
SHOPPING BY EXAMPLE
A New Shopping Paradigm in Next Generation Retail Stores

Ashish Khare, Hiranmay Ghosh
TCS Innovation Labs, Tata Consultancy Services Ltd

 Plot No 249 D&E, Udyog Vihar, Phase – IV, Gurgaon, India

Jaideep Shankar Jagannathan
Freescale SemiconductorIndia Ltd, Express Trade Tower

Floor5,6,7, Plot 15 & 16, Sector 16-A, Noida, India

Keywords: Online shopping, Query-by-Example, Content-based Image Retrieval, SIFT, PCA-SIFT, Image Features
Indexing, R-Tree.

Abstract: In this paper, we present a new example based approach to search for a particular product based on its visual
properties. A user can take a photo of a product package with a cell-phone or webcam and submit it to an
online shopping portal for finding the product details. We search a product image database for the
distinctive visual features on the query image to locate the desired product. We use PCA-SIFT feature for
robust retrieval, to account for possible imperfections in the query image due to uncontrolled user
environment. We use Oracle Java R-Tree to index image features to realize a scalable system. We establish
robustness and scalability of our approach by conducting several experiments on fairly large prototype
implementations.

1 INTRODUCTION

Over the past few years the online shopping trend
has continued to grow at a healthy clip. According to
survey conducted by Nielsen (Nielsen, 2008) over
85 percent of world’s online population has shopped
online in last two years. The reasons are obvious –
24 x 7 virtual online stores, no pushy sales staff, no
busy checkout line-ups, no parking hassles etc.
Today, several successful online stores proliferate
over the Internet, ebay.com, amazon.com, etc being
a few examples.

Despite the advantages online shopping faces
several challenges. Significant among them is the
difficulty in identifying a particular product when its
exact details are not known or difficult to specify for
a customer. For instance, a certain brand of
chocolate which may come in several different
flavours and it may be difficult for a customer to
remember the exact one he/she wants. However the
variants of the chocolate are uniquely distinguished
by the visual appearance of their packaging and a
user generally looks for the visual pattern while

exploring the shelves of a brick-and-mortar retail
store. Such facility has not yet been made available
on the online shopping portals. We present a new
shopping solution that enables a user search a
shopping portal for the desired product with a photo
of the product package snapped using a digital
camera. The solution employs well-known “query-
by-example” paradigm of content-based image
retrieval. We call the solution “Shopping by
Example” to reflect the query paradigm.

While visual pattern matching technique seems
quite intuitive for product selection, it provides quite
a few challenges. Content-based image retrieval
techniques are based on inexact match or similarity
measures, rather than exact match principles used in
the database search. The query images in a shopping
application are snapped by a user in an uncontrolled
environment resulting in significant distortions.
Exact identification of the intended product is very
difficult in this noisy environment. Use of content-
based retrieval in shopping has been reported in
(Ghosh & Chaudhury, 2002) and (Tollmar et al,
2007). Both of these systems aim at exploring the

48 Khare A., Ghosh H. and Jagannathan J. (2009).
SHOPPING BY EXAMPLE - A New Shopping Paradigm in Next Generation Retail Stores
.
In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, pages 48-53
DOI: 10.5220/0001788600480053
Copyright c© SciTePress

product space with example images (and other
descriptors) rather than uniquely identifying a
specific product.

Our main contribution is to implement a practical
shopping solution that can be used for example
based search for a specific product in a large product
database. There are three major aspects in this work:
(a) selection of a suitable image feature that can
uniquely identify a product from a large collection
despite the undesired transformations of the query
image, (b) to achieve scalability by using a suitable
indexing scheme for the image feature and (c) to
devise a method to use these methods to create a
practical system. We have been constrained in
selecting the image feature and the indexing
methods by the fact that there are not many methods
that scale up to cope up with thousands of unique
products that may exist in a retail store.

