
HYPERTREE DECOMPOSITION FOR SOLVING CONSTRAINT
SATISFACTION PROBLEMS

Abdelmalek Ait-Amokhtar, Kamal Amroun
University of Bejaia, Algeria

Zineb Habbas
LITA, University of Metz, France

Keywords: CSP, Structural decompositions, Hypertree decomposition, Acyclic Solving algorithm, Enumerative search.

Abstract: This paper deals with the structural decomposition methods and their use for solving Constraint Satisfaction
problems (CSP). mong the numerous structural decomposition methods, hypertree decomposition has been
shown to be the most general CSP decomposition. However so far the exact methods are not able to find
optimal decomposition of realistic instances in a reasonable CPU time. We present Alea, a new heuristic to
compute hypertree decomposition. Some experiments on a serial of benchmarks coming from the literature or
the industry permit us to observe that Alea is in general better or comparable to BE (Bucket Elimination), the
best well known heuristic, while it generally outperforms DBE (Dual Bucket Elimination), another successful
heuristic. We also experiment an algorithm (acyclic solving algorithm) for solving an acyclic CSP obtained
by using the heuristic Alea. The experimental results we obtain are promising comparing to those obtained by
solving CSP using an enumerative search algorithm.

1 INTRODUCTION

Many important real world problems can be formu-
lated as Constraint Satisfaction Problems (CSP)s. A
CSP consists of a set V of variables each with a do-
main D of possible values and a setC of constraints
on the allowed values for specified subsets of vari-
ables. A solution to CSP is the assignment of values
to variables which satisfies all the constraints. The
usual method for solving CSPs is based on backtrack-
ing search. This approach has an exponential theo-
retical time complexity inO(e.dn) for an instance of
CSP for whiche is the number of constraints,n is
the number of variables andd is the cardinality of
the largest domain of variables. Even if CSPs are
NP-complete in general, some decomposition meth-
ods have been successfully used to characterize some
tractable classes (Dechter and Pearl, 1989; Gyssens
et al., 1994; Jeavons et al., 1994; Gottlob et al., 2000),
biconnected components (Freuder, 1982), hinge de-
composition (Gyssens et al., 1994), hinge decompo-
sition combined with tree clustering (Gyssens et al.,
1994), hypertree decomposition and generalized hy-
pertree decompositions (Gottlob et al., 1999a; Gott-

lob et al., 2005) and more recently Spread Cut De-
composition (Cohen et al., 2005). The main principle
of these methods is to decompose the CSP into sub-
problems that are organized in a tree or a hypertree
structure. The sub-problems can be solved indepen-
dently in order to solve the initial CSP. All these meth-
ods are characterized by their computational com-
plexity and the width or hypertree-width of respec-
tively the tree or the hypertree they generate. Among
these numerous methods, Gottlob and al, (Gottlob
et al., 1999a), have shown that hypertree decomposi-
tion dominates all the other structural decomposition
methods excepted the recently introduced spread-cut
decomposition method (Cohen et al., 2005). The first
approach proposed to compute the hypertree decom-
position is the exact algorithm (opt-k-decomp (Got-
tlob et al., 1999b)). For any parameter k, opt-k-
decomp determines if a hypertree decomposition of
width w bounded by k exists. If the response is yes,
the algorithm computes this decomposition . Unfor-
tunately, opt-k-decomp and all its improvements are
not efficient in practice and run out of time and space
for realistic instances. To overcome this limitation,
some heuristics have been explored to find a hyper-

85
Ait-Amokhtar A., Amroun K. and Habbas Z. (2009).
HYPERTREE DECOMPOSITION FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 85-92
DOI: 10.5220/0001662400850092
Copyright c© SciTePress

