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Abstract: Learning vector quantization (LVQ) is a supervised learning algorithm for data classification. Since LVQ is
based on prototype vectors, it is a neural network approach particularly applicable in non-linear separation
problems. Existing LVQ algorithms are mostly focused on numerical data. This paper presents a batch type
LVQ algorithm used for mixed numerical and categorical data. Experiments on various data sets demonstrate
the proposed algorithm is effective to improve the capability of standard LVQ to deal with categorical data.

1 INTRODUCTION

Classification is a fundamental task for modeling
many practical applications, e.g., credit approval, cus-
tomer management, image segmentation and speech
recognition. It can be regarded as a two-stage pro-
cess, i.e., model construction from a set of labeled
data and class specification according to the retrieved
model. Kohonen’s learning vector quantization algo-
rithm (LVQ) (Kohonen, 1997) is a supervised vari-
ant of the algorithm for self-organizing map (SOM)
that can be used for labeled input data. Both SOM
and LVQ are based on neurons representing proto-
type vectors and use a nearest neighbor approach for
clustering and classifying data. So, they are neural
network approaches particularly useful for non-linear
separation problems. LVQ can be seen as a special
case of SOM, where the class labels associated with
input data are used for training. The learning pro-
cess tends to perform the vector quantization starting
with the definition of decision regions and repeatedly
repositing the boundary to improve the quality of the
classifier. In real decision applications, LVQ is usu-
ally combined with SOM (Solaiman et al., 1994), first
generating a roughly ordered map through SOM and
then fine tuning the prototypes to get better classifica-
tion through the competitive learning of LVQ.

Existing LVQ algorithms are mostly focused on
numerical data. In this paper, the idea of the proposed

algorithm originates from NCSOM (Chen and Mar-
ques, 2005), a batch SOM algorithm based on new
distance measurement and update rules in order to ex-
tend the usage of standard SOMs to categorical data.
In the present study, we advance the methodology of
NCSOM to the batch type of learning vector quantiza-
tion. We call this method BNCLVQ, performing clas-
sification task on mixed numeric and categorical data.
In one batch round, the Voronoi set of each map neu-
ron is computed by projecting the input data to its best
matching unit (BMU), then the prototype is updated
according to incremental learning laws depending on
class label and feature type. Experiments show that
the algorithm is as accurate as current state-of-the-art
machine learning algorithms on various data sets.

The remaining of this paper is organized as fol-
lows. Section 2 reviews the related work. Section 3
presents a batch LVQ algorithm to handle numeric
and categorical data during model training. In sec-
tion 4, we evaluate the algorithm on some data sets
from UCI repository. Lastly, the contributions and fu-
ture improvements are given in section 5.

2 RELATED WORK

Data could be described by features in numeric and
categorical (nominal or ordinal) types (Chen and Mar-
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ques, 2005). Letn be the number of input vectors,m
the number of map units, andd the number of vari-
ables. Without loss of generality, we assume that the
first p variables are numeric and the followingd− p
variables are categorical,{α1

k,α
2
k . . .αnk

k } is the list of
variant values of thekth categorical variable (the nat-
ural order is preserved for ordinal variables). In the
following description,xi = [xi1, . . . ,xid ] denotes the
ith input vector andmj = [mj1, . . . ,mjd ] the prototype
vector associated with thejth neuron. Data projec-
tion is based on the distance between input vectors
and prototypes using squared Euclidean distance on
numeric variables and simple mismatch measurement
on categorical variables (Huang, 1998).

d(xi ,mj) =
p

∑
l=1

e(xil ,mjl )+
d

∑
l=p+1

δ(xil ,mjl ) (1)

where

e(xil ,mjl )= (xil −mjl )
2
, δ(xil ,mjl )=

{

0 xil = mjl
1 xil 6= mjl

This distance simply conjoins the usual Euclidean
distance with the number of agreements between cate-
gorical classes. Complementing (Chen and Marques,
2005), this paper will also present how to handle or-
dinal data in BNCLVQ. However care must be taken
so that measures are compatible with the Euclidean
values.

