
GPU-BASED VOLUME RAY-CASTING SUPPORTING
SPECULAR REFLECTION AND REFRACTION

Timo Ropinski, Klaus Hinrichs
Visualization and Computer Graphics Research Group (VisCG), University of Münster, Germany

Jens Kasten
Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Germany

Keywords: Volume rendering, GPU-based ray-casting, Advanced illumination.

Abstract: Nowadays mostly local illumination models are used when rendering volumetric data. When computing global
light effects, interactive frame rates are usually hard to achieve. We present an extension of GPU-based volume
ray-casting, which allows to compute specular reflection and refraction effects at interactive frame rates on
current commodity graphics hardware. In contrast to other techniques proposed for integrating these effects
into volume rendering, our technique does not constrain the type of rendering used, i. e., it can be used with
DVR as well as isosurface rendering.

1 INTRODUCTION

Much research has been conducted in the past to
achieve interactive frame rates for volume rendering
on consumer graphics hardware. For example, with
GPU-based volume ray-casting (Roettger et al., 2003)
interactive frame rates are possible while generating
a high-quality rendering. Due to these performance
aspects it becomes possible to integrate more sophis-
ticated illumination models to increase the visual re-
alism of volume rendered images (see Figure 1).

The proposed technique modifies GPU-based ray-
casting by processing a ray-caster multiple times with
different entry and exit points. Thus, we are able to
use arbitrary ray-caster modules, potentially support-
ing different rendering styles, by just transforming
their input points. Since the proposed implementa-
tion exploits the capabilities of current graphics hard-
ware and achieves interactive frame rates while sup-
porting global illumination phenomena, we support
full interactivity. Thus, the transfer function can be
changed interactively, and it is possible to define dif-
ferent materials, e. g., more reflective or glassy ones.
One important aspect is our progressive refinement
of the resulting rendering. By using this refinement,
it becomes possible to support specular reflection as
well as refraction even on older graphics hardware by
still allowing interactive exploration.

2 RELATED WORK

A lot of research has been conducted with the goal
to allow interactive frame rates when ray-tracing vol-
umetric data sets. Kajiya and von Herzen (Kajiya
and Herzen, 1984) propose a volumetric ray-tracing
system, which allows to simulate scattering besides
the typical ray-tracing effects like specular reflection.
The ray-tracing technique presented by Marmitt and
Slusallek is more interactive, but constrained to iso-
surfaces (Marmitt and Slusallek, 2006). Since inter-
activity is important to be able to modify important
rendering parameters, e. g., the thresholding or the
transfer function, Marmitt et al. review different ap-
proaches for interactive ray-tracing of volumetric data
in a state-of-the-art report (Marmitt et al., 2006).

Besides ray-tracing, various publications also con-
sider refraction in volume graphics. Rodgman and
Chen describe different approaches, which exploit
a ray tracer to find refractive indices of materi-
als (Rodgman and Chen, 2001). Li and Müller aim
at smooth gradients by proposing a B-spline kernel
for gradient filtering (Li and Mueller, 2005).

One approach to integrate specular reflection and
refraction into a GPU-based volume ray-caster has
been presented by Stegmaier et al. (Stegmaier et al.,
2005). They describe a ray-casting framework for
generating highly appealing renderings which incor-

219
Ropinski T., Hinrichs K. and Kasten J. (2009).
GPU-BASED VOLUME RAY-CASTING SUPPORTING SPECULAR REFLECTION AND REFRACTION.
In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications, pages 219-222
DOI: 10.5220/0001784402190222
Copyright c© SciTePress

(a) specular reflections

(b) specular reflections and shadows

Figure 1: Interactive volume renderings with a higher de-
gree of realism can be generated by exploiting specular re-
flection effects. A CT scan of a hand rendered with specular
reflections (a). By also adding shadows the degree of real-
ism can be further increased (b).

porate these effects. While they are more focussing on
the exchangeability of different ray-casters, we aim at
the combination of specular reflection and refraction
effects within a single image.

