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Abstract: Direct volume rendering (DVR) is a flexible technique for visualizing and exploring scientific and biomedical
volumetric data sets. Transfer functions associate field values with colors and opacities, however, for complex
data are often not sufficient for encoding all relevant information. We introduce a novel visualization technique
termed texture-enhanced DVR to visualize supplementary data such as material properties and additional data
fields. Smooth transitions in the underlying data are represented by coherently morphing textures within user
defined regions of interest. The framework seamlessly integrates into the conventional DVR process, can be
executed on the GPU, is extremely powerful and flexible, and enables entirely novel visualizations.

1 INTRODUCTION

Volumetric data is common in science, engineering
and biomedicine. Visualizations help to gain insight
and understanding of the data. A powerful and pop-
ular visualization technique is Direct Volume Render-
ing (DVR), which does not require intermediate rep-
resentation and can display an entire 3D data set in a
2D image. This is achieved by associating data values
with opacities and colors via transfer functions.

Traditionally DVR has only been used for scalar
data. While extensions for higher dimensional data
exist, the fact that only color and opacities can be
used to represent field values presents a natural lim-
itation. In this paper we present a novel concept to
enrich DVR visualizations with textures, which are
a separate visual attribute independent of color and
opacity (Landy and Graham, 2004). The technique
facilitates the visualization of higher-dimensional and
multi-field data by encoding additional field values
by texture attributes. Additionally, the actual appear-
ances of different materials within the data set can
be mimicked resulting in more realistic and intuitive
visualizations. Textures in regions with overlapping
transfer functions are morphed to create a smooth
transition between different textured materials. Our
mathematical framework represents a natural exten-
sion of the traditional DVR process and is consistent
with existing opacity and color transfer functions.

Section 2 surveys previous work on visualizing
complex data with textures and DVR. Section 3 re-
views concepts of traditional DVR. Section 4 for-

mally defines a mathematical framework for texture-
enhanced DVR. Section 5 discusses the algorithmic
structure of texture-enhanced DVR, gives implemen-
tation details, and discusses techniques to improve
perception of 3D textures. Results and a discussion of
our proposed concept follow in section 6. Section 7
concludes with a summary of our main contributions
and important directions for future research.

2 RELATED WORK

Several modifications of traditional transfer functions
have been suggested. Feature rich visualizations can
be obtained by using multi-dimensional transfer func-
tions and applying them to scalar or multivariate data
(Kniss et al., 2002). Special manipulation widgets
make the specification of transfer functions more in-
tuitive and convenient.

Textures have been used previously in DVR to
display higher-dimensional data. Vector fields can
be represented with Line Integral Convolution (LIC)
textures and interactive explored with DVR (Rezk-
Salama et al., 1999). 3D Perception can be im-
proved by emphasizing thin thread structures using
limb darkening (Helgeland and Andreassen, 2004) or
visibility-impeding halos which indicate depth dis-
continuities (Wenger et al., 2004).

Tensor fields can be represented by integrating
streamlines along the principal eigenvector direction.
The resulting textures can be blended with representa-
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tions for different tissue types by using derived tensor
quantities as input for a classification function which
encodes the probability that a field value corresponds
to a certain tissue type (Wünsche and Lobb, 2004).

Patel et al. (Patel et al., 2007) illustrate volumet-
ric seismic data by mapping 2D textures onto the pla-
nar faces of axis-aligned cutouts. For the rendering,
”Layer texture transfer functions” are used to select
textures, scaling factors, and opacities for the pre-
classified layers. ”Scalar texture transfer functions”
associate different materials with textures. During
rendering, the opacities are used to linearly blend the
2D textures. A separate conventional color-opacity
transfer function maps data values to RGBα colors,
which can be blended with the textures.

3 MATHEMATICAL MODEL FOR
DVR

Traditional DVR is described by the emission-
absorption model, where scalar values are interpreted
as densities of a gaseous material which emits and ab-
sorbs light (Max, 1995). An image is created by accu-
mulating the total light intensity for each pixel which
in the simplest case is computed as

C =
∫

∞

0
c(t)e−

∫ t
0 κ(u)dudt (1)

where t is the parameter of a viewing ray through a
pixel, C is its color, c(t) the color at the ray parameter
t and the integral in the exponent is the total opacity
of the ray segment [0, t] which is computed by inte-
grating densities (opacities) along the ray.

