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Abstract: In this paper, we present a new example based approach to search for a particular product based on its visual 
properties. A user can take a photo of a product package with a cell-phone or webcam and submit it to an 
online shopping portal for finding the product details. We search a product image database for the 
distinctive visual features on the query image to locate the desired product. We use PCA-SIFT feature for 
robust retrieval, to account for possible imperfections in the query image due to uncontrolled user 
environment. We use Oracle Java R-Tree to index image features to realize a scalable system. We establish 
robustness and scalability of our approach by conducting several experiments on fairly large prototype 
implementations. 

1 INTRODUCTION 

Over the past few years the online shopping trend 
has continued to grow at a healthy clip. According to 
survey conducted by Nielsen (Nielsen, 2008) over 
85 percent of world’s online population has shopped 
online in last two years. The reasons are obvious – 
24 x 7 virtual online stores, no pushy sales staff, no 
busy checkout line-ups, no parking hassles etc.  
Today, several successful online stores proliferate 
over the Internet, ebay.com, amazon.com, etc being 
a few examples. 

Despite the advantages online shopping faces 
several challenges. Significant among them is the 
difficulty in identifying a particular product when its 
exact details are not known or difficult to specify for 
a customer. For instance, a certain brand of 
chocolate which may come in several different 
flavours and it may be difficult for a customer to 
remember the exact one he/she wants. However the 
variants of the chocolate are uniquely distinguished 
by the visual appearance of their packaging and a 
user generally looks for the visual pattern while 

exploring the shelves of a brick-and-mortar retail 
store. Such facility has not yet been made available 
on the online shopping portals. We present a new 
shopping solution that enables a user search a 
shopping portal for the desired product with  a photo 
of the product package snapped using a digital 
camera. The solution employs well-known “query-
by-example” paradigm of content-based image 
retrieval. We call the solution “Shopping by 
Example” to reflect the query paradigm.  

While visual pattern matching technique seems 
quite intuitive for product selection, it provides quite 
a few challenges. Content-based image retrieval 
techniques are based on inexact match or similarity 
measures, rather than exact match principles used in 
the database search. The query images in a shopping 
application are snapped by a user in an uncontrolled 
environment resulting in significant distortions. 
Exact identification of the intended product is very 
difficult in this noisy environment. Use of content-
based retrieval in shopping has been reported in 
(Ghosh & Chaudhury, 2002) and (Tollmar et al, 
2007). Both of these systems aim at exploring the 
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product space with example images (and other 
descriptors) rather than uniquely identifying a 
specific product. 

Our main contribution is to implement a practical 
shopping solution that can be used for example 
based search for a specific product in a large product 
database. There are three major aspects in this work: 
(a) selection of a suitable image feature that can 
uniquely identify a product from a large collection 
despite the undesired transformations of the query 
image, (b) to achieve scalability by using a suitable 
indexing scheme for the image feature and (c) to 
devise a method to use these methods to create a 
practical system. We have been constrained in 
selecting the image feature and the indexing 
methods by the fact that there are not many methods 
that scale up to cope up with thousands of unique 
products that may exist in a retail store. 

The rest of the paper is organized as follows - 
Section 2 provides the critical review of CBIR 
methods towards present application. Section 3 
describes the system in detail. Section 4 describes 
some experimental results that establish robustness 
and scalability of the system. Section 5 concludes 
the paper. 

2 A CRITICAL REVIEW OF CBIR 

Shopping-by-Example is essentially a Content Based 
Image Retrieval (CBIR) implementation. It searches 
a product image database with a query image and 
produces the best matching result. The technical 
challenge in the system is to retrieve the desired 
product image uniquely, even when a query image 
suffers significant distortion. Another challenge is to 
scale the solution for a large product database. To 
address the first we have used PCA-SIFT (Ke & 
Sukthankar, 2004) algorithm which is an advanced 
version of Scale Invariant Feature Transform (SIFT) 
(Lowe, 2004) algorithm. SIFT extracts a set of 
distinctive image features that are invariant to 
several distortions and can be used to perform robust 
matching of images representing different views of 
an object. But a drawback of SIFT features is that 
huge number of keypoints are generated 
corresponding to an image resulting in large storage 
and computational overheads. PCA-SIFT remove 
this deficiency by using Principal Component 
Analysis (PCA) on keypoint descriptors. After 
significant experimentation with SIFT, PCA-SIFT 
and other image features, we have selected PCA-
SIFT as the feature descriptor to characterize the 
distinctive product marks for their robustness against 