SOM is composed of a regular grid of neurons,
usually in one or two dimensions for easy visualiza-
tion. Each neuron is associated with a prototype or
reference vector, representing the generalized model
of input data. Due to its capabilities in data summa-
rization and visualization, SOM is usually used for
cluster analysis. Through a non-linear transformation,
the data in high dimensional input space is projected
to the low dimensional grid space while preserving
the topology relations between input data. That is
why resulting maps are sometimes called as topolog-
ical maps. NCSOM is an extension of original SOM
to handle categorical data. It is performed in batch
manner based on the distance measure in Equation (1)
and novel updating rules. Different from traditional
preprocessing approaches, the categorical mapping is
done inside the SOM.

LVQ is a variant of SOM, trained in a supervised
way. The prototypes define the class regions corre-
sponding to Voronoi sets. LVQ starts from a trained
map with class label assignment to neurons and at-
tempts to adjust the class regions according to labeled
data. In the past decades, LVQ has attracted much at-
tention because of the simplicity and efficiency. The
classic online LVQs are studied in literature (Koho-
nen, 1997). In these algorithms, the map units are

assigned by class labels in the initialization and then
updated at each training step. The online LVQs are se-
quential and sensitive to the order of presentation of
input data to the network classifier (Kohonen, 1997).
Some algorithms have been proposed to perform LVQ
in a batch way. E.g., a batch clustering network FK-
LVQ (Zhang et al., 2004) fuses the batch learning,
fuzzy membership functions and kernel-induced dis-
tance measures. FKLVQ is mainly used for clustering
because the learning process is executed in an unsu-
pervised way without the consideration of class label.

It is well known that LVQ is designed for metric
vector spaces in its original formulation. Some ef-
forts were conducted to apply LVQ to nonvector rep-
resentations. For this purpose, two difficulties are
considered: distance measurement and incremental
learning laws. The batch manner makes possible to
construct the learning methodology for data in non-
vector spaces such as categorical data. The SOM
and LVQ algorithms in batch version are proposed
for symbol strings based on the so-called redundant
hash addressing method and generalized means or
medians over a list of symbol strings (Kohonen and
Somervuo, 1998). Also, a particular kind of LVQ
is designed for variable-length and feature sequences
to fine tune the prototype sequences for optimal class
separation (Somervuo and Kohonen, 1999).

LVQ is also a viable way to tune the SOM re-
sults for better classification and therefore useful in
data mining tasks. In classification problems, SOM
is firstly used to concentrate the data into a small set
of representative prototypes, then LVQ is used to fine
tune the prototypes for optimal separation. It was re-
ported that LVQ is able to improve the classification
accuracy of a usual SOM (Kohonen, 1997). Due to
the close relation between SOM and LVQ, the strat-
egy of categorical data processing can be adopted in
LVQ for classification tasks.

3 BNCLVQ: A BATCH LVQ
ALGORITHM FOR NUMERIC
AND CATEGORICAL DATA

It is known that batch LVQ benefits from order in-
sensitivity, fast convergence and elimination of learn-
ing rate influence (Kohonen, 1997). It makes pos-
sible to construct the learning methodology for data
in categorical nonvector spaces. In this section, a
batch LVQ algorithm for mixed numeric and categor-
ical data will be given. Similar to NCSOM, it adopts
the distance measure introduced in previous section.
Before presenting the algorithm, we first define incre-
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mental learning laws that will be used in the proposed
BNCLVQ algorithm.

3.1 Incremental Learning Laws

Batch LVQ uses the entire data for incremental learn-
ing in one batch round. During the training process,
an input vector is projected to the best-matching unit,
i.e., winner neuron with the closest reference vector.
Following (Kohonen, 1997) a Voronoi set can be gen-
erated for each neuron, i.e.,Vi = {xk | d(xk,mi) ≤
d(xk,mj),1≤ k ≤ n,1≤ j ≤ m} denotes the Voronoi
set ofmi . As a result, the input space is separated into
a number of disjointed sets:{Vi,1 ≤ i ≤ m}. At one
training epoch, the Voronoi set is calculated for each
map neuron, composed of positive examples (VP

i ) and
negative examples (VN

i ) indicating the correctness of
classifying. In Voronoi set an element is positive if its
class label agrees with the map neuron, and negative
otherwise. Positive examples fall into the decision re-
gions represented by the corresponding prototype and
consequently make the prototype move towards the
input. While, negative examples fall into other de-
cision regions and consequently make the prototype
move away from the input.