3 EXTENDING GPU-BASED
RAY-CASTING

3.1 Higher Order Entry and Exit Points

To integrate global illumination effects into a GPU-
based volume ray-caster, we not only cast one ray per
pixel, but also trace rays of higher order, i. e., we ex-
tend the ray-caster to become a ray-tracer. To be able
to trace these rays, we need higher order entry and
exit points for them.

The workflow of our ray traversal approach can
be subdivided into four subsequent stages as shown in
Figure 2. In the first stage the initial unmodified entry
and exit points are computed as described in the pre-
vious subsection. By using these points the first order

rays can be cast to generate one intermediate image
as well as the computed first hit points, i. e., the posi-
tions in volume space where a ray first encounters a
visible medium. The intermediate image contains the
shading result achieved for each pixel, when casting
a ray from the given entry point to the first hit point.
While the intermediate image is cached in order to be
able to blend it in the last stage, the first hit points are
used as the entry points in the next recursion step. To
increase the foot print of the voxels encountered at the
first hit point, we alter the first hit point computation
by sampling one step further into the volume. This
ensures that the encountered medium is sufficiently
penetrated and thus more clearly visible in the inter-
mediate image. The exit points for the next recur-
sion step are computed in the second stage, as shown
in Figure 2. Based on the entry position p and the
direction d of a higher order ray r, we compute the
intersection between r and the bounding box of the
volume. After this computation has been performed,
we can hand the entry and exit points to the subse-
quent ray-caster, which performs the rendering in the
third stage. When all ray-casters have finished ren-
dering, the final image can be computed by blending
all available intermediate shading images within the
fourth stage.

To compute the ray direction d for rays reflected
on a specular surface, we consider the normal of this
surface. Thus, similar to the computation of the spec-
ular reflection in the Phong illumination model, the
outgoing ray can be computed by considering the in-
coming ray and the current surface normal.

In cases where a refraction occurs, the incoming
ray is bent at the surface based on Snell’s law. To
compute the bending angle the refraction indices of
the adjacent media, for which the refraction should
be computed, has to be known. When assuming that
these indices are n1 for the medium which is left by
the ray, and n2 for the medium which is entered by the
ray, we can compute the bending angle θ based on the
incoming angle φ as follows:

cos(θ) =

√
1−
(

n1

n2

)2

· (1− (cos(φ))2).

Thus, we can compute the direction of the leaving
ray Avec as follows:

Avec =
(

n1

n2

)
Evec +

(
n1

n2
|cos(φ)|− cos(θ)

)
Nvec,

where Evec is a vector representing the incoming
ray and Nvec is the normalized gradient representing
the current surface normal.

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

220

existing
entry exit points1 blending

with transfer function4entry exit point generation
for higher order rays2 ray-casting3

final rendering

blended intermediate
images

specularity mapping function

intermediate
image

first hit
points

nth nth nth nth

3rd

Figure 2: The workflow of the proposed technique can be subdivided into four subsequent stages. Initially the unmodified
entry and exit points are computed for the first order rays (stage 1). Afterwards, for each recursive step, the exit points are
calculated based on the first hit points of the previous step (stage 2). A ray-caster computes intermediate images containing
the shading results for a ray segment, based on the generated entry and exit points (stage 3). Finally all intermediate images
are blended into the final image using a specularity mapping function (stage 4).

In general we have to consider total reflection in
cases the incoming ray hits the object under a very
flat angle, i. e., no refraction but specular reflection
occurs. The critical angle for which total reflection
occurs can be computed as follows:

φcrit = sin−1(
n2

n1
).

Thus, when the incident angle φ exceeds φcrit , we
compute a specular reflection ray instead of a refrac-
tive one.

4 RESULTS

Table 1 shows the frame rates for different recursion
depths and a fixed sampling rate, which is twice the
maximum grid resolution of the rendered data set. To
show the scalability, we have tried several data sets
having different resolutions and have also altered the
screen resolution. While the recursion depth has an
influence on the ray length to be traversed, the latter
influences the screen resolution of rays to be traced.
As can be seen from the table, we still achieve inter-
active frame rates for moderately sized data sets when
using a screen resolution of 512×512 pixels.

Parts of the hand shown in Figure 3 are rendered
semi-transparently, Figure 3 (left) shows a rendering
without, Figure 3 (right) with refraction. As it can be
seen, refraction gives the semi-transparent medium a
more glassy effect.