image distortions, relatively compact representation 
and reduced comparison time requirements. As retail 
stores generally contain thousands of products, it is 
not practical to compare a query image with all the 
images in the product database to find the best 
matching result. There are two distinct techniques to 
ensure fast access to desired images in the database. 
In one approach, the database can be clustered by 
using some unsupervised learning mechanism, such 
as k-means clustering (MacQueen, 1967) or DBScan 
clustering (Ester et al, 1996). This approach works 
well when there are natural well-separated clusters 
in the data. The PCA-SIFT keypoints for the product 
images used in our solution do not exhibit such 
natural clustering behavior. The second approach, 
involves indexing of multidimensional data. After 
significant experimentation with different variants of 
R-Tree (Guttman, 1984) and X-Tree (Berchtold et 
al, 1996) algorithms, we have selected Oracle Java 
R-Tree implementation (Oracle, 2007) for indexing 
PCA-SIFT keypoints. A major advantage of this 
memory resident implementation is very fast access 
time. 

3 SYSTEM DESCRIPTION 

3.1 Creating Product Database 

The traditional product parameters, such as the 
name, product code, quantity and the price are stored 
in a conventional relational database in Shopping-
By-Example system. In addition, we create an image 
feature index of the product packages. This is done 
in two steps. 
Feature Extraction. At this step, we extract the 
PCA-SIFT features of the images. The product 
images which populate the product database can be 
of different sizes. Selection of a proper image size 
before feature extraction is necessary. Using too 
large images result in unstable key points whereas 
using too small images relevant key points are not 
selected. We scale all product images to an optimal 
size as an image pre-processing stage. Next, we 
convert the images to gray-scale (PGM format) from 
which PCA-SIFT features are extracted.  
Index Construction. The PCA-SIFT feature of 
every product in the database comprises several 
keypoints, each of which is a high-dimensional 
vector. We index each of these keypoints using 
Oracle Java R-Tree implementation. Since all the 
keypoints are pre-computed and known in advance, 
we have bulk inserted them in the database. Bulk 
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insertion not only reduces insertion time, but also 
forms a well balanced R-Tree structure (Bercken et 
al, 1997) thereby improving search performance. In 
general, a data item in Oracle Java R-Tree is 
represented by a hyper-solid in the n-dimensional 
space by specifying the lower and the upper bound 
coordinates. However, we have defined each key-
point as an ideal point, i.e. with identical upper and 
lower bound coordinates. The R-Tree 
implementation assigns a unique id to every indexed 
keypoint. We create a hash-table to create a many- 
to-one map of these keypoints to their respective 
product ids. 

3.2 Query Processing 

A basic query processing model of our work is 
shown in the Figure 1. The whole process can be 
broadly described by the following steps: - 
Feature Extraction. The query image submitted by 
the user is normalized to a specific size, converted 
into gray-scale format before the PCA-SIFT 
keypoints are extracted as in the case of populating 
the database. 
R-Tree Search. The keypoints in the query image 
do not have identical descriptors as in the 
corresponding database images because of 
distortions in the query image. However, it is 
assumed that many of them are sufficiently close in 
the feature space to be retrieved with a range search 
in the product image key-point database. 

 
Figure 1: A basic query processing model. 

In order to search the keypoints that lie close to 
the query keypoints, we define a hyper-solid around 
each query point and submit it as a query in the R-
Tree implementation. This hyper-solid is referred to 
as the Minimum Bounding Hyper-solid (MBH). In a 
large product database, several other keypoints, 
besides the intended one, are likely to lie close to the 
query key-point within this hyper-solid. All 

