
QUALITY OF KNOWLEDGE IN GROUP DECISION SUPPORT
SYSTEMS

Luís Lima, Ricardo Costa
College of Management and Technology, Polytechnic of Porto, Felgueiras, Portugal

Paulo Novais, Cesar Analide, José Neves
Departamento de Informática / CCTC, Universidade do Minho, Braga, Portugal

José Bulas Cruz
University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Keywords: Incomplete information, Knowledge representation, Group decision support system, Idea generation and
argumentation.

Abstract: In this work it is addressed the problem of knowledge evaluation in a VirtualECare Group Decision
Supporting System (GDSS), in terms of an Multi-valued Extended Logic Programming language, which is
aimed at sustaining online healthcare services. Indeed, reasoning with incomplete and uncertain knowledge
have to be dealt with, due to the particular nature of the healthcare services, where the awful consequences
of bad decisions, or lack of timely ones, demand for a responsible answer.

1 INTRODUCTION

In the last years, we have assisted to a growing
interest in combining the advances in information
society - computing, telecommunications and
presentation – in order to create Group Decision
Support Systems (GDSS). Effective planning
depends on the generation and analysis of ideas
(innovative or not) and, for this reason, the idea
generation and management processes become a
crucial tool in present days. GDSS are interactive
computer-based systems aimed to help decision
makers use communication technologies,
information (structured or unstructured), knowledge
and/or models to solve problems and make
decisions, i.e., GDSS tend to be computer programs
that recurring to singular techniques may help, as the
name point out, in the decision making processes
(Parsons, 1996). Good decision making is an
essential skill in any environment, and in particular
in a healthcare one. Indeed, if you can learn to make
timely and well-considered decisions, then you can
lead. However, if you make poor decisions, your risk

of failure and your time may, most likely, be short
(Eysenbach, 2007) (Costa et al, 2007).

1.1 Group Decision Support System

It is expected that knowledge-driven GDSS will be
more comprehensive, cover broader domains and
give better advice (Power, 2007) and will also
benefit from progress in research areas of
organizational decision making, behavioral decision
theory and organizational behavior (Conklin, 2001)
(Conklin, 2006).

Our objective is to apply the above presented
GDSS, with the necessary change in order to
understating uncertainty an quality of information, to
a new sector. We believe the use of GDSS in the
Healthcare sector will allow professionals to achieve
better results in the analysis of one’s Electronic
Health Record (EHR) (According to ISO/DTR
20514:2005, EHR means a repository of patient data
in digital form, stored and exchanged securely, and
accessible by multiple authorized users).

This achievement is vital, regarding the
explosion of knowledge and skills, together with the

101
Lima L., Costa R., Novais P., Analide C., Neves J. and Bulas Cruz J. (2009).
QUALITY OF KNOWLEDGE IN GROUP DECISION SUPPORT SYSTEMS.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 101-106
DOI: 10.5220/0001663501010106
Copyright c© SciTePress

growing need to use limited resources more
efficiently.

Figure 1: VirtualECare Environment.

1.2 Idea Generation
and Argumentation

The Group Decision module (Figure 1 and Figure 2),
as stated above, is a major module of the
VirtualECare project. This fact, associated with the
importance of decision-making in today business
activity and with the needed celerity in obtaining a
decision in the majority of the cases that this key
module will be defied to resolve, requires a real
effectiveness of the decision making process. Thus,
the need for an Idea Generation tool that will support
the meetings of the group decision participants,
being those face-to-face, asynchronous or
distributed, becomes crucial.

The flow of new ideas is central in an
environment as the one presented above and after
establishing individual ideas the participants are
expected to “defend” those ideas in order to reach
consensus or majority. Each participant will,
therefore, and in a natural way, argue for the most
interesting alternatives or against the worst
alternatives, according to his/her preferences and/or
skills, thus, by expressing their arguments,
participants expect to influence the others’ opinions
and make them change their own (Brito et al, 2003).
In order to make this meetings as productive as
possible, participants must be kept updated, not
only, with all the existing information but also with
the respective quality measure and uncertain level.