The rest of the paper is organized as follows -
Section 2 provides the critical review of CBIR
methods towards present application. Section 3
describes the system in detail. Section 4 describes
some experimental results that establish robustness
and scalability of the system. Section 5 concludes
the paper.

2 A CRITICAL REVIEW OF CBIR

Shopping-by-Example is essentially a Content Based
Image Retrieval (CBIR) implementation. It searches
a product image database with a query image and
produces the best matching result. The technical
challenge in the system is to retrieve the desired
product image uniquely, even when a query image
suffers significant distortion. Another challenge is to
scale the solution for a large product database. To
address the first we have used PCA-SIFT (Ke &
Sukthankar, 2004) algorithm which is an advanced
version of Scale Invariant Feature Transform (SIFT)
(Lowe, 2004) algorithm. SIFT extracts a set of
distinctive image features that are invariant to
several distortions and can be used to perform robust
matching of images representing different views of
an object. But a drawback of SIFT features is that
huge number of keypoints are generated
corresponding to an image resulting in large storage
and computational overheads. PCA-SIFT remove
this deficiency by using Principal Component
Analysis (PCA) on keypoint descriptors. After
significant experimentation with SIFT, PCA-SIFT
and other image features, we have selected PCA-
SIFT as the feature descriptor to characterize the
distinctive product marks for their robustness against

image distortions, relatively compact representation
and reduced comparison time requirements. As retail
stores generally contain thousands of products, it is
not practical to compare a query image with all the
images in the product database to find the best
matching result. There are two distinct techniques to
ensure fast access to desired images in the database.
In one approach, the database can be clustered by
using some unsupervised learning mechanism, such
as k-means clustering (MacQueen, 1967) or DBScan
clustering (Ester et al, 1996). This approach works
well when there are natural well-separated clusters
in the data. The PCA-SIFT keypoints for the product
images used in our solution do not exhibit such
natural clustering behavior. The second approach,
involves indexing of multidimensional data. After
significant experimentation with different variants of
R-Tree (Guttman, 1984) and X-Tree (Berchtold et
al, 1996) algorithms, we have selected Oracle Java
R-Tree implementation (Oracle, 2007) for indexing
PCA-SIFT keypoints. A major advantage of this
memory resident implementation is very fast access
time.

3 SYSTEM DESCRIPTION

3.1 Creating Product Database

The traditional product parameters, such as the
name, product code, quantity and the price are stored
in a conventional relational database in Shopping-
By-Example system. In addition, we create an image
feature index of the product packages. This is done
in two steps.
Feature Extraction. At this step, we extract the
PCA-SIFT features of the images. The product
images which populate the product database can be
of different sizes. Selection of a proper image size
before feature extraction is necessary. Using too
large images result in unstable key points whereas
using too small images relevant key points are not
selected. We scale all product images to an optimal
size as an image pre-processing stage. Next, we
convert the images to gray-scale (PGM format) from
which PCA-SIFT features are extracted.
Index Construction. The PCA-SIFT feature of
every product in the database comprises several
keypoints, each of which is a high-dimensional
vector. We index each of these keypoints using
Oracle Java R-Tree implementation. Since all the
keypoints are pre-computed and known in advance,
we have bulk inserted them in the database. Bulk

SHOPPING BY EXAMPLE - A New Shopping Paradigm in Next Generation Retail Stores

49

insertion not only reduces insertion time, but also
forms a well balanced R-Tree structure (Bercken et
al, 1997) thereby improving search performance. In
general, a data item in Oracle Java R-Tree is
represented by a hyper-solid in the n-dimensional
space by specifying the lower and the upper bound
coordinates. However, we have defined each key-
point as an ideal point, i.e. with identical upper and
lower bound coordinates. The R-Tree
implementation assigns a unique id to every indexed
keypoint. We create a hash-table to create a many-
to-one map of these keypoints to their respective
product ids.