keypoints which fall in the hyper-solid are retrieved 
during the search. The situation is shown in Figure 2 
by taking example in two dimensions. In Figure 2, 
each of the dots represents a key-point in the 
database. The dots drawn with a particular style 
belongs to the same product image. Thus a search 
with every keypoint in the query image yields a set 
of other keypoints belonging to the different product 
images. Mapping the retrieved keypoints to the 
corresponding products provides a set of product 
images Pi for every keypoint Ki in the query image. 
Since at most one keypoint for a product image may 
map to one keypoint of the query image, we remove 
any duplicates (e.g. see diamonds in Figure 2) from 
this set.  Thus, for all keypoints in the query image 
we get a list of set of matching keypoints <M1, M2 ... 
MN> where N denotes the number of keypoints in 
the query image. The union of these sets ∪iMi 
denote the set of candidate products.  
Filtering. For every product mi ∈ ∪iMi, we count 
the number of its occurrence ni in the list <M1, M2 ... 
Mn>, which signifies the number of matching 
keypoints for that product image with the query 
image. We sort the product images in descending 
order of matches to get a list <(mi,ni)>, where mi ∈ 
∪iMi and n1 > n2 > n3 ... and so on. 

 
Figure 2: Key points in 2-d region are shown. 

A naive solution could produce the product from 
the top of the list as the solution, since the maximum 
number of its keypoints can be assumed to match 
with the image of the target product. However, 
condition may not be satisfied in a large product 
database and distorted query image. Identification of 
the target product requires comparison of the query 
image with each of the candidate solutions. The list 
<(mi,ni)> can be quite long in a large product 
database. In order to restrict the expensive 
comparison algorithm, we drop the spurious 
candidate products, which are characterized by 
significantly less number of matching keypoints 
using some heuristics. We compare every ni with ni+1 
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in the list, and remove all images mi for i> k, when 
nk+i < μ.nk. Thus we get a smaller list < (mi,ni)i=1,k> 
for processing.  
Ranking. The final stage of query processing 
involves comparing the product images in the list 
<(mi,ni)i=1,k> with the query image by PCA-SIFT 
feature comparison algorithm. A product is retained 
in the list only if the match value exceeds a certain 
threshold η. If none of the images qualify at this 
stage, we declare the search to be unsuccessful. The 
PCA-SIFT features are distinctive enough to make a 
good discrimination in the matching scores of the 
target and the other product images. However, if two 
or more products are characterized by very similar 
product-marks, it may not be possible to distinguish 
between the two. Thus, we use the following 
heuristics to identify the solution. As in the last 
stage, we arrange the product images in order of 
descending match scores si and define a cut-off at 
sk+i < τ.sk and select the product images mi as the 
final solution. If there are too many products in this 
list, we assume that the system could not identify the 
product and declare the search to be unsuccessful. 
Discussions. The query image could be compared 
with all product images in the database using PCA-
SIFT based feature to give the same results. 
However, PCA-SIFT based comparison algorithm is 
very complex (O (n2)) and it is not possible to build 
a scalable system using this method. The R-Tree 
indexing technique results in short-listing of a set of 
candidate solutions, which significantly reduces the 
overall search time. The multi-stage filtering of the 
candidate solutions further optimizes the search 
time. If the cardinality of candidate solution list falls 
to one at any stage of filtering, that product is treated 
as the solution without any further processing. 
Similarly, if none of the database images qualify at 
any of the filtering stages, we conclude that the 
product is not in the database and the search 
terminates. The optimal threshold values like µ, η 
and τ are found from several experimental 
observations.  

The choice of the MBH size is critical for the 
performance of the system. A large value of MBH 
generates a lot of spurious keypoints, which results 
in larger processing time in subsequent filtering and 
ranking stages.  If the value of MBH is too small, 
relevant key points are not selected, resulting in poor 
search performance. We measure the search 
performance of the system with Mean Reciprocal 
Rank (MRR) over a number of queries. Reciprocal 
Rank is defined as the multiplicative inverse of the 
rank of the first correct answer. The MRR is the 

average of the reciprocal ranks of results over a 
number of queries. Figure 3 shows the variation of 
MRR and Search Time against MBH. Note that 
while search time monotonically increases with 
MBH, the MRR saturates to a maximum value close 
to 100 percent. An optimal value of MBH has been 
selected in our system based on this observation. 

 
Figure 3: Variation of MRR & search time w.r.t. MBH. 

Illustrative Example. We illustrate query 
processing through an actual query example. Figure 
4 shows the sample query image. 

 
Figure 4: Sample query image. 

A search in the product image database with the 
PCA-SIFT keypoints of this image produces a set of 
candidate products. Figure 5 shows the results with 
the products sorted in descending order of matching 
keypoints (ni). Images 1-4 have been selected from 
this list after the filtering stage. Note the sharp fall in 
number of matching keypoints between images 4 
and 5. 