tree decomposition in a reasonable time, even if it is
not optimal((Musliu and Schafhauser, 2007), (Ko-
rimort, 2003), (McMahan, 2003)). In this paper we
consider a new heuristic to compute a hypertree with-
out using the tree decomposition. To do this, we first
consider a particular definition of hypertree decompo-
sition and then we propose a generic algorithm which
proceeds in two steps. In the first step, we look for
a first separator of the hypergraph which will con-
stitute the root of the output hypertree. A separator
is a set of hyperedges whose removal either makes
the problem smaller or decomposes a given problem
into at least two components each of which is smaller
than the orignal one. In the second step, this separa-
tor is used for partitioning the hypergraph by remov-
ing its vertices. Afterwards, each component is re-
cursively partitioned, according to the connectedness
condition to be satisfied by the resulting decomposi-
tion. This heuristic can be considerably influenced
by the choice of this first separator. In order to com-
pute the first separator we propose the heuristic Alea
which considers the first separator as the first con-
straint introduced by the user or the first constraint
in the file describing a given CSP instance. Some
experiments on a serial of benchmarks coming from
the literature or the industry (Ganzow et al., 2005)
permit us to observe that Alea is in general better
or comparable to BE(Bucket Elimination), the best
well known heuristic as far as we know, while it gen-
erally outperforms DBE (Dual Bucket Elimination),
another successful heuristic. We also experiment the
resolution of constraint satisfaction problem based on
a hypertree decomposition and the results we obtain
are promising comparing to those obtained by solv-
ing CSP using nFC2-MRV, a forward-checking algo-
rithm with a Minimum Remaing Value ordering algo-
rithm (C.Bessière and Larossa, 2002).

2 PRELIMINARIES

The notion of Constraint Satisfaction Problems (CSP)
was introduced by Montanari in (Montanari, 1974).

Definition 1 (Constraint Satisfaction Problem). A
constraint satisfaction problem is defined as a 3-uplet
P =< V,D,C > where X= {x1,x2, ...,xn} is a set of
n variables, D= {d1,d2, ...,dn} is a set of finite do-
mains; each variable xi takes its values in its domain
di . C = {c1,c2, ...,cm} is a set of m constraints. Each
constraint ci is a pair (S(ci),R(ci)) where S(ci) ⊂ X,
is a subset of variables, calledscope of ci and R(ci)⊂
∏xk∈S(ci) dk is the constraint relation, that specifies the
allowed combinations of values.

In order to study the structural properties of con-
straints satisfaction problems, we need to present the
following definitions relative to the graphical repre-
sentation of CSPs.

Definition 2 (Graph (Dechter, 2003)). A graph
G =< V,E > is a structure that consists of a finite
set of vertices V and a set of edges E. Each edge is
incident to an unordered pair of vertices{u,v}.

Definition 3 (Hypergraph (Dechter, 2003)).A hy-
pergraph is a structureH =< V,E > that consists of
a set of vertices V and a set of hyperedges E . Mainly
a hyperedge h∈ E is a subset of vertices V. The hy-
peredges differ from regular edges in that they may
connect more than two variables.

The structure of a CSPP=<V,D,C > is captured
by a hypergraphH =< V,E > where the set of ver-
ticesV is the same as the set of variablesV and the
set of hyperedgesE corresponds to the set of con-
straintsC. For the set of hyperedgesK ⊆ E let the
termvars(K) =

⋃
e∈K e i.e the set of the variables oc-

curing in the edgesK. For a setL ⊆ V let the term
edgevars(L) = vars({e|e∈ E,e∩L 6= /0}) i.e all the
variables occuring in a set of edges where each edge
in the set contains at least one variable inL.

Definition 4 (Hypertree (Gottlob et al., 2001)).Let
H =<V,E > a given hypergraph. A hypertree for hy-
pergraphH is a triple< T,χ,λ > where T= (N,E) is
a rooted tree andχ andλ are two functions labelling
each node of T . The functionsχ andλ map each node
p∈ N by two setsχ(p) ⊆V andλ(p) ⊆ E
A tree is a pair< T,χ > where T= (N,E) is a rooted
tree andχ is a labelled function as previously defined.

Definition 5 (Generalized Hypertree Decomposi-
tion (Gottlob et al., 2001)).A generalized hypertree
decomposition of a hypergraphH =<V,E > is a hy-
pertree HD=< T,χ,λ > which satisfies the following
conditions:

1. For each edge h∈ E , there exists p∈ vertices(T)
such that vars(h) ⊆ χ(p). We say that p covers h.

2. For each variable v∈ V, the set {p ∈
vertices(T)|v ∈ χ(p)} induces a connected sub-
tree of T.

3. For each vertex p∈ vertices(T),χ(p) ⊆
var(λ(p)).

The width of Generalized hypertree decomposition
< T,χ,λ > is maxp∈vertices(T)|λ(p)|. The generalized
hypertree width: Ghw(H) of hypergraph is the mini-
mum width over all its generalized hypertree decom-
positions

Definition 6 (Hypertree Decomposition (Gottlob
et al., 2001)).A hypertree decomposition is a gener-
alized hypertree decomposition decomposition which

ICAART 2009 - International Conference on Agents and Artificial Intelligence

86

additionally satisfies the following special condition:

For each vertex p ∈ vertices(T),
var(λ(p))

⋂
χ(Tp) ⊆ χ(p).