We organize the paper as follows: First, we
briefly present the VirtualECare environment. In
Section 2 we discuss the knowledge representation
and reasoning procedures in the context of the
Extended Logic Programming language.

Figure 2: Group Decision Module Architecture.

In Section 3 we elaborate about the calculus for
computing the Quality of Knowledge embodied in a
logic theory or program. Finally, we presented the
conclusions and foresee future work.

2 KNOWLEDGE
REPRESENTATION AND
REASONING

The knowledge representation in a knowledge-
driven group decision support system is nuclear to
the success of the overall operation (Way, 1991),
(Analide et al., 2006), (Ginsberg, 1991).

A suitable representation of incomplete
information and uncertainty is needed, one that
supports non-monotonic reasoning. Historically,
uncertain reasoning has been associated with
Probability Theory, embodying non-Bayesian
theories of subjective probability, as in the
Dempster-Shafer Theory (Shafer, 1992). The
Dempster-Shafter Theory is well-known for its
usefulness to express uncertain judgments of
experts. This theory introduces the concept of belief
functions and is based on two ideas: (i) obtaining
degrees of belief for one question from subjective
probabilities for a related question, and (ii)
Dempster's rule for combining such degrees of belief
when they are based on independent items of
evidence. However, the use of belief functions may
involve challenging computational problems. Beliefs
are also represented in other contexts, for example
multi-agent systems, where specialized classes are
used to model a way of things, proposition or other
information relevant to the system and its mental
model (Cervenka and Trencansky, 2007). Another
promising computational paradigm, Abductive

ICAART 2009 - International Conference on Agents and Artificial Intelligence

102

Logic Programming (ALP) (Denecker and Kakas,
2002) has been recognized as a way to resolve some
limitations of logic programming with respect to
higher level knowledge representation and reasoning
tasks. Abduction is a way of reasoning on
incomplete or uncertain knowledge, in the form of
hypothetical reasoning, more appropriate to model
generation and satisfiability checking.

In a classical logical theory, the proof of a
theorem results in a true or false truth value, or is
made in terms of representing something, with
respect to one may not be conclusive. In opposition,
in a logic program, the answer to a question is only
of two types: true or false. This is a consequence of
the limitations of the knowledge representation in a
logic program, because it is not allowed explicit
representation of negative information. Additionally,
the operational semantics applies the Closed-World
Assumption (CWA) (Hustadt, 1994) to all the
predicates. The generality of logic programs
represents implicitly negative information, assuming
the application of reasoning according to the CWA.

An extended logic program, on the other hand, is
a finite collection of rules of the form (Neves, 1984)
(Gelfond and Lisfschitz, 1990):

nmmm pnotpnotppq ++ ∧∧∧∧∧← 11
(1)

?p1∧...∧pm ∧not pm+1∧...∧not pm+n (2)

where ? is a domain atom denoting falsity, the pi,
qj, and p are classical ground literals, i.e. either
positive atoms or atoms preceded by the classical
negation sign ¬. Every program is associated with a
set of abducibles. Abducibles can be seen as
hypotheses that provide possible solutions or
explanations of given queries, being given here in
the form of exceptions to the extensions of the
predicates that make the program.

The objective is to provide expressive power for
representing explicitly negative information, as well
as directly describe the CWA for some predicates,
also known as predicate circumscription (Parsons,
1996). Three types of answers to a given question
are then possible: true, false and unknown. The
representation of null values will be scoped by the
ELP. In this work, we will consider two types of null
values: the first will allow for the representation of
unknown values, not necessarily from a given set of
values, and the second will represent unknown
values from a given set of possible values. We will
show now how null values can be used to represent
unknown information. In the following, we consider
the extensions of the predicates that represent some
of the properties of the participants, as a measure of

their skills for the decision making process:

area_of_expertise: Entities x StrValue
role: Entities x StrValue
credible: Entities x Value
reputed: Entities x Value

The first argument denotes the participant and
the second represents the value of the property (e.g.,
credible (luis, 100) means that the
credibility of the participant luis has the value
100).

credible(luis,100)
¬credible(E,V)←
 not credible(E,V)

Program 1: Extension of the predicate that states the
credibility of a participant.