 
Figure 5: Intermediate result obtained. 

The ranking algorithm is applied on these 
selected images. Figure 6 shows the ranked results 
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sorted in descending order of the matching scores. 
Note the re-ranking of the results and sharp contrast 
in the matching scores resulting in unique selection 
of product 1. Figure 7 shows the output from the 
system in response to this query. 

 
Figure 6: Images sorted w.r.t. si. 

 
Figure 7: Product uniquely identified. 

4 EXPERIMENTAL RESULTS  

We have conducted a number of experiments to 
check the robustness and scalability of the system. 
We have implemented two shopping portal 
prototypes, one with grocery items and the other for 
music/video/games CD/DVDs as proof of concept of 
our approach. The first prototype is built with more 
than 100 grocery items, such as beverages, 
chocolates, dairy products, etc. The cartons/ 
wrappers of these products have been photographed 
manually to create the database. Since the packages 
have been physically available with us, we could 
create a variety of query images by photographing 
them in different lighting conditions as well as with 
different distances, angles and perspectives to study 
the robustness of the system. The second prototype, 
created with more than 1000 images of CD/DVD 
jackets, has been used to establish scalability of the 
system. We tweaked these images with image 
processing tools to create as realistic query images 
as possible. However, they were derived from the 
original image and truly not a different image 
instance of the same jackets. 
Robustness. We define robustness as the capability 
to identify a product uniquely despite query image 
deformations. We use the grocery database for these 
experiments, since we could photograph the 
available wrappers in different lighting conditions, 
orientations and perspectives. Figure 8 shows some 

of the query images. Figure 9 shows some of the 
images present in grocery image database. These 
images contain product marks which have fancy font 
styles (Eg image 2, 5, 11), different languages (Eg 
image 3, 4 and 9) and uneven text size (Eg image 1 
and 6). 

 
Figure 8: Sample query images containing noise and 
distortions. 

 
Figure 9: Sample images from grocery image database. 

We used the metrics (a) %age of times a product 
is uniquely identified (b) %age of time the product is 
identified but not be uniquely and (c) %age of times 
the search failed or produced wrong result to 
establish the robustness of the system. We used 155 
different query images belonging to 31 products for 
this purpose. The result is summarized in Table 1.  

Table 1: Experimental Results for robustness. 

Total Query 
Images 

155  

Query images in 
which product is 
identified 
uniquely 

139 89.6% 

Query images in 
which a product 
is identified, but 
not uniquely 

11 7.0% 

Query images in 
which no product 
is identified 

5 3.2% 

MRR  96% 

We note that in about 97% of cases, the system 
could retrieve the results satisfactorily. In the few 
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cases (e.g. query image 1 in Figure 8), where 
multiple products were retrieved, there had been two 
more products in the database with very close visual 
characteristics (e.g. product images 1 and 7 in Figure 
9). It is possible to confuse between the products on 
manual selection unless one scrutinizes the labels 
carefully. In the rare cases, where the desired 
product was not retrieved, the query image had too 
much distortion or occlusion (e.g. query image 3 in 
Figure 8). 
Scalability. To show scalability of the system we 
have used an image database of 1000 plus CD/DVD 
jackets. In this experiment we applied some 
morphological operations on the database images to 
create the query images. We were constrained to use 
this option since we did not have the jackets 
physically with us. We studied the variation of the 
MRR and total search time over the number of 
database items and the results are shown in Figure 
10 and Figure 11 respectively. We note that the 
MRR remains constant and the search time increases 
marginally on increasing the database size. The total 
search time of the system increased by merely 18 
percent on five-fold increase of data size, from 200 
to 1000. As Figure 11 shows, the rise has been 
attributed to the Java R-Tree implementation. 

 
Figure 10: MRR of the system. 

 
Figure 11: Time performance graph of the system. 

5 CONCLUSIONS 

In this paper we have presented a novel solution for  

Internet shopping with image examples of products. 
The solution can be used for a wide range of 
packaged products characterized by distinct visual 
designs or bearing distinct product-marks, such as 
grocery items, music, video (CD/DVDs), computer 
games and many of the books and magazines. 
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