrix that uses a pre-defined number of
higher-order features whenever the number of train-
ing samples is larger than the original dimensionality
of the input data.

As future work, we intend to directly regularize
the eigen-analysis of the within-class scatter matrix in
the feature space, without a KPCA intermediate step.
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