In Program 1, the symbol ¬ represents the strong
negation, denoting what should be interpreted as
false, and the term not designates negation-by-
failure.

Let us now admit that the credibility of another
possible participant ricardo has not, yet, been
established. This will be denoted by a null value, of
the type unknown, and represents the situation in
Program 2: the participant is credible but it is not
possible to be certain (affirmative) about its value.

credible(luis,100)
credible(ricardo,⊥)
¬credible(E,V)←
 not credible(E,V),
 not exception(credible(E,V))
exception(credible(E,V))←
 credible(E,⊥)

Program 2: Credibility about participant Ricardo, with an
unknown value.

In the second clause of Program 2, the symbol ⊥
represents a null value of an undefined type. It is a
representation that assumes any value as a viable
solution, but without being given a clue to conclude
about which value one is speaking about. It is not
possible to compute, from the positive information,
the value of the credibility of the participant ricardo.
The fourth clause of Program 2 (the closure of
predicate credibility) discards the possibility of
being assumed as false any question on the specific
value of credibility for participant ricardo.

Let’s now consider the case in which the value of
the credibility of a participant is foreseen to be 60,
with a margin of mistake of 15. It is not possible to
be positive, concerning the credibility value.
However, it is false that the participant has a

QUALITY OF KNOWLEDGE IN GROUP DECISION SUPPORT SYSTEMS

103

credibility value of 80 or 100. This example suggests
that the lack of knowledge may only be associated to
a enumerated set of possible known values. As a
different case, let’s consider the credibility of the
participant paulo, that is unknown, but one knows
that it is specifically 30 or 50.

credible(luis,100)
credible(ricardo,⊥)
¬credible(E,V)←
 not credible(E,V),
 not exception(credible(E,V))
exception(credible(E,V))←
 credible(E,⊥)
exception(credible(carlos,V))←
 V ≥ 45 ∧ V ≤ 75
exception(credible(paulo,30))
exception(credible(paulo,50))

Program 3: Representation of the credibility of the
participants Carlos and Paulo.

Using Extended Logic Programming, as the logic
programming language, a procedure given in terms
of the extension of a predicate called demo is
presented here. This predicate allows one to reason
about the body of knowledge presented in a
particular domain, set on the formalism previously
referred to. Given a question, it returns a solution
based on a set of assumptions. This meta predicate is
defined as: Demo: Question x Answer

Where Question indicates a theorem to be proved
and Answer denotes a truth value (see Program 4):
true (T), false (F) or unknown (U).

demo(Q,T)← Q
demo(Q,F)← ¬Q
demo(Q,U)← not Q ∧ not ¬Q

Program 4: Extension of meta-predicate demo.

3 QUALITY OF KNOWLEDGE

In a majority of situations, the trigger to make a
decision is the time period to the decision. It is
reasonable to argue that, in any decision making
process, the decision is made without having all the
information pertaining to the problem. When the
decision maker reaches the time limit, he/she makes
the decision using the available information, to the
best of his/her knowledge.

How does a decision maker is confident about
the reliability of the information at hand? In group
decisions the situation is more complex: each person

that participates in the final decision must be
confident on: The reliability of the computer support
system; The other decision makers; The information
rolling in and out of the system and the information
exchanged between participants.

The Group Decision of the VirtualECare system
above operates in an such environment.We leave the
first issue to others and concentrate in the last two,
proposing a model for computing the quality of
knowledge.