The DVR integral in equation 1 requires transfer
functions which associate values of a volume with op-
tical properties. In the traditional DVR model (Max,
1995) these are three color components (red, green,
and blue) and an opacity component (α). Although
Max assumes scalar volume data sets only, subse-
quent work uses higher dimensional input data such
as vectors and tensors (Helgeland and Andreassen,
2004). Consequently we define a volume as a more
general function f : Rn 7→ Rm, with n independent
variables, such as position and time, and m dependent
variables, e.g., m = 3 for vector data.

In addition we introduce a data transformation op-
erator B that maps a function f : Rn 7→Rm (input data
set) to a function g : Rn 7→ Rk (derived data set):

B: f 7→ g. (2)

This operator reflects that many applications use de-
rived quantities as input for the DVR process. For
example, multi-dimensional transfer functions using

scalar data and its gradient are useful for detecting
material boundaries (Kniss et al., 2002).

The output of function g is a k-dimensional vector
that serves as input for the transfer function. Using B,
the color-opacity transfer function can be defined as:

Θ : Rk 7→ R4

Θ
(
B( f )(P)

)
= Θ

(
g(P)

)
= (C,α). (3)

The transfer functions themselves are weighting
functions for RGBα values and are usually either user-
defined using simple manipulation widgets (Kniss
et al., 2002), or are predefined, e.g., using typical tis-
sue densities for CT data.

4 MATHEMATICAL
FRAMEWORK FOR
TEXTURE-ENHANCED DVR

In order to obtain consistency with the existing DVR
model, texture transfer functions should enable the as-
sociation of data values with different textures anal-
ogous to traditional transfer functions, i.e., by using
weighting functions defined over the domain of the
dependent variables.

The following difficulties exist: In contrast to col-
ors and opacities, textures have spatial (and poten-
tially temporal) properties and hence must also de-
pend on the independent variables. Transfer functions
which overlap within the domain of an independent
variable, require a merging of textures. Whereas col-
ors and opacity values can be (linearly) interpolated,
the morphing of textures must maintain the character-
istics of each individual texture used to represent the
underlying data set, e.g., size, color and orientation
of texture components. Since textures are also repre-
sented by color and opacities a mechanism must be
found to combine them with the results of the color
and opacity transfer functions.

The mathematical framework for texture-
enhanced DVR is hence defined as follows:

4.1 Defining Texture Coordinates

Each texture object T(Ω,ς) has its own dimensional-
ity p, domain Ω (where the texture is used in the vi-
sualization), and attribute function ς (usually RGBα,
but other values such as displacements are possible).
Consequently, the texture coordinates Q have to be
defined per texture. For volume rendering the tex-
ture coordinates depend on the spatial locations of the
voxels. This requirement is consistent with existing
texture-based visualization techniques such as LIC:
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the texture generation only effects the attribute func-
tion ς, but not the definition of texture coordinates or
weighting-curves used for rendering them.

In order to obtain texture coordinates for a texture
T(Ω,ς), we define a function Γ that maps voxel posi-
tions P ∈ Rn to texture coordinates Q ∈Ω⊆ Rp:

Γ : Rn 7→ Rp

Γ : P 7→ Γ(P) = Q.
(4)

Note that the equation makes no assumptions
about the dimensionality of T. In our examples p = 3
and Ω can be a subset of the input data set as ex-
plained in subsection 5.2. The definition of Γ allows
spatially varying transformations, e.g. gradual scaling
or rotation of textures and their features.

4.2 Texture Transfer Functions

Instead of returning colors and opacities, the new
transfer function returns a vector of weights (one for
each of the L textures) used for the classification:

Θtex : Rk 7→ RL

Θtex
(
B( f )(P)

)
= ω.