The map is updated by different strategies de-
pending on the type of variables. The update rules
combine the inspiration influence of positive exam-
ples and suppression influence of negative examples
to each neuron in a batch round. This is why the
batch type is used here instead of online type. Assume
mpk(t) is the value of thepth unit on thekth feature at
epocht. Let hip be the indicative function taking 1 as
the value ifp is the winner neuron ofxi , and 0 other-
wise. Also,sip the denotation function whose value is
1 in case of positive example, and -1 otherwise.

The update rule of reference vectors on numeric
features conducts in the similar way as NCSOM.
Since LVQ is used to tune the SOM result, here the
neighborhood is ignored and the class label is taken
into consideration. If the denominator is 0 or negative
for somempk, no updating is done. Thus, we have the
learning rule on numeric variables:

mpk(t +1) =

n

∑
i=1

hipsipxik

n

∑
i=1

hipsip

(2)

where

hip =

{

1 if p = arg minm
j=1d(xi ,mj(t))

0 otherwise

sip =

{

1 if label(mp) = label(xi)
−1 otherwise

As mentioned above, the arithmetic operations are
not applicable to categorical values. Intuitively, for
each categorical variable, the category occurring most
frequently in the Voronoi set of a neuron should be
chosen as the new value for the next epoch. For this
purpose, a set of counters is used to store the frequen-
cies of variant values for each categorical variable,
in a similar way to what was done for NCSOM al-
gorithm. However, we have now taken into account
the categorical information, so the frequency of a par-
ticular category is calculated by counting the number
of positive occurrences minus the number of negative
occurrences in the Voronoi set.

F(αr
k,mpk(t)) =

n

∑
i=1

v(hipsip | xik = αr
k), r = 1,2, . . . ,nk

(3)
F(αr

k,mpk(t)) represents an absolute voting re-
garding each valueαr

k
1. As in standard LVQ algo-

rithm, this change is made to better tune the original
clusters acquired from SOM to the available super-
vised data. For nominal features, the best category
c= maxnk

r=1F(αr
k,mpk(t)), i.e., the value having max-

imal frequency, is accepted if the frequency is posi-
tive. Otherwise, the value remains unchanged. As a
result, the learning rule on nominal variables is:

mpk(t +1) =

{

c if F(c,mpk(t)) > 0
mpk(t) otherwise (4)

Different from nominal variables, the ordinal vari-
ables have specific ordering of values. Therefore, the
updating depends not only on the frequency of values
also on the ordering of values. The category closest to
the weighted sum of relative frequencies on all possi-
ble categories is chosen as the new value concerning
about the natural ordering of values. So, the learning
rule on ordinal variables is:

mpk(t +1) = round(
nk

∑
r=1

r ∗
F(αr

k,mpk(t))

∑n
i=1hipsip

) (5)

3.2 Algorithm Description

As mentioned, the BNCLVQ algorithm is performed
in a batch mode. It starts from the trained map ob-
tained in an unsupervised way, e.g., the NCSOM al-
gorithm. Each map neuron is assigned by a class la-
bel with a labeling schema. In this paper the major-
ity class is used based on the distance between pro-
totypes and input for acquiring the labeled map. Af-
terwards, one instancexi is input and the distance be-
tweenxi and prototypes is calculated using Equation
(1), consequently the input is projected to the closest

1Functionv(y |COND) is y whenCONDholds and zero
otherwise.
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prototype. After all input are processed, the Voronoi
set is computed for each neuron, composed of posi-
tive examples and negative examples. Then the pro-
totypes are updated according to Equation (2), Equa-
tion (4) and Equation (5), respectively. This training
process is repeated iteratively enough iterations until
the termination condition is satisfied. The termina-
tion condition could be the number of iterations or a
given threshold denoting the maximum distance be-
tween prototypes in previous and current iteration. In
summary, the algorithm is performed as follows:

1. Compute the trained and labeled map with proto-
types:mi , i = 1, ...,m;

2. For i = 1...,n, input instancexi and projectxi to
its BMU;

3. Fori = 1, ...,m, computeVP
i andVN

i for mi(t);

4. Fori = 1, ...,m, calculate the new prototypemi(t +
1) for next epoch;

5. Repeat from Step 2 to Step 4 until the termination
condition is satisfied.

4 EXPERIMENTS AND RESULTS

The proposed BNCLVQ algorithm is implemented
based onsomtoolbox(Kohonen, 2005) inmatlabrun-
ning Windows XP operating system. We mainly con-
cern about the effectiveness of BNCLVQ in classi-
fication problems. Eight UCI (Asuncion and New-
man, 2007) data sets are chosen for the following rea-
sons: missing data, class composition (binary class
or multi-class), proportion of categorical values (pure
categorical, pure numeric or mixed) and data size
(from tens to thousands of instances). These data
sets are described in Table 1, including the num-
ber of instances, the number of features (nu:numeric,
no:nominal, or:ordinal), the number of categorical
values (#val), the number of classes (#cla), percent-
age of instances in the most common class (mcc) and
proportion of missing values (mv).

