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Abstract: When subjects are monitored over long time spans and when several biosignals are derived a large amount 
of data has to be processed. In consequence, the number of features which has to be extracted is mostly very 
restricted in order to avoid the so-called “curse of high dimensionality”. Donoho (Donoho, 2000) stated that 
this applies only if algorithms perform local in order to search systematically for general discriminant 
functions in a high-dimensional space. If they take into account a concept for regularization between 
locality and globality “blessings of high dimensionality” are to be expected. The aim of the present study is 
to examine this on a particular real world data set. Different biosignals were recorded during simulated 
overnight driving in order to detect driver’s microsleep events (MSE). It is investigated if data fusion of 
different signals reduces detection errors or if data reduction is beneficial. This was realized for nine 
electroencephalography, two electrooculography, and for six eyetracking signals. Features were extracted of 
all signals and were processed during a training process by computational intelligence methods in order to 
find a discriminant function which separates MSE and Non-MSE. The true detection error of MSE was 
estimated based on cross-validation. Results indicate that fusion of all signals and all features is most 
beneficial. Feature reduction was of limited success and was slightly beneficial if Power Spectral Densities 
were averaged in many narrow spectral bands. In conclusion, the processing of several biosignals and the 
fusion of many features by computational intelligence methods has the potential to establish a reference 
standard (gold standard) for the detection of extreme fatigue and of dangerous microsleep events which is 
needed for upcoming Fatigue Monitoring Technologies. 

1 INTRODUCTION 

The fusion of many features is often under criticism, 
because it is assumed that processing of a large 
number of features leads to performance 
deteriorations of classifiers. This is because local 
optimizations of discriminant functions suffer from 
the so-called “curse of high dimensionality”.  It has 
been shown theoretically that non-local learning 
algorithms, like the Support Vector Machine (SVM), 
suffer less from this problem and that there are also 
“blessings of high dimensionality” (Donoho, 2000), 
i.e. certain random fluctuations are very well 
controlled in high dimensions, whereas in moderate 
dimensions these fluctuations lead to deteriorations 
in statistical measures. Therefore, the question of 
fusion or reduction of features remains open and 
answers depend on signal characteristics 

(nonlinearities, randomness) and should be given 
problem specific. 

Here we present experimental investigations uti-
lizing 15 different signals of electroencephalography 
(EEG), electrooculography (EOG), and eyetracking 
signals (ETS). All signals are featured by relatively 
high temporal resolution and are corrupted by large 
noise originated by a lot of other simultaneously 
ongoing brain processes. This leads to more or less 
extensive signal processing which results in a large 
variety of different features. Then, it is often discus-
sed if a fusion of all features or, in controversy, fea-
ture reduction should be strived in order to optimize 
performance of subsequent processing methods. On 
the one hand, fusion of features of different types of 
signals should be beneficial, because EEG, EOG and 
ETS are reflecting different processes. On the other 
hand, ETS and EOG are relatively close related. 
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Both contain components of eye movement, but they 
are differing in that ETS outputs the time series of 
pupil size and that the EOG contains components of 
blink movements. Therefore, it should be of interest 
if a fusion of both closely related types of signals is 
still of advantage or not.  

2 VIGILANCE MONITORING  

Over the past years the development of vigilance 
monitoring systems has made considerable progress. 
In case of applications to transportation industries 
several stages of interactions between the system 
and the driver are under discussion and are to some 
extend implemented. On a low level of interaction 
the estimated vigilance level is displayed to the 
driver in order to give him a feedback and to support 
his own decision making. Advantageously, the accu-
racy in such “alertometer” applications must be at 
least as high as to display the vigilance level in two, 
or three, or some more steps. This is not the case on 
higher levels of interaction where e.g. acoustic or 
visual stimuli are presented in order to give insistent 
warnings to the driver. Highly accurate estimations 
are required here. If the rate of false alarms would be 
too high, such systems are scarcely accepted by 
drivers. On the other hand, missing errors are very 
dangerous for the driver and are therefore not accep-
table especially during very low vigilance and in its 
extreme extent, the microsleep events (MSE). The 
latter are defined as short and non-anticipated intru-
sions of sleep into wakefulness under demands of 
sustained attention (www.microsleep.de).  