(5)

Note that, in contrast to the conventional transfer
function, Θtex does not map into R4(RGBα), but into
an L-dimensional space (RL). This makes it possible
to morph textures and define texture-dependent shad-
ing and transparency effects to improve perception.

4.3 Morphing of Textures

A morphing operator needs access to the texture trans-
fer function Θtex in order to obtain weights for neigh-
boring pixels. In addition morphing requires for all
L textures the texture attributes at all texels, and not
just their values at a given voxel. Hence, the operator
needs L texture coordinates Q1···L and the functions
ς1···L as input. In order to further increase flexibility,
it is better not to provide the pre-transformed texture
coordinates, but instead the transformation functions
Γ1···L together with the current voxel position P. In
this way, a morphing operator is able to access neigh-
boring voxels and texels. Since the transformation
functions Γ1···L determine the texture domain the ex-
plicit specification of Ω1···L is not necessary.

Taken all these considerations into account, the
morphing operator � can be defined as follows:(

(C,α)tex, Λ
)
=�

[
P, Γ1···L, ς1···L, f , B, Θtex

]
. (6)

where Λ denotes additional channels such as dis-
placement values. Note that for efficiency the morph-
ing, even though defined for the entire volume, should

be performed only for the subset of f which, accord-
ing to the transfer functions will be visible and con-
tribute to the final image (see subsection 5.2).

We have developed a fast exemplar-based texture
synthesis and morphing algorithm. The technique
provides an excellent trade-off between speed and
quality, is highly flexible, allows the use of arbitrary
channels, can be extended to arbitrary dimensions and
is suitable for a GPU-implementation. Technical de-
tails are given in (Manke and Wünsche, 2009).

4.4 Color Combination Operator

The evaluation of the texture transfer function Θtex
and the application of the morphing operator form a
parallel path in the DVR process, which is indepen-
dent of the evaluation of the color and opacity trans-
fer function. In order to integrate texture-enhanced
DVR into the existing process, the binary color com-
bination operator ~ mixes the color-opacity pairs
(C,α)conv of the conventional transfer function and
(C,α)tex of the texture. Formally, ~ is defined as:

~ : RGBα×RGBα 7→ RGBα

(C,α) = (C,α)conv ~ (C,α)tex.
(7)

The color combination operator ~ has different
modes implementing simple operations, such as re-
placement of the results of the color transfer func-
tion, and more complex operations combining col-
ors and transparencies. This is consistent with the
OpenGL texture environment modes GL REPLACE,
GL MODULATE etc. for polygon rendering.

5 IMPLEMENTATION

The volume rendering integral in equation 1 can be ef-
ficiently solved on graphics hardware by discretizing
the volume using object or view-aligned slices, com-
puting colors and transparencies for each slice, and
compositing them in back-to-front order:

(Ci,αi)conv <- evaluate Θ
(
B( f )(P)

)
// eval. of conv. transfer function(

(C,α)tex, Λ
)
<- �

[
P, Γ1···L, ς1···L, f , B, Θtex

]
// morphing of textures

(Ci,αi) <- (Ci,αi)conv ~ (Ci,αi)tex
// combination of colors

c′i <- (αi ·Ci)+(1−αi) · c′i−1
// volumetric compositing

The extensions can be directly integrated into a
modular GPU-based DVR framework we presented
previously (Manke and Wünsche, 2008). Sampling
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the texture transfer function generates weight maps
which are used in the texture morphing algorithm.

W̃ j(P)⇔Θtex
(
B( f )(P)

)
= ω j, 1≤ j ≤ L.

More implementation and technical details, and
the source code are available at (Manke, 2008).