Let i (i ∈ 1,…, m) represent the predicates whose
extensions make an extended logic program that
models the universe of discourse and j (j ∈ 1,…, n)
the attributes of those predicates. Let xj ∈ [minj,
maxj] be a value for attribute j. To each predicate is
also associated a scoring function Vij[minj, maxj] →
0 … 1, that gives the score predicate i assigns to a
value of attribute j in the range of its acceptable
values, i.e., its domain (for simplicity, scores are
kept in the interval [0 … 1]), here given in the form:

all(attribute_exception_list,
sub_expression, invariants)

This denotes that sub_expression should hold for

each combination of the exceptions of the extensions
of the predicates that represent the attributes in the
attribute_exception_list and the invariants.

Figure 3: A measure of the quality of knowledge for a
logic program or theory P.

This is further translated by introducing three
new predicates. The first predicate creates a list of
all possible exception combinations (pairs, triples,
..., n-tuples) as a list of sets determined by the
domain size (and the invariants). The second
predicate recurses through this list and makes a call
to the third predicate for each exception
combination. The third predicate denotes
sub_expression, giving for each predicate, as a

ICAART 2009 - International Conference on Agents and Artificial Intelligence

104

result, the respective score function. The Quality of
Knowledge (QK) with respect to a generic predicate
P is therefore given by QKP = 1/Card, where Card
denotes the cardinality of the exception set for P, if
the exception set is disjoint. If the exception set is
not disjoint, the quality of information is given by:

Card
Card

CardP CC
QK

++
=

L1

1

 (3)

where Card
CardC is a card-combination subset, with

Card elements.
The next element of the model to be considered

is the relative importance that a predicate assigns to
each of its attributes under observation: wij stands for
the relevance of attribute j for predicate i (it is also
assumed that the weights of all predicates are
normalized, i.e.:

∑ =
=∀

n

j ijwi
1

1

 (4)

It is now possible to define a predicate’s scoring
function, i.e., for a value x = (x1, ..., n) in the multi
dimensional space defined by the attributes domains,
which is given in the form:

∑ =
∗=

n

j jijiji xVwxV
1

)()(

 (5)

It is now possible to measure the QK that occurs
as a result of a logic program, by posting the Vi(x)
values into a multi-dimensional space and projecting
it onto a two dimensional one.

Using this procedure, it is defined a circle, as the
one given in Figure 3. Here, the dashed n-slices of
the circle (in this example built on the extensions of
five predicates, named as p1 ... p5) denote de QK that
is associated with each of the predicate extensions
that make the logic program. It is now possible to
return to our case above and evaluate the global
credibility of the system. Let us consider the logic
program (Program 5).

¬credible(E,V)← not credible(E,V),
 not exception(credible(E,V))
exception(credible(E,V))←
 credible(E,⊥)
credible(luis,100)
credible(ricardo,⊥)
exception(credible(carlos,V))←
 V ≥ 45 ∧ V ≤ 75
exception(credible(paulo,30))
exception(credible(paulo,50))
¬role(E,V)← not role(E,V),
 not exception(role(E,V))

role(luis,⊥)
role(ricardo,doctor)
exception(role(carlos,doctor))
¬reputed(E,V)← not reputed(E,V),
 not exception(reputed(E,V))
exception(reputed(luis,80))
exception(reputed(luis,50))
exception(reputed(ricardo,40))
exception(reputed(ricardo,60))
reputed(carlos,100)

Program 5: Example of universe of discourse.

As an example we represent the QK associated
with participants luis and ricardo, depicted in
Figures 4 and 5.

In order to find the relationships among the
extensions of these predicates, we evaluate the
relevance of the QK, given in the form
Vcredible(luis) = 1;Vreputed(luis) = 0.785; Vrole(luis) = 0.

Figure 4: A measure of quality of knowledge about
participant luis.

It is now possible to measure the QK associated
to a logic program referred to above: the shaded n-
slices (here n is equal to three) of the circle denote
the QK for predicates credible, reputed and role.
Besides being able to evaluate the quality of
individual actors and individual pieces of
information that flows in a group decision system,
we aim to have an overall mechanism that allows
one to measure the global quality of the system itself
and, consequently, the outcomes from it. The same
mechanism used to evaluate individual parts of the
system is consistently used to evaluate all the
system, through an extension process.