The width of a hypertree decomposition<
T,χ,λ > is maxp∈vertices(T)|λ(p)|. The hypertree
width: hw(H) of hypergraph is the minimum width
over all its hypertree decompositions.

Definition 7 A hyperedge h of a hypergraphH =<
V,E > is strongly covered in HD =< T,χ,λ > if there
exists p∈ vertices(T) such that the vertices in h are
contained inχ(p) and h∈ λ(p).

Definition 8 A hypertree decomposition< T,χ,λ >
of a hypergraphH =<V,E > is acomplete hypertree
decomposition if every hyperedge h ofH =< V,E >
is strongly covered in HD=< T,χ,λ >.

3 THE HEURISTIC ALEA

To compute hypertree decomposition, two approaches
are proposed in the literature : the exact meth-
ods (Gottlob et al., 1999b; Harvey and Ghose, 2003)
and the heuristic ones (Korimort, 2003; Musliu and
Schafhauser, 2007; Dermaku et al., 2005). In this sec-
tion, we introduce our new heuristic for computing
hypertree decomposition.

3.1 Theoretical Consideration

First we consider a particular hypertree decomposi-
tion which satisfies the following conditions

1. For each edgeh∈ E , there existsp∈ vertices(T)
such thatvar(h) ⊆ χ(p). We say that p covers h.

2. For each variablev ∈ V, the set {p ∈
vertices(T)|v ∈ χ(p)} induces a connected sub-
tree of T.

3. For each vertex p ∈
vertices(T),χ(p) = var(λ(p)).

The first two conditions are the same as the first
two conditions of the hypertree decomposition. The
condition 3 is a particular case of the condition of the
hypertree decomposition which forces theχ labels of
each nodep of T to be equal tovar(λ(p)). In addi-
tion, this same condition 3 satisfies trivially the con-
dition 4 of the hypertree decomposition.

3.2 Description of Alea

BE and DBE are both two extensions of the BE
heuristic for tree decomposition. Unlike BE and DBE

the heuristic Alea computes a hypertree without us-
ing the tree decomposition processing. We look for
only theλ− labelssince theχ− labelsare obtained
for free (At each nodep, the setχ(p) is the union
of vertices of the each hyperedgec , for c ∈ λ(p) .
Our goal is to obtain a hypertree decomposition with
a small width, thus we have to minimize the size of
theλ− labels.
The algorithm 1 Gen-decomposition gives the main
generic procedure for computing a hypertree decom-
position of a given hypergraphH . This algorithm be-
gins by determiningthe first separatoror the root of
the hypertree (Line 4 of the algorithm 1) for a given
hypergraphH . Once the first separator is defined a
node root for the hypertree is created. In Line 8 of
the algorithm 1, the procedure Decompose is called
to decompose the resulting hypergraph.

Algorithm 1 : Gen-decomposition(H).

1: Input : a given hypergraphH
2: Output : its hypertreeH T
3: Begin
4: Find-first-separator(H , MinSep);
5: create−node(root,HT);
6: λ(root) = λ(MinSep);
7: χ(root) = vars(λ(MinSep);
8: Decompose(H , MinSep,root);
9: End.

This algorithm is generic because it can use the
same procedure Decompose and different procedures
to find the first separator. In this paper we consider
the heuristic Alea to determinate the first separator.
This heuristic considers as a first separator, the first
constraint introduced by the user or the first constraint
in the file giving the description of a CSP instance. In
the sequel, we describe the procedure Decompose.

3.2.1 The Procedure Decompose

The procedureDecompose(see algorithm 2) consid-
ers a given hypergraph or a subhypergraph Comp (set
of hyperedges from E), the current separator Sep and
the last node p in the hypertree as parameters. An ap-
propriate separator for a component (sub-hypergraph)
must be a minimal size separator composed of a set of
hyperedges of the given component covering the vari-
ables of intersection between the variables of the last
separator and those of the component. Decompose
uses an auxiliary function and an auxiliary procedure
named respectively separate and newsep.