5.1 Perceptual Issues

One of the major difficulties in using 3D textures for
visualization is perception of their spatial properties.
While the human visual system is well adapted to
perceive textures over surfaces and even uses them
as depth and shape cues, it is very difficult to per-
ceive partially transparent solid textures. The chal-
lenges are similar as for conventional color and opac-
ity transfer functions where the naive approach of just
accumulating colors and opacities results in a fuzzy
image without visible structures. These problems are
overcome by using shading functions which empha-
size material boundaries, e.g., by using the gradient
magnitude of the scalar input data set as pseudo sur-
face normal (Levoy, 1988). Based on experimental
and visual perception research we developed the fol-
lowing guidelines for using texture-enhanced DVR:

For data sets where only recognition of material
types and properties is important, rather than their
exact 3D structure, we use opacity transfer func-
tions which make the region of interest nearly opaque
and the remaining features nearly transparent. Inte-
rior structures can be shown by using cutting planes.
The method results in images similar to Patel et
al.’s approach (Patel et al., 2007), but offers smooth
boundaries between materials using texture morphing
and we can indicate important features or anatomical
landmarks by partial transparent surfaces.

A better perception of the 3D structure of tex-
tures is obtained by using screen-door transparencies.
Here, the alpha channel of the synthesized texture is
used to model different opacities for the texture ele-
ments. For screen-door transparency, selected parts of
the texture are defined to be fully opaque, whereas all
other parts are defined to be (almost) fully transpar-
ent. The color combination operator then multiplies
the opacities α given by (C,α)conv and (C,α)tex.

We utilize the synthesis of additional channels for
generating the alpha channel: In addition to the color
input exemplar, an additional 2D texture is defined
that encodes opacities. After the texture morphing
has finished, the texture coordinates stored in the fi-
nal synthesis pyramids can be used to look up pixels
in this additional texture. Perception of the geometry
of opaque texture elements, rather than the textured
surface, can be improved by using the gradient of the

Figure 1: A binary shell mask (blue) with dilation radius
rd = 5 for a binary object mask (red).

scalar field g(P) = f (P) · a(P) as illumination func-
tion. Here f denotes the data set and a is a function
that returns the geometry-defining alpha value of the
solid texture at a sample point P.

5.2 Binary Shell Masks

In DVR the visualized data typically contains large
regions that are of no interest and hence defined by the
transfer function as fully transparent. Since texture
synthesis and morphing is a time consuming process
it is desirable for texture-enhanced DVR to generate
solid textures only where they are required.

We realize partial texture synthesis and morphing
by integrating a binary object mask into the basic 3D
texture morphing algorithm. This binary object mask
B is of the same size as the target texture cube S, and
encodes which voxels of S are textured. Because our
texture synthesis algorithm uses neighborhood match-
ing and a multi-resolution approach, the binary object
mask B is dilated by a user-defined dilation radius rd
(figure 1). In order to compute the shortest Euclidean
distance of each voxel to the binary object mask, we
adopt a C++ implementation by (Coeurjolly, 2003)
that realizes a linear-time algorithm for computing the
3D squared Euclidean Distance Transform (Meijster
et al., 2000). In practice we found that a dilation ra-
dius rd = 10 yields high quality textures while still
resulting in significant time savings.

6 RESULTS AND DISCUSSION

We compared conventional transfer functions with
texture transfer functions (figure 2) and found that for
opaque textured layers, such as the bone layer in the
figure, texture transfer functions enable similar per-
ception of features. The geometry of semi-transparent
layers, such as the skin layer of the nose, is harder
to perceive than for conventional transfer functions.
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Figure 2: Comparison of renderings using the color of a
conventional color-opacity transfer function (left) and of a
texture transfer function (right). The gradient magnitude of
the data serves as threshold for the opacity.

Figure 3: Screen-door transparency effects for overlapping
layers. The mesh structure of the skin texture is fully
opaque, whereas the regions in between are almost com-
pletely transparent. Left: Conventional illumination func-
tion using the gradient vectors for the object geometry only.
Right: Improved illumination function taking the geometry
of texture features into account.

However, the texture properties can now encode ad-
ditional information such as fiber direction, cellular
abnormalities etc. Similar as for color transfer func-
tions gradient based shading is required for material
boundaries. Since textures are heterogeneous in 3D
we found it useful to additionally threshold the opac-
ity with the gradient magnitude.

Perception of nested textured regions is difficult.
Figure 3 demonstrates that perception can be im-
proved by using screen-door transparency effects.
The mesh structure of the texture used for the skin
layer is defined to be fully opaque, whereas the re-
gions in between are almost completely transparent.
As a result, the features of the outer texture are not
blended with the underlying texture of the bone. Note
how the perception of texture features improves when
the illumination function takes into account the geom-
etry of texture features.