3.2 Query Processing

A basic query processing model of our work is
shown in the Figure 1. The whole process can be
broadly described by the following steps: -
Feature Extraction. The query image submitted by
the user is normalized to a specific size, converted
into gray-scale format before the PCA-SIFT
keypoints are extracted as in the case of populating
the database.
R-Tree Search. The keypoints in the query image
do not have identical descriptors as in the
corresponding database images because of
distortions in the query image. However, it is
assumed that many of them are sufficiently close in
the feature space to be retrieved with a range search
in the product image key-point database.

Figure 1: A basic query processing model.

In order to search the keypoints that lie close to
the query keypoints, we define a hyper-solid around
each query point and submit it as a query in the R-
Tree implementation. This hyper-solid is referred to
as the Minimum Bounding Hyper-solid (MBH). In a
large product database, several other keypoints,
besides the intended one, are likely to lie close to the
query key-point within this hyper-solid. All

keypoints which fall in the hyper-solid are retrieved
during the search. The situation is shown in Figure 2
by taking example in two dimensions. In Figure 2,
each of the dots represents a key-point in the
database. The dots drawn with a particular style
belongs to the same product image. Thus a search
with every keypoint in the query image yields a set
of other keypoints belonging to the different product
images. Mapping the retrieved keypoints to the
corresponding products provides a set of product
images Pi for every keypoint Ki in the query image.
Since at most one keypoint for a product image may
map to one keypoint of the query image, we remove
any duplicates (e.g. see diamonds in Figure 2) from
this set. Thus, for all keypoints in the query image
we get a list of set of matching keypoints <M1, M2 ...
MN> where N denotes the number of keypoints in
the query image. The union of these sets ∪iMi
denote the set of candidate products.
Filtering. For every product mi ∈ ∪iMi, we count
the number of its occurrence ni in the list <M1, M2 ...
Mn>, which signifies the number of matching
keypoints for that product image with the query
image. We sort the product images in descending
order of matches to get a list <(mi,ni)>, where mi ∈
∪iMi and n1 > n2 > n3 ... and so on.

Figure 2: Key points in 2-d region are shown.

A naive solution could produce the product from
the top of the list as the solution, since the maximum
number of its keypoints can be assumed to match
with the image of the target product. However,
condition may not be satisfied in a large product
database and distorted query image. Identification of
the target product requires comparison of the query
image with each of the candidate solutions. The list
<(mi,ni)> can be quite long in a large product
database. In order to restrict the expensive
comparison algorithm, we drop the spurious
candidate products, which are characterized by
significantly less number of matching keypoints
using some heuristics. We compare every ni with ni+1

VISAPP 2009 - International Conference on Computer Vision Theory and Applications

50

in the list, and remove all images mi for i> k, when
nk+i < μ.nk. Thus we get a smaller list < (mi,ni)i=1,k>
for processing.
Ranking. The final stage of query processing
involves comparing the product images in the list
<(mi,ni)i=1,k> with the query image by PCA-SIFT
feature comparison algorithm. A product is retained
in the list only if the match value exceeds a certain
threshold η. If none of the images qualify at this
stage, we declare the search to be unsuccessful. The
PCA-SIFT features are distinctive enough to make a
good discrimination in the matching scores of the
target and the other product images. However, if two
or more products are characterized by very similar
product-marks, it may not be possible to distinguish
between the two. Thus, we use the following
heuristics to identify the solution. As in the last
stage, we arrange the product images in order of
descending match scores si and define a cut-off at
sk+i < τ.sk and select the product images mi as the
final solution. If there are too many products in this
list, we assume that the system could not identify the
product and declare the search to be unsuccessful.
Discussions. The query image could be compared
with all product images in the database using PCA-
SIFT based feature to give the same results.
However, PCA-SIFT based comparison algorithm is
very complex (O (n2)) and it is not possible to build
a scalable system using this method. The R-Tree
indexing technique results in short-listing of a set of
candidate solutions, which significantly reduces the
overall search time. The multi-stage filtering of the
candidate solutions further optimizes the search
time. If the cardinality of candidate solution list falls
to one at any stage of filtering, that product is treated
as the solution without any further processing.
Similarly, if none of the database images qualify at
any of the filtering stages, we conclude that the
product is not in the database and the search
terminates. The optimal threshold values like µ, η
and τ are found from several experimental
observations.