The function Separate(Comp, sep): Given a com-
ponent Comp and a set of hyperedges sep, separate
removes the hyperedges of sep from the hyperedges

HYPERTREE DECOMPOSITION FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS

87

Algorithm 2 : Decompose (Comp, Sep, p).

1: Input : Comp a component to be decompose ,
Septhe current separator to use for decomposing
Comp, p the last node in the hypertree;

2: Output : a node p’ son of p;
3: Begin
4: Components := separate(Comp,Sep);
5: for each componentCi ∈Componentsdo
6: new-sep(Ci, Sep, NewSep);
7: create-node(p’);
8: λ(p′) = λ(NewSep);
9: χ(p′) = vars(λ(NewSep);

10: connect (p’, p); // p’ is the son of p in the hy-
pertree;

11: if (isdecomposable)then
12: Decompose(Ci, NewSep,p’);
13: end if
14: end for
15: End.

of comp in order to obtain some connected compo-
nents. For each of these connected components, the
procedure Decompose calls the procedurenew-septo
determine the new separator to be used again for de-
composing this current component (see algorithm 2,
line 4-7). This new separator is computed by using
the set cover techniques (Computing a minimal set
of hyperedges covering the variables of intersection
between the variables of the last node and the vari-
ables of the component) and by respecting the rules
of hypertree decomposition as well. This procedure
Decompose is recursively called. This process stops
when all the components become not decomposable.
A component is not decomposable if the minimal set
of hyperedges required to cover the intersection of
its variables with the variables of the last separator
is equal to the number of all its hyperedges or if the
size of the component is 1 (the component has only
one hyperedge).

3.2.2 The Procedure New-sep

This procedure finds a set Y of all hyperedges in the
component Comp that have at least one variable in the
last node Sep, (see algorithm 3) and calls the proce-
dure minrecovering-sep which mainly minimizes the
size of Y.

3.2.3 The Procedure Minrecovering-sep

Given a set of variablesX and a set of hyperedges
E, this procedure looks for the minimal set of
hyperedgesc (c∈ E)) , covering a maximum number

Algorithm 3 : New-sep (Comp, Sep, Bestsep).

1: Input : Comp a component, Sep is the last sepa-
rator used

2: Output : Bestsep a separator for decomposing
Comp and isdecomposable a boolean;

3: Begin
4: NSep:= φ; // Nsep : set of hyperedges that have

at least one variable in Sep
5: for each hyperedgec∈ hyperedges(Comp) do
6: if (vars(Sep)∩vars(c)) 6= φ) then
7: NSep:= NSep∪c;
8: end if
9: end for

10: End.
11: isdecomposable=true;
12: minrecovering-sep(Comp,vars(NSep),Bestsep,

isdecomposable);
13: End.

of variables inX. Then it removes these covered vari-
ables from the setX, removes the hyperedgec from
E and takesc as a member of the covering set. The
same process is applied for the induced setsX andE
until X becomes empty. The algorithm is deliberately
omitted because it is classical.This algorithm
returns Bestsep and the boolean isdecomposable
witch is true if the component is decomposable.
Notice that our heuristic is different from the one
in (Korimort, 2003) in the sense that we do not
add a special hyperedge to a component to find an
appropriate separator for a component. In addition,
our heuristic gives by construction a complete de-
composition in which each hyperedge appears only
once in nodep of the resulting hypertree.

The figure 1(a) shows a given hypergraph and the
figure 1(b)) gives its hypertree decomposition using
Alea.

c9
c7

c8

c6

f g

i

k l

m o

h

j

qn p s
c11

r
c10

b ca

ed

c6

{c7, c9}

c5

c2

c3

c1

c4

{c1}

{c2}

{c3, c4}

{c5} {c10, c11} {c8}

a) A hypergraph H

b) Its hypertree decomposition using Alea

Figure 1: A hypergraph and its hypertree deccomposition.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

88

Table 1: Grid2d family: comparing exact and heuristic methods.

Instances Size BE DBE Alea dkd

|V| |E| htw w t w t w t w t

grid2d 10 50 50 4 5 0 6 0 6 0 4 0

grid2d 15 113 112 6 8 0 9 0 9 0 6 3

grid2d 20 200 200 7 12 0 11 28 10 2 7 3140

grid2d 25 313 312 9 15 3 15 43 21 0 10 200

grid2d 30 450 450 11 19 7 20 8 14 1,6 13 1566

grid2d 35 613 612 12 23 15 23 73 26 2 15 1905

grid2d 40 800 800 14 26 28 25 31 19 6 17 253

grid2d 45 1013 1012 16 31 51 30 56 30 11 21 26

grid2d 50 1250 1250 17 33 86 32 94 21 39 24 2786

grid2d 60 1800 1800 21 41 204 34 178 33 72 31 3940

3.3 Correctness of Our Heuristic

In this section, we prove that our heuristic computes
a hypertree decomposition.