• soybean small data: a well-known soybean dis-
ease diagnosis data with pure categorical variables
and multiple classes;

• mushroom data: a large number of instances in
pure categorical variables (some missing data);

• tictactoe data: a pure categorical data encoding
the board configurations of tic-tac-toe games, ir-
relevant features with high amount of interaction;

• credit approval data: a good mixture of numeric
features, nominal features with a small number of
values and nominal features with a big number of
values (some missing data);

• heart disease: mixed numeric and categorical val-
ues (some missing data);

• horse colic data: a high proportion of missing val-
ues, mixed numeric and categorical values;

• zoo data: multiple classes, mixed numeric and
categorical values;

• iris data: pure numeric values.

Table 1: Description of data sets.

#features
datasets #ins nu no or #val #cla mcc mv
soybean 47 0 35 0 74 4 36% 0
mushroom 8124 0 22 0 107 2 52% 1.4%
tictactoe 958 0 9 0 27 2 65% 0
credit 690 6 9 0 36 2 56% 1.6%
heart 303 5 2 6 20 2 55% 1%
horse 368 7 15 0 53 2 63% 30%
zoo 101 1 15 0 30 7 41% 0
iris 150 4 0 0 - 3 33% 0

To ensure all features have equal influence on dis-
tance, numeric features are normalized to unity range.
In our experiments we set termination condition as 50
iterations. For each data set, the experiments are per-
formed in the following way:

1. The data set is randomly divided into 10 folds: 9
folds are used for model training and labeling, and
the remaining is used for performance validation.

2. In each trail, the map is trained with the training
data set in an unsupervised manner by NCSOM
algorithm, and then labeled by the majority class
according to the known samples in a supervised
manner.

3. BNCLVQ is applied to the resultant map in order
to improve the classification quality.

4. For validation, each sample of the test data set is
compared to map units and assigned by the label
of BMU. In order to avoid the assignment of an
empty class, unlabeled units are discarded from
classifying. Then the performance is measured by
classification accuracy, i.e., the percent of the ob-
servations classified correctly.

5. Cross-validation is used with 10 random subsam-
ples for computing final accuracy average and
standard deviation results.

As other ANN models, LVQ is sensitive to some
parameters in which map size is an important one. In
Table 2, we investigate the effect of map size to the
resulted classification precision. Four kinds of maps
are studied for comparison (Kohonen, 2005): ‘mid-
dle’ map is determined by the number of instances
with the side lengths of grid as the ratio of two biggest
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Table 2: Effect of map size to precision.

tiny(%) small(%) middle(%) big(%)
datasets train test train test train test train test
soybean 100 100 100 100 100 100 100 100
mushroom 92 91 96 96 99 98 99 98
tictactoe 73 75 83 75 92 85 95 84
credit 85 83 86 82 89 86 92 85
heart 86 80 86 78 87 82 88 79
horse 83 81 84 84 87 84 90 81
zoo 82 81 90 89 99 99 100 96
iris 95 97 97 96 98 95 99 95

Table 3: Average values of precision and standard deviation.

map train accuracy(%) test accuracy(%)
datasets size NCSOM BNCLVQ NCSOM BNCLVQ
soybean [7 5] 100±0 100±2 98±8 100±0
mushroom [14 8] 96±1 99±1 95±4 98±3
tictactoe [13 11] 80±2 92±1 76±3 85±3
credit [17 7] 85±1 89±1 80±4 86±3
heart [10 8] 87±2 87±2 78±9 82±7
horse [11 8] 83±1 87±1 79±10 84±7
zoo [8 6] 99±1 99±1 99±3 99±3
iris [16 3] 98±1 97±1 96±3 95±3

eigenvalues; ‘small’ map has one-quarter neurons of
‘middle’ one; ‘tiny’ map has half neurons of ‘small’
one; ‘big’ map has four times neurons of ‘middle’
one. As the map enlarges from ‘tiny’ to ‘middle’, both
training precision and test precision improve signifi-
cantly for most data sets (e.g., test precision increases
from 81% to 99% forzooand 75% to 85% fortic-
tactoe, while soybeanandiris are less sensitive to the
change of map size). Further enlarging the map in-
creases the precision in training set, but the test set
precision becomes worse or unchanged, indicating the
map is overfitting. It is shown that the maps in mid-
dle size are best for generalization performance ex-
cept oniris data, which achieves desirable precision
using only a ‘tiny’ map of 2 by 2 units. In the follow-
ing experiments, we choose the map of middle size.