Table 1: The average frame rates achieved for different re-
cursion depths with precomputed gradients, as measured on
a GeForce 8800GTX graphics board. We have compared
different data set sizes and screen resolutions.

data set recursion screen resolution
depth 2562 5122

Hand 0 57 fps 39 fps
256×256×147 1 38 fps 22 fps

2 30 fps 14 fps
3 24 fps 12 fps

Teapot 0 55 fps 38 fps
256×256×178 1 40 fps 25 fps

2 33 fps 19 fps
3 30 fps 17 fps

Cornell Box 0 59 fps 47 fps
256×256×256 1 38 fps 19 fps

2 31 fps 12 fps
3 18 fps 10 fps

The proposed technique can also be combined
with other advanced illumination techniques devel-
oped for volume rendering. Figure 4 shows the com-
bination with ambient occlusion and deep shadow
maps (Hadwiger et al., 2006). By exploiting these
illumination techniques, a high level of realism can
be achieved, while still maintaining interactive frame
rates.

GPU-BASED VOLUME RAY-CASTING SUPPORTING SPECULAR REFLECTION AND REFRACTION

221

(a) no refraction (b) refraction

Figure 3: The hand data set rendered without refraction (a), and by applying refraction (b).

Figure 4: A synthetic Cornell box data set rendered with
specular reflections, shadows and ambient occlusion.

5 CONCLUSIONS

We have proposed how to extend an interactive GPU-
based volume ray-caster to support specular reflection
and refraction effects. By exploiting the capabilities
of current graphics hardware, our technique can be
applied by still achieving interactive frame rates. The
presented approach can be easily integrated into ex-
isting volume rendering frameworks, which are based
on GPU-based volume ray-casting.

ACKNOWLEDGEMENTS

This work was partly supported by grants from the
Deutsche Forschungsgemeinschaft (DFG), SFB 656
MoBil Münster, Germany (projects Z1, PM5). The
presented concepts have been integrated into the
Voreen volume rendering engine www.voreen.org.

REFERENCES

Hadwiger, M., Kratz, A., Sigg, C., and Bühler, K. (2006).
Gpu-accelerated deep shadow maps for direct vol-
ume rendering. In GH ’06: Proceedings of the
21st ACM SIGGRAPH/Eurographics symposium on
Graphics hardware, pages 49–52, New York, NY,
USA. ACM Press.

Kajiya, J. T. and Herzen, B. P. V. (1984). Ray tracing vol-
ume densities. In SIGGRAPH ’84: ACM SIGGRAPH
1984 Papers, pages 165–174. ACM Press.

Li, S. and Mueller, K. (2005). Accelerated, high-quality re-
fraction computations for volume graphics. In Inter-
national Workshop on Volume Graphics 2005, pages
73–229.

Marmitt, G., Friedrich, H., and Slusallek, P. (2006). Inter-
active Volume Rendering with Ray Tracing. In Euro-
graphics State of the Art Reports.

Marmitt, G. and Slusallek, P. (2006). Fast Ray Traversal
of Tetrahedral and Hexahedral Meshes for Direct Vol-
ume Rendering. In Ertl, T., Joy, K. J., and Santos,
B., editors, Proceedings of Eurographics/IEEE-VGTC
Symposium on Visualization (EuroVIS) 2006, pages
235–242, Lisbon, Portugal. n/a.

Rodgman, D. and Chen, M. (2001). Refraction in dis-
crete raytracing. In International Workshop on Volume
Graphics 2001.

Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., and Strasser,
W. (2003). Smart hardware-accelerated volume ren-
dering. In VISSYM ’03: Proceedings of the Sympo-
sium on Data Visualisation 2003, pages 231–238. Eu-
rographics Association.

Stegmaier, S., Strengert, M., Klein, T., and Ertl, T. (2005).
A simple and flexible volume rendering framework
for graphics-hardware–based raycasting. In Proceed-
ings of the International Workshop on Volume Graph-
ics ’05, pages 187–195.

GRAPP 2009 - International Conference on Computer Graphics Theory and Applications

222