Proof 1 1. The condition 1 is satisfied due to the fact
that in our approch, all hyperedges appear in the
hypertree and sinceχ(p) = vars(λ(p)) for each
node p in the hypertree.

2. To prove the condition 2, two cases are to con-
sider.
• case1: p1 is the parent of p2 and p2 is the par-

ent of p3. We have to prove that the proposi-
tion x∈ χ(p1),x∈ χ(p3) and x/∈ chi(p2) is not
possible. In fact if x∈ χ(p1), according to the
procedure Decompose either x∈ χ(p2) and so
mutch the better. Either x/∈ χ(p2) and then ac-
cording to the procedure Decompose x/∈ χ(p3).

• case2: p2 and p3 are the sons of p1. We have
to prove that the proposition x∈ χ(p2) and
x ∈ χ(p3) and x /∈ χ(p1) is not possible. Let
be x∈ p2 then either x∈ chi(p1) and so mutch
the better. Either x/∈ χ(p2) an then x/∈ χ(p3)

3. The condition 3 is trivially satisfied.
4. The condition 4 of the definition 5 is trivially

satisfied because for each vertex p∈ vertices(T),
var(λ(p))

⋂
χ(Tp) ⊆ χ(p) = var(λ(p)).

(becauseχ(p) = var(λ(p))).

4 EXPERIMENTS

In this section we report the computational results
obtained with implementation of our heuristic Alea
when we applied it to some different classes of
hypergraphs (Ganzow et al., 2005). We compare our
results with the results obtained from evaluations of
BE and DBE. The tests for BE and DBE have been
done with three variable ordering heuristics MCS

(Maximum Cardinality Search), MIW (Minimum
Induced Width) and MF(Min Fill). But we report
here only the best obtained results in each case.
Nevertheless, MIW is in the general the best variable
ordering. All the experiments were performed on
PENTIUM 4,2.4 GHZ, 512 MO of RAM and running
under OPENSUSE Linux 10.2.

• Dimensional Grids Benchmarks:The first class
of benchmarks are hypergraphs extracted from
two dimensional grids. The results obtained are
reported in the table 1, where the first column con-
tains the name of the example. The columns 2 and
3 contain respectively the number of variables and
the number of hyperedges. The column 4 contains
the hypertree width if this is known. Then there
are two columns for each heuristic (BE, DBE and
Alea). The first one contains the minimal width
and the second one gives the runtime in seconds.
For this class of hypergraphs, in (Gottlob and
Samer, 2007) the authors observe that even if
the optimal decompositions can be constructed by
hand, their algorithm det-k-decomp seems suffer
to compute a hypertree decomposition. They ob-
serve also that opt-k-decomp cannot solve any of
them within a timeout of one hour. Notice that
Alea Solves all the problems with a width close
to those obtained with det-k-decomp. In addition,
the CPU time is smaller with Alea. These results
are reported in the table 1. The results for det-k-
decomp and opt-k-decomp are taken from (Gott-
lob and Samer, 2007).

• The Dubois Benchmarks: In the table 2 we re-
port the results obtained with the Dubois bench-
marks which is a particular benchmark of SAT
problems. Alea is equivalent to BE and DBE.

HYPERTREE DECOMPOSITION FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS

89

Table 2: Dubois family: Comparing Alea, BE and DBE.