The choice of the MBH size is critical for the
performance of the system. A large value of MBH
generates a lot of spurious keypoints, which results
in larger processing time in subsequent filtering and
ranking stages. If the value of MBH is too small,
relevant key points are not selected, resulting in poor
search performance. We measure the search
performance of the system with Mean Reciprocal
Rank (MRR) over a number of queries. Reciprocal
Rank is defined as the multiplicative inverse of the
rank of the first correct answer. The MRR is the

average of the reciprocal ranks of results over a
number of queries. Figure 3 shows the variation of
MRR and Search Time against MBH. Note that
while search time monotonically increases with
MBH, the MRR saturates to a maximum value close
to 100 percent. An optimal value of MBH has been
selected in our system based on this observation.

Figure 3: Variation of MRR & search time w.r.t. MBH.

Illustrative Example. We illustrate query
processing through an actual query example. Figure
4 shows the sample query image.

Figure 4: Sample query image.

A search in the product image database with the
PCA-SIFT keypoints of this image produces a set of
candidate products. Figure 5 shows the results with
the products sorted in descending order of matching
keypoints (ni). Images 1-4 have been selected from
this list after the filtering stage. Note the sharp fall in
number of matching keypoints between images 4
and 5.

Figure 5: Intermediate result obtained.

The ranking algorithm is applied on these
selected images. Figure 6 shows the ranked results

SHOPPING BY EXAMPLE - A New Shopping Paradigm in Next Generation Retail Stores

51

sorted in descending order of the matching scores.
Note the re-ranking of the results and sharp contrast
in the matching scores resulting in unique selection
of product 1. Figure 7 shows the output from the
system in response to this query.

Figure 6: Images sorted w.r.t. si.

Figure 7: Product uniquely identified.

4 EXPERIMENTAL RESULTS

We have conducted a number of experiments to
check the robustness and scalability of the system.
We have implemented two shopping portal
prototypes, one with grocery items and the other for
music/video/games CD/DVDs as proof of concept of
our approach. The first prototype is built with more
than 100 grocery items, such as beverages,
chocolates, dairy products, etc. The cartons/
wrappers of these products have been photographed
manually to create the database. Since the packages
have been physically available with us, we could
create a variety of query images by photographing
them in different lighting conditions as well as with
different distances, angles and perspectives to study
the robustness of the system. The second prototype,
created with more than 1000 images of CD/DVD
jackets, has been used to establish scalability of the
system. We tweaked these images with image
processing tools to create as realistic query images
as possible. However, they were derived from the
original image and truly not a different image
instance of the same jackets.
Robustness. We define robustness as the capability
to identify a product uniquely despite query image
deformations. We use the grocery database for these
experiments, since we could photograph the
available wrappers in different lighting conditions,
orientations and perspectives. Figure 8 shows some

of the query images. Figure 9 shows some of the
images present in grocery image database. These
images contain product marks which have fancy font
styles (Eg image 2, 5, 11), different languages (Eg
image 3, 4 and 9) and uneven text size (Eg image 1
and 6).

Figure 8: Sample query images containing noise and
distortions.

Figure 9: Sample images from grocery image database.

We used the metrics (a) %age of times a product
is uniquely identified (b) %age of time the product is
identified but not be uniquely and (c) %age of times
the search failed or produced wrong result to
establish the robustness of the system. We used 155
different query images belonging to 31 products for
this purpose. The result is summarized in Table 1.

Table 1: Experimental Results for robustness.