The question remains whether there exists a 
unique sign of extreme fatigue and of MSE which 
can be measured non-intricately. In a recent paper 
Schleicher et al. (Schleicher et al., 2007) 
investigated oculomotoric parameters in a data set of 
82 subjects. The parameter most correlating to 
independent vigilance ratings was the duration of 
eye blinks. In addition to correlation analysis this 
parameter was investigated in detail immediately 
before and after a MSE which they defined as 
overlong eye blinks. The mean duration of overlong 
eye blinks is substantially longer (269 ms) than of 
blinks immediately before (204 ms) and after (189 
ms) a MSE. Furthermore, considerable inter-
individual differences were reported and the 
duration of overlong eye blinks seems to be much 
lower than the reported 700 ms of Summala et al 
(Summala et al., 1999). Ingre et al (Ingre et al., 
2006) also reported large inter-individual variability 
of blink duration in a driving simulation study of 10 

subjects after working on a night shift. In 
conclusion, only gradual changes and a large inter-
subject variability are observable in this important 
parameter which is mostly used in industrial fatigue 
monitoring devices. The same is reported of other 
variables, e.g. delay of lid reopening, blink interval, 
and standardised lid closure speed (Schleicher et al., 
2007). 

EEG studies on strong fatigue of several authors 
have resulted in a similar picture of inter-individual 
differences, of non-unique parameter values and of 
non-specific patterns. In their review paper Santama-
ria and Chiappa (Santamaria and Chiappa, 1987) 
stated: “There is a great deal of variability in the 
EEG of drowsiness among different subjects”. In a 
large normative study with 200 male subjects the 
EEG of drowsiness was found to have “infinitely 
more complex and variable patterns than the wakeful 
EEG pattern” (Maulsby et al., 1968). Åkerstedt et al. 
(Akerstedt et al., 1991) showed that with increasing 
working time subjectively rated sleepiness strongly 
increases and the EEG showed a significant but 
moderate increase of hourly mean power spectral 
densities (PSD) only in the alpha but not in the theta 
band. In contrast, Makeig & Jung (Makeig and Jung, 
1995) concluded from their study that the EEG 
typically loses its prominent alpha and beta frequen-
cies as lower frequency theta activity appears at the 
time when performance is deteriorating due to strong 
fatigue. Sleep deprived subjects performing a conti-
nuous visuomotor compensatory tracking task 
(Makeig et al., 2000) showed increasing PSD in the 
lower theta range (3-4 Hz) during periods of poor 
performance. But, other studies stated a broad-band 
increase of PSD in the theta-alpha-range and Lal & 
Craig (Lal and Craig, 2002) found significant 
increases of PSD in the delta-theta-alpha-beta-range 
by factors of 22%, 26%, 9%, 5%, respectively. 

Another variable which has the potential to have 
a relatively close relationship to the sleep/wake sys-
tem is the pupil size. Experiments to get normative 
values of the pupil unrest index including 349 sub-
jects at the age between 20 and 60 years resulted in 
significant variations depending on sleepiness 
(Wilhelm, et al., 2001). Pupillograms can be 
measured contactless by camera based eyetracking 
systems (ETS). This measure is additionally 
dependent on several other influences, like e.g. 
ambient illumination. Therefore, it is like EEG and 
EOG problematic as a basic indicator for vigilance 
monitoring devices on  real  roads. Varying  ambient 
illuminations do not appear in laboratories.  

Despite the above mentioned difficulties in sear-
ching for unique signs of extreme fatigue, the analy-
sis of brain electric and of oculomotoric signals are 
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accepted as most favourable for detections of sudden 
performance deteriorations on a second-by-second 
basis. It is unlikely that biosignals, like e.g. electro-
cardiogram, electromyogram, electro-dermal activi-
ty, or indirect measures of driver fatigue like driving 
parameters, e.g. variability of lane deviation and of 
steering angle, contain such information which im-
mediately reflect ongoing MSE. 

3 EXPERIMENTS 

During the week preceding the study subjects had to 
keep a sleep diary to assess sleep habits. In addition, 
subjects had to carry a wrist actometer during the 
three days and nights preceding the experiments. 
Actograms were checked immediately after arrival 
of the subject to the experimental night, normally at 
11 pm. If total sleep length (6 … 10 hrs), time-since-
sleep (14 … 16 hrs) and if the subject accomplished 
the demand of no nap, then a permit for experiments 
was given. Three days before the experimental night 
subjects were familiarized with the lab equipment 
and had to drive on a 20 min training course in the 
driving simulator. Two subjects complained about 
simulator sickness and were excluded from further 
investigations. During the experimental nights one 
further subject has quitted because of simulator sick-
ness and one because of back pain. In total twenty-
two healthy subjects (21 male, 1 female; mean age 
24.4 ± 3.1 years, range 19-28 years) finished experi-
ments completely. All subjects gave written infor-
med consent and gave a written declaration on their 
transfer home after experiments. Only driving as 
passenger or, in case of campus residents, walking 
was allowed.  