Instances |V| |E| BE DBE Alea

Dubois20 60 40 2 2 2

Dubois21 63 42 2 2 2

Dubois22 66 44 2 2 2

Dubois23 69 46 2 2 2

Dubois24 72 192 2 2 2

Dubois25 75 200 2 2 2

Dubois26 78 208 2 2 2

Dubois27 81 216 2 2 2

Dubois28 84 224 2 2 2

Dubois29 87 232 2 2 2

Dubois30 90 240 2 2 2

Dubois50 150 400 2 2 2

Dubois100 300 800 2 2 2

5 SOLVING ACYCLIC CSP

In order to show the practical interest of our approach,
we experiment here the resolution of a given CSP
after its transformation into a hypertree. Given a
CSP and its structutal representation into an hyper-
graphG =< V,E > we first compute its hypertree
< T,χ,λ > using Alea. Then, the hypertree is trans-
formed into an equivalent acyclic CSP . Finally, the
resulting CSP is solved using the Acyclic Solving al-
gorithm (Dechter et al., 1988)

5.1 Building and Equivalent Acyclic
CSP

Given a CSPP = (X,D,C,R) and its hypertree de-
composition< T,χ,λ >, the equivalent acyclic CSP
P = (X′,′D,C′,R′) is obtained as follows:X′ = X ,
D′ = D , C′ = {χ(p)|p ∈ vertices(T)} andR′ = {⋊⋉

(λ(p)[χ(p)]|p∈ vertices(T)} where⋊⋉ represents the
join operation and[X] represents the projection oper-
ator on the setX of variables.

5.2 Acycling Solving Algorithm

The first algorithm proposed is the tree solv-
ing(Dechter et al., 1988) which solves acyclic binary
CSPs in polynomial time The generalization of this
algorithm for solving non binary CSP gave rise to the
Acyclic Solving algorithm (Dechter, 2003) . This al-
gorithm begins by ordering the nodes of the hypertree
such that every node parent precedes its sons(Ligne 4
of 4). Then, it treats successively all the nodes com-
ing from the leaves to the root. For each nodep of
T, it realizes a semi jointure on itself and its parent
in order to filter the parent relation (Lignes 6-12 4)
. When the root is treated without making empty any

relation, the solution of the CSP is determinated in a
backtrack free manner (Lignes 14-16 of 4).

Algorithm 4 : Acyclic Solving (Comp, Last-sep, Sep,
p).

1: Entres: P = (X,D,C,R), R= {R1,R2, . . . ,Rt is
an hypertree< T,χ,λ >

2: Sortie : Verifies the consistency and looks for in
the positive case.

3: Dbut
4: d = (R1,R2, . . . ,Rt) an ordering where each rela-

tion preceeds its sons in the rooted hypertree T.
.

5: for i= t to 2 do
6: for each edge (j, k) , k ¡ j, in the hypertreedo
7: Rk = (Rk ∝ Rj)[Ck]
8: if Rk = /0 then
9: Exit; The problem is inconsistent.

10: end if
11: end for
12: end for
13: /* The CSP is consistent, look for its solution
14: Select a tuple from R1.
15: for i = 2 t do
16: Select a tuple from Ri consistent withe previ-

ous choosen tuples.
17: end for

Table 3: Dubois family: Comparing Acyclic Solving and
nFC2-MRV.

Instances |V| |E| Alea BE nFC2-MRV

Dubois20 60 40 0,23 0,31 419

Dubois21 63 42 0,24 0,34 896

Dubois22 66 44 0,24 0,34 1916

Dubois23 69 46 0,29 0,33 15026

Dubois24 72 48 0,29 0,37 -

Dubois25 75 50 0,27 0,34 -

Dubois26 78 52 0,29 0,36 -

Dubois27 81 54 0,31 0,39 -

Dubois28 84 56 0,36 0,41 -

Dubois29 87 58 0,32 0,42 -

Dubois30 90 60 0,35 0,43 -

5.3 Experimental Evaluation

Our approach has been tested on 11 SAT prob-
lems from the Dubois familly. For each prob-
lem, we compare the enumerative algorithm nFC2-
mrv (C.Bessière and Larossa, 2002) with the Acyclic
Solving algorithm 4 applied to the hypertree decom-
positions derived from BE and Alea heuristics. Our
experiments are reported in the table 3. We clearly ob-
serve that Acyclic Solving algorithm outperforms the

ICAART 2009 - International Conference on Agents and Artificial Intelligence

90

CPU time. The symbol− signifies that nFC2-MRV
has been interruped after 5 hours of execution time.
We also observe that the results obtained by Alea are
slightly better that those obtained by BE. This is due
to the fact that no jointure operations has been done
by using Alea.

Finally the figures figures 2 and 3 show the prac-
tical interest of a polynomial algorithm comparing to
an exponential one.

Figure 2: Solving with Acyclic Solving, BE and Alea.

Figure 3: Solving with nFC2-MRV.

6 CONCLUSIONS

We have studied and tested an approach to solve CSP
by decomposition.