QUALITY OF KNOWLEDGE IN GROUP DECISION SUPPORT SYSTEMS

105

Figure 5: A measure of quality of knowledge about
participant Ricardo.

4 CONCLUSIONS

Our drive had in mind to measure (quantify) the
quality of knowledge of a logic theory or program
that makes a VirtualECare System (or Environment).
We began with an Extended Logic Programming
language to represent incomplete and uncertain
knowledge in the context of the VirtualECare
GDSS. It was also shown that negation-by-failure
combined with strong negation and predicate
circumscription, in a logic program, it is a possible
foundation for uncertain reasoning.

On the other hand, and starting with the
unknown truth value referred to in the extension of
the demo predicate, above, we elaborate on a model
of quantitative computation of the quality of
information presented in a logic program or theory,
in terms of a Multi-valued Extended Logic
Programming language. This makes the unknown
truth value to take truth values on the
interval] [1..0 that fulfils our goal of measuring the
Quality of Knowledge in a Group Decision Support
System for Digital Homecare.

REFERENCES

Analide, C. et al., 2006, Quality of Knowledge in Virtual
Entities, in Encyclopedia of Communities of Practice
in Information and Knowledge Management. Elayne
Coakes and Stev Clarke (Eds).

Brito, L., P. Novais and J. Neves, 2003, The logic behind
negotiation: from pre-argument reasoning to
argument-based negotiaion, in Intelligent Agent

Software Engineering, V. Plekhanova (Ed), Idea
Group Piblishing. p. 137-159.

Cervenka, R. and I. Trencansky, 2007, The Agent
Modeling Language - AML: Birkhäuser Verlag AG.

Conklin, J., 2001, Designing Organizational Memory:
Preserving Intellectual Assets in a Knowledge
Economy. [cited 15-04-2008]; Available from:
http://cognexus.org/dom.pdf.

Conklin, J., 2006, Dialogue Mapping: Building Shared
Understanding of Wicked Problems. Wiley.

Costa, R. et al., 2007, Intelligent Mixed Reality for the
Creation of Ambient Assisted Living. Progress in
Artificial Intelligence, J. Neves, M. Santos and J.
Machado (Eds). Vol. 4874. 2007, Lecture Notes in
Artificial Intelligence, Spinger.

Denecker, M. and A. Kakas, 2002, Abduction in logic
programming, in Computational Logic: Logic
Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part I, A. Kakas and F. Sadri,
Editors. Springer Verlag. p. 402-436.

Eysenbach, G., 2001. What is e-health? Journal of Medical
Internet Research, 3(2).

Gelfond, M. and V. Lifschitz, 1990, Logic Programs with
Classical Negation. in Proceedings of the International
Conference on Logic Programming..

Ginsberg, M. L., 1991, Readings in Nonmonotonic
Reasoning, Los Altos, Califórnia, EUA: Morgan
Kauffman Publishers, Inc.

Hustadt, U., 1991, Do we need the closed-world
assumption in knowledge representation? in Working
Notes of the KI'94 Workshop. Saarbrüken, Germany:
Baader, Buchheit, Jeusfeld, Nutt (Eds.).

Neves, J., 1984, A Logic Interpreter to Handle Time and
Negation in Logic Data Bases. in Proceedings of the
ACM'84, The Fifth Generation Challenge.

Parsons, S., 1996, Current approaches to handling
imperfect information in data andknowledge bases.
IEEE Transactions on Knowledge and Data
Engineering, 8(3): p. 353-372.

Power, D. J., 2007, A Brief History of Decision Support
Systems. DSSResources.COM, World Wide Web,
version 4.0. [cited 15-04-2008]; Available from:
http://DSSResources.COM/history/dsshistory.html.

Shafer, G., 1992, The Dempster-Shafer theory, in
Encyclopedia of Artificial Intelligence, Second
Edition, S.C. Shapiro (Ed), Wiley.

Way, E. C., 1991, Knowledge Representation and
Metaphor. Dordrecht, Holland: Kluwer Academic
Publishers.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

106