 

 
Figure 1: Lab layout: dark simulator room (grey) with a 
real car; operator room (light grey). 

Experimental investigations were conducted in 
our driving simulation lab consisting of an operator 
room and a fully dark, temperature controlled simu-
lator room (Fig. 1). Subjects had to drive a real car 
(GM Opel “Corsa”) on a slightly winding road under 

conditions of night vision. No oncoming traffic was 
simulated in order to maintain high level of monoto-
ny. The driving scene was projected on a projection 
plane 2.6 m in front of the subject; maximum visual 
angle is 56 deg. In case of complete road departures 
a force feedback to the steering wheel was switched 
on. This was in nearly all cases effective enough to 
waken drowsy subjects. 

For monitoring subjects behaviour three video 
cameras were utilized: (1) of subjects left eye region, 
(2) of her / his head and upper part of the body, and 
(3) of driving scene. Video recordings were used for 
online and offline scoring as explained later. Logged 
variables of the driving simulator were lane devia-
tion, velocity, steering angle, and pedal movements; 
sampling rate was 10 s-1. Furthermore, several elec-
trophysiological signals were derived. Seven EEG 
channels (C3, Cz, C4, O1, O2, A1, A2, common ave-
rage reference), two of EOG (vertical, horizontal), 
one of ECG, and one of EMG (musculus submenta-
lis) were sampled at a rate of 128 s-1. Further 6 sig-
nals were recorded by a binocular eye tracking sys-
tem (ETS) at a rate of 250 s-1. For each eye the pupil 
size and the two coordinates of eye gaze on the plane 
of projection were measured.  

 

 
Figure 2: Operating schedule of one experimental night. 
Subjects had to complete seven driving sessions. In each 
session subjects drove in the simulator and attended three 
vigilance tasks (VT 1 - 3), and two questionnaires (VAS = 
Visual Analogue Scale, ADACL = Thayer Activation-De-
activation Adjective Checklist). 

In all, subjects had to complete seven driving 
sessions lasting 35 min, each preceded and followed 
by vigilance tests and responding to sleepiness ques-
tionnaires (Figure 2) which are not considered in this 
paper. Before starting the next driving session a 10 
min long break was inserted for subjects needs and 
in order to motivate the subject to continue driving 
with best possible performance. Driving started at 
1:00 a.m. after a day of normal activity and a time 
since sleep of at least 16 hours.  

On the one hand, our design has the disadvantage 
of non-continuous driving due to questionnaires, 
vigilance tests and breaks. But on the other hand a 
large total time-on-duty is gained and a time-of-day 
effect due to passing the circadian trough can be 
observed. We experienced earlier that it is hard to 
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motivate a subject for continuous driving in a simu-
lator for longer than two or three hours; most of 
them are willing to give up when the first MSE arise. 
We believe that our design results in much more 
examples of MSE than in continuous driving of 
equivalent total length (4 h).  

Driving tasks were chosen intentionally monoto-
nous and with time-since-sleep up to 24 hours to 
support drowsiness and occurrence of MSE. MSE 
were detected online by two operators who observed 
the subject utilizing three video camera streams as 
aforementioned. Typical signs of MSE are e.g. pro-
longed eyelid closures, roving eye movements, head 
noddings, major driving incidents and drift-out-of-
lane accidents. We have found 3,573 MSE (per sub-
ject: mean number 162 ± 91, range 11 - 399). 

The step of online scoring is critical, because 
there are no unique signs of MSE, and their exact 
beginning is sometimes hardly to define. Therefore, 
all events were checked offline by an independent 
expert and were corrected if necessary. Unclear MSE 
characterized by e.g. short phases with extremely 
small eyelid gap, inertia of eyelid opening or slow 
head down movements were excluded from further 
analysis. Non-MSEs were selected at all times out-
side of clear and of unclear MSE. We have picked 
out the same amount of Non-MSE as of MSE in or-
der to have a balanced data set. Our intention was to 
design a detection system for clear MSE versus clear 
Non-MSE classification. We hypothesize that such a 
system can not only detect the MSE recognized by 
human experts. They should also offer a possibility 
to detect unclear MSE cases which are not easily 
recognizable by experts. In another paper we report 
on first positive results to this hypothesis (Sommer 
et al., 2008). 