Total Query
Images

155

Query images in
which product is
identified
uniquely

139 89.6%

Query images in
which a product
is identified, but
not uniquely

11 7.0%

Query images in
which no product
is identified

5 3.2%

MRR 96%

We note that in about 97% of cases, the system
could retrieve the results satisfactorily. In the few

VISAPP 2009 - International Conference on Computer Vision Theory and Applications

52

cases (e.g. query image 1 in Figure 8), where
multiple products were retrieved, there had been two
more products in the database with very close visual
characteristics (e.g. product images 1 and 7 in Figure
9). It is possible to confuse between the products on
manual selection unless one scrutinizes the labels
carefully. In the rare cases, where the desired
product was not retrieved, the query image had too
much distortion or occlusion (e.g. query image 3 in
Figure 8).
Scalability. To show scalability of the system we
have used an image database of 1000 plus CD/DVD
jackets. In this experiment we applied some
morphological operations on the database images to
create the query images. We were constrained to use
this option since we did not have the jackets
physically with us. We studied the variation of the
MRR and total search time over the number of
database items and the results are shown in Figure
10 and Figure 11 respectively. We note that the
MRR remains constant and the search time increases
marginally on increasing the database size. The total
search time of the system increased by merely 18
percent on five-fold increase of data size, from 200
to 1000. As Figure 11 shows, the rise has been
attributed to the Java R-Tree implementation.

Figure 10: MRR of the system.

Figure 11: Time performance graph of the system.

5 CONCLUSIONS

In this paper we have presented a novel solution for

Internet shopping with image examples of products.
The solution can be used for a wide range of
packaged products characterized by distinct visual
designs or bearing distinct product-marks, such as
grocery items, music, video (CD/DVDs), computer
games and many of the books and magazines.

ACKNOWLEDGEMENTS

We would like to thank Yan Ke of CMU for his
consent to use PCA-SIFT code given by him. In
addition we would also like to thank several
members of Oracle team – Steven Serra, Siva
Ravada, Jack Wang, Ning An for their technical
assistance with Oracle Java R-Tree.

REFERENCES

Nielsen, 2008. Trends in Online Shopping, A Global
Nielsen consumer report, February 2008.

Ghosh, H., Chaudhury, S., 2002. WindowShopper: Guided
Shopping in e-market, In Proc. of Intl. Conf. KBCS-
2002, National Centre of Software
Technology(NCST).

Tollmar, K., et al, 2007. A picture is worth a thousand
keywords: Exploring mobile image-based web search,
In Proc. of 9th Intl. Conf. on Human-Computer
Interaction with Mobile devices, Singapore.

Ke, Y., Sukthankar, R., 2004. PCA-SIFT: A more
distinctive representation for local image descriptors,
In Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR.).

Lowe, D., G., 2004. Distinctive image features from scale
invariant keypoints, In Intl. Journal of computer
vision, Vol. 60, Issue 2.

MacQueen, J., B., 1967. Some Methods for classification
and analysis of Multivariate Observations, In Proc. of
5th Berkeley Symposium on Mathematical Statistics &
Probability, Berkeley, University of California.

Ester, M., et al, 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In 2nd Intl. Conf. on knowledge discovery and
data mining.

Guttman, A., 1984. R-Trees: A dynamic index structure
for spatial searching, In Proc. of 1984 ACM SIGMOD
Intl. Conf. on Management of data.

Berchtold S., et al, 1996. The X-Tree: An index structure
for high dimensional data, In Proc. of 22nd VLDB
Conf, Mumbai, India.

Oracle 11g, 2007. Oracle Spatial Java API Reference,
URL http://download.oracle.com/docs/cd/B28359_01/
appdev.111/b28401/overview-summary.html, last
retrieved on 26th Sept’08.

Bercken, J., V., et al, 1997. A generic approach to bulk
loading Multidimensional index structures, In Proc. of
the 23rd VLDB Conf, Athens, Greece.

SHOPPING BY EXAMPLE - A New Shopping Paradigm in Next Generation Retail Stores

53