First, we proposed the heuristic Alea to compute
the hypertree decomposition. Some experiments have
shown that Alea is comparable and sometimes bet-
ter on certain problems than BE (the most successful
heuristic and DBE). Then we have studied and imple-
mented an acyclic solving (Dechter, 2003) algorithm
to solve a given CSP after it was transformed into a
hypertree decomposition. Our heuristic ”Alea” is par-
ticular as it does not require the projection operations.
As a consequence, execution time to solve a CSP us-
ing Alea is slightly lower than with BE.

We have shown the interest of this approach on
a particular family of problems. A work currently
in progress consists in the development of a parallel
acyclic solving algorithm with a judicious strategy for
the saving of data. Indeed besides the CPU time, one

of the major disadvantages of the Acyclic Solving is
the use of a large space memory.

REFERENCES

C.Bessière, P. Meseguer, C. F. and Larossa, J. (2002). On
forward checking for non binary constraint satisfac-
tion. Artificial Intelligence, 141:205–224.

Cohen, D., Jeavons, P., and Gyssens, M. (2005). A uni-
fied theory of structural tractability for constraint sat-
isfaction problems and spread cut decomposition. In
Proceedings of IJCAI 2005, pages 72–77.

Dechter, R. (2003).Constraint Processing. Morgan Kauf-
mann.

Dechter, R., Dechter, A., and Pearl, J. (1988). Optimization
in constraint-networks. InProceedings of the Con-
ference on Influence Diagrams for Decision Analysis:
Inference and prediction, Berkeley.

Dechter, R. and Pearl, J. (1989). Tree clustering for con-
straint networks.Artificial Intelligence, 38:353–366.

Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Mus-
liu, N., and Samer, M. (2005). Heuristic methods for
hypertree decompositions. Technical report, DBAI-R.

Freuder, E. C. (1982). A sufficient condition for backtrack-
free search.Journal of the Association for Computing
Machinery, 29:24–32.

Ganzow, T., Gottlob, G .and Musliu, N., and Samer, M.
(2005). A csp hypergraph library. Technical report,
DBAI-TR-2005-50, Technische Universitt Wien.

Gottlob, G., Grohe, M., and Musliu, N. (2005). Hyper-
tree decomposition: structure, algorithms and applica-
tions. InProceeding of 31 st International workshop
WG, Metz.

Gottlob, G., Leone, N., and Scarcello, F. (1999a). A com-
parison of structural csp decomposition methods. In
Proceedings of IJCAI’99, pages 394–399.

Gottlob, G., Leone, N., and Scarcello, F. (1999b). On
tractable queries and constraints. InProceedings of
DEXA’99.

Gottlob, G., Leone, N., and Scarcello, F. (2000). A compar-
ison of structural csp decomposition methods.Artifi-
cial Intelligence, 124:243–282.

Gottlob, G., Leone, N., and Scarcello, F. (2001). Hypertree
decompositions: A survey. InProceedings of MFCS
’01, pages 37–57.

Gottlob, G. and Samer, M. (2007). A backtraching based
algorithm for computing hypertree decompositions.
arXivics.DS 0701083vl 14 Jan 2007.

Gyssens, M., Jeavons, P. G., and Cohen, D. A. (1994).
Decomposing constraint satisfaction problems using
database techniques.Artificial Intelligence, 66:57–89.

Harvey, P. and Ghose, A. (2003). Reducing redundancy in
the hypertree decomposition scheme. InProceding of
ICTAI’03, pages 548–555, Montreal.

HYPERTREE DECOMPOSITION FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS

91

Jeavons, P. G., A, C. D., and Gyssens, M. (1994). A struc-
tural decomposition for hypergraphs.Contemporary
Mathematics, 178:161–177.

Korimort, T. (April 2003).Heuristic decomposition Hyper-
tree Decomposition. PhD thesis, Vienna University of
Technology.

McMahan, B. (2003). Bucket elimination and hypertree de-
compositions. Technical report, Implementation re-
port, institute of information systems (DBAI), TU, Vi-
enna.

Montanari, U. (1974). Networks of constraints: Fundamen-
tal properties and applications to pictures processing.
Information Sciences, 7:95–132.

Musliu, N. and Schafhauser, W. (2007). Genetic algorithms
for generalized hypertree decompositions.European
Journal of Industrial Engineering, 1(3):317–340.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

92