4 DATA ANALYSIS 

Pre-processing, feature extraction, classification and 
validation are typically the main steps of discrimi-
nant analysis. Three main steps of pre-processing 
were performed: signal segmentation, artefact remo-
val and missing data substitution. Segmentation of 
all signals was done with respect to the observed 
temporal starting points of MSE or Non-MSE using 
two free parameters, the segment length and the tem-
poral offset between first sample point of the seg-
ment and starting point of the event. The first para-
meter adjusts the trade-off between temporal and 
spectral resolution whereas the second parameter 
controls the location of the region-of-interest on the 
time axis. Both parameters are of high importance 

and were found to be optimal when offset is -3 sec 
and segment length is 8 sec (Golz et al., 2007). This 
means that classification is working best when 
biosignals from 3 sec immediately before MSE to 5 
sec after MSE onset are analyzed. Artefact detection 
in EEG and missing data in ETS during every eyelid 
closure were both of minor importance (Golz et al., 
2007). 

We utilized the common periodogram and the re-
cently introduced method of Delay Vector Variance 
(DVV) (Lal and Craig, 2002) as feature extraction 
tools. The first method assumes stationary signals 
and their generating system is linear. It is a direct 
method to estimate logarithmic PSD. DVV 
transforms the signal to the state space utilizing time 
delay embedding. Provided that distinct conditions 
are fulfilled, e. g. if the signal generating system can 
be described by relatively simple coupled ordinary 
differential equations, this has the advantage that 
signals exhibiting some degree of irregularity in the 
time domain are mapped on relatively simple 
trajectories in the state space. Simple statistical tests 
in the state space can then be utilized to estimate to 
which degree the signal may be generated by a 
nonlinear system and to estimate how large may be 
the amount of stochasticity in the signal. Both 
features are important and are dependent on one free 
parameter which controls the degree of similarity in 
the sate space. Therefore, two feature sets are 
generated by DVV. They may vary over time if the 
signal generating process alters as it might by when 
a MSE is oncoming.  

After completion of pre-processing and feature 
extraction the stage of classification analysis is up 
next. It turned out that Support Vector Machines 
(SVM) outperform several other methods (Golz et 
al., 2007). It is a stochastic learning method and is 
adapting discriminant functions in order to gain high 
adaptivity and also high generalizability. In order to 
gain this several internal parameters are to be 
optimized which is computational time consuming 
(Golz et al., 2007). For comparison we utilized also 
a winner-takes-all neural network, namely the 
OLVQ1 algorithm. It demands much less 
computational effort and is a good choice of effici-
ency when many parameters of pre-processing and 
feature extraction are to be optimized empirically. 

Next, validation is performed in order to estimate 
the true error of classification. The expectation value 
of the classification error based on the training data is 
known to be biased. This so-called training set error 
is a useful measure to check how good the adaptation 
of the discriminant function has been working. Seve-
ral cross validation methods have been developed in 
order to get a second measure, the test error. Here we 
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have used the “leave-one-out” cross validation, be-
cause it provides an almost unbiased estimation of 
the true classification error, but it is computationally 
expensive. Advantageously, in case of SVM an effi-
cient implementation is possible due to the support-
vector concept. 

 
Figure 3: Mean and standard deviation of test set errors for 
single signals and several examples of feature fusion. 

5 RESULTS 

Mean and standard deviation of test errors (Figure 3) 
of different feature sets extracted from only one bio-
signal were estimated. The PSD feature set resulted 
in lower errors than the DVV feature set (white bars 
are always higher than grey bars). DVV shows good 
potential in exploring the horizontal EOG, which is 
due to eye blinks far from quasi-stationarity. This is 
required for PSD estimation but not for DVV. The 
fusion of both PSD and DVV features performed al-
ways better than PSD features alone (black bars are 
always lowest). The vertical EOG component turned 
out as most successful for microsleep detection, but 
error rates are around 20 %.  
The fusion of features of different signals always 
reduces errors (six right most groups of bars in Figure 

 

Figure 4: Mean and standard deviation of test set errors for 
several examples of feature fusion. 

4). The fusion of the best single channels (EOG ver-
tical and EEG Cz) performs better than the fusion of 
all EEG signals, or of all ETS, or of both EOG sig-
nals. But this is clearly outperformed by fusion of all 
EEG and all EOG features, or of all EEG + EOG + 
ETS features (two right most groups of bars in Fig. 
4). The latter resulted in mean test errors lower than 
10 %. A comparison of more classification methods 
and a report of some more details on discriminant 
analysis, their parameters and their computational 
costs can be found elsewhere (Golz et al., 2007). 