Figure 4 extends the previous visualization by ad-
ditionally encoding the magnitude of the scalar gra-
dient in colors. The left image shows a conventional
rendering using only the color-opacity transfer func-
tion. On the right, texture-enhanced DVR is used to

Figure 4: Using color and texture transfer functions together
for encoding different information. The example encodes
the magnitude of the scalar gradient in color, ranging from
magenta (zero magnitude) over white to green (maximal
magnitude) using color (left) and texture combined with
colors using a multiplication operator (right).

encode the imaginary materials as before (using tex-
tures) as well as the gradient magnitude. The two
colors are combined using a multiplication operator:
(C,α) = (C,α)conv ⊗ (C,α)tex.

Note that such a morphing of two textures within
one material layer is common for multi-field data. For
example, a cardiac MRI data set could be used to dif-
ferentiate different tissues such as the heart muscle,
blood and surrounding fat tissue. A PET or fMRI data
set could then provide additional functional informa-
tion such as myocardial strain (Wünsche and Young,
2003) or viable, stunned, hibernating and dead my-
ocardium represented by (morphed) textures.

6.1 Comparison with Previous Work

In section 2 we discussed Patel et al.’s scalar tex-
ture transfer functions which are similar to our texture
transfer functions. However, there are fundamental
differences in the two concepts:

Patel et al. use 2D textures and map them onto cut-
ting planes through pre-classified layers. In contrast,
texture-enhanced DVR provides texture information
throughout the volume in three dimensions. Also Pa-
tel et al. only employ simple alpha-blending in or-
der to place textures on top of each other, which does
not preserve coherence of texture features. In con-
trast, texture-enhanced DVR provides a sophisticated
morphing operator that creates smooth transitions be-
tween texture features. Arbitrary texture channels in
addition to color and opacity can be defined.

In order to compute 2D texture coordinates and to
ensure a correct texture mapping, Patel et al. need a
separate volume to store information for parameteriz-
ing the cutout planes. In our framework, the transfor-
mation functions Γ1···L guarantee a correct conversion
from sample point positions to texture coordinates.
Note that the functions can also be used for defining
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texture scaling, which is explicitly defined by Patel et
al.’s texture transfer functions.

Finally, Patel et al.’s framework only allows to
linearly blend between the textured visualization and
the standard visualization with color-opacity transfer
functions. In contrast, the color combination operator
supports arbitrary mixtures.

Besides the conceptual differences, Patel et al. do
not present any formalism for texture transfer func-
tions in contrast to our mathematical framework for
texture-enhanced DVR.

7 CONCLUSION AND FUTURE
WORK

We have presented a new methodology for direct vol-
ume rendering termed texture-enhanced DVR. The re-
search was motivated by the limited capabilities of
color and opacity to convey multiple variables and
attributes of a volumetric data set. Conventional
DVR techniques rely on color-opacity transfer func-
tions that map input data to an RGBα tuple. Texture-
enhanced DVR extends this process by enabling the
use of textures for encoding additional information.
The new technique seamlessly integrates into the ex-
isting DVR process, yet is extremely powerful and
flexible.

We introduced a mathematical framework which
extends the existing DVR framework and is consis-
tent with the use of textures for polygon rendering and
previous applications of textures for DVR. In order to
represent smooth transitions between different mate-
rials we use a new GPU-compatible 3D texture syn-
thesis and morphing technique. Additional efficiency
is gained by defining binary shell masks from the tex-
ture transfer functions and only synthesizing / morph-
ing the textures where they are required. We inves-
tigated techniques to improve the perception of mul-
tiple and partially transparent textures and presented
guidelines for their application.

In future work we want to further improve the per-
ception of nested textured layers and we want to in-
clude procedural texture generation methods to bet-
ter represent directional properties. Most importantly
we want to use real medical multi-dimensional and
multi-field data sets to demonstrate the usefulness of
this new methodology in practice.
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