Different methods of feature reduction were app-
lied to all nine EEG and EOG signals (Table 1). First, 
no reduction was aimed to have a baseline result. So, 
513 features per channel were processed. SVM (ETest 
= 13.1 %) performs much better than OLVQ1 (ETest 
= 27.7 %). Next, PCA (principal component analysis) 
was utilized to reduce the number of features down 
to 60 for OLVQ1 and 128 for SVM. This was found 
as an empirical optimum with minimal test errors 
(OLVQ1: 17.4 %; SVM: 10.9 %). The third method 
was the commonly used summation in four spectral 
bands (delta, theta, alpha, beta), which leads to total 
number of features of  NF  =  4  features / signal  x  9 
signals  = 36 features. It clearly came out that this 
reduction is too much. Next, summation in small, 
equidistant spectral bands was performed, whereby 
frequency range and width of the bands were deter-
mined empirically. We found a range of 0.5 to 23.5 
Hz and a width of 1 Hz optimal, i.e. 24 features per 
signal. The fifth method was a summation in bands 
whereby ranges where determined by utilizing Evo-
lutionary Strategies (ES). The number of features 
per channel was preset to 10. Further details can be 
found elsewhere (Golz et al., 2007), (Sommer and 
Golz, 2007). Results show that feature reduction 
leads to more than 3 % of error reduction which can 
be gained by simple averaging in small spectral 
bands or by ES optimization. The common method 
of reduction to the delta, theta, alpha, and beta band 
is as bad as no reduction. 

Table 1: Results of 5 different feature reductions applied 
to EEG and EOG. Test set errors (ETest) were estimated by 
Multiple Hold-Out and by Leave-One-Out cross validation 
utilizing OLVQ1 and SVM, respectively. The number of 
features (NF) varies largely between cases. 

      Case NF OLVQ1 SVM 
ETEST [%] ETEST [%]

 (1) No reduction 4617. 27.7 ± 0.6 13.1 ± 0.3 
 (2) PCA 60 / 128. 17.4 ± 0.4 10.9 ± 0.2 
 (3) fixed band 36. 17.5 ± 0.4 13.2 ± 0.3 
 (4) equidistant bands   216. 15.7 ± 0.4 9.9 ± 0.1 
 (5) ES-OLVQ1 90. 14.1 ± 0.4 9.8 ± 0.1 
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6 CONCLUSIONS 

It has been shown that fusion of features has poten-
tial to improve detection accuracy of driver’s micro-
sleep. Features of two different extraction methods, 
namely the Power Spectral Density (PSD) and the 
Delay Vector Variance (DVV), were fused first, but 
with a limited success. Fusion of different signals of 
one signal type, such as all EEG signals, as well as 
fusion of different signal types, namely EEG, EOG, 
ETS, resulted in clear improvements. The best single 
EEG signal (Cz) gained a mean error of 25 %. The 
fusion of all 7 EEG signals reduced errors down to 
16 %, and the fusion of all 15 signals available redu-
ces errors down to 9 %.  

In high-dimensional spaces it is apparently intra-
ctable to search systematically and to approximate a 
general, high-dimensional function accurately. This 
is known as the so-called “curse of high dimensiona-
lity”. But, Support-Vector Machines and also other 
modern methods of computational intelligence, but 
not OLVQ1, impressively demonstrated that high di-
mensionality must not be a curse. OLVQ1 perfor-
mance decreased largely when the number of input 
variables (features) was very high. Our results also 
showed that fusion of features of all signals is most 
beneficial.  

Reduction is of limited advantage and was only 
successful for highly correlating features, e.g. sum-
mation of PSD values in small spectral bands. There 
is presumably no potential for further improvements 
due to feature reduction. This was demonstrated by 
computational expansive optimizations of the para-
meters of spectral bands utilizing Evolutionary Stra-
tegies. Note that these optimizations are capable to 
search for different spectral bands for each subject, 
if it would be advantageously.  

Future work should reveal if a further diversifi-
cation of feature extraction may increase performan-
ce of discriminant analysis. Different types of featu-
res should then be fused which is likely to improve 
accuracy and robustness of MSE detection.  

On the one hand the detection of driver’s micro-
sleep is a relatively clear case illustration for the 
problem of spontaneous behavioural events and their 
detection. On the other hand, their detection in bio-
signals will be a necessary milestone for future on-
line driver monitoring technology. It explores the 
extreme end of driver’s fatigue where it is essential 
to avoid attention losses. The practical goal of such a 
detection system is to establish a laboratory referen-
ce standard for detection of microsleep and extreme 
hypovigilance. Contactless operating online driver 
monitoring technology, which is currently under 

development by car industry, must be validated uti-
lizing such a laboratory reference standard. 
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