As summarized in Table 3, the results show the
potential of BNCLQV compared with NCSOM in im-
proving the accuracy on both training data and test
data for not only data sets of pure categorical variables
(e.g., soybean, mushroom and tictactoe) but also those
of mixed variables (e.g., credit, heart, horse and zoo).
Typically, BNCLVQ achieves an increase up to 9%
in classification accuracy intictactoedataset, when
comparing with using only NCSOM majority class
for classification. The results where performance is
almost equivalent are thesoybeanand iris data sets.
Probably, actually performance on these datasets is
already near reported maximum precisions after run-

ning NCSOM. Also, as it was just verified in Ta-
ble 2, in BNCLVQ the simpleriris dataset is present-
ing overfitting with the ‘middle’ map size (used for
all datasets in this experiment). Performance on BN-
CLVQ networks is always better than the one of NC-
SOM on all datasets without overfitting maps. This
gives evidence in favor of the validity of the approach
for refining hybrid SOM maps.

As mentioned previously, SOMs are very useful
for data mining purposes. So, we have also analyzed
our results from the visualization point of view. As
an illustrative example we present the output map for
credit data in Figure 1. Due to the topology preserving
property of SOM, class regions are usually composed
of neighboring prototypes of small u-distance (the
average distance to its neighboring prototypes) val-
ues. The histogram of neurons contains the compo-
sition of patterns presented to the corresponding pro-
totypes. Although neurons of zero-hit have no repre-
sentative capability of patterns, they help to discover
the boundary of class regions. From the visualization
of u-distance and histogram, it becomes easy to de-
tect the separability of classes. Figure 1 shows the u-
distance and histogram chart of trained map for credit
data obtained by NCSOM and BNCLVQ respectively.
Each node has an individual size proportional to its u-
distance value with slices denoting the percentage of
two classes contained. It is observed that BNCLVQ is
able to improve the separation between two class re-
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gions (‘approval’ and ‘rejection’) represented by pro-
totypes, showing the capability of BNCLVQ for better
class discrimination.

Figure 1: Histogram visualization on credit data.

We also study the convergence properties of BN-
CLVQ algorithm on the data sets mentioned above.
In this experiment, the convergence was measured as
the overall distance in prototypes between the cur-
rent iteration and the previous iteration:od(t) =
∑m

i=1d(mi(t −1),mi(t)). As observed in Figure 2 and
Figure 3, the evolution of prototypes reflects the sig-
nificant tendency of convergence. The distance de-
creases rapidly in the beginning, and tends to be more
stable after a number of iterations (less than 50 itera-
tions for these data sets). The convergence speed de-
pends on the size of data, number of variables and
specific properties of data distribution. For example,
it takes only 3 iterations to converge forsoybeandata.
However forheart data, the variation of prototypes
can be regarded as stable after 30 iterations.

Finally, for better comparison with other ap-
proaches the performance of proposed algorithm is
compared with some representative algorithms for su-
pervised learning. Six representatives implemented
by Waikato Environment for Knowledge Analysis
(WEKA) (Witten and Frank, 2005) with default pa-
rameters are under consideration:

• Naive Bayes (NB): a well-known representative
of statistical learning algorithm estimating the
probability of each class based on the assumption
of feature independence;

• Sequential minimal optimization (SMO): a sim-
ple implementation of support vector machine
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Figure 2: Convergence study of BNCLVQ.
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Figure 3: Overfitting on heart data.

(SVM). Multiple binary classifiers are generated
to solve multi-class classification problems;

• K-nearest neighbors (KNN): an instance-based
learning algorithm classifying an unknown pat-
tern to the its nearest neighbors in training data
based on a distance metric (the value of k was
determined between 1 and 5 by cross-validation
evaluation);

• J4.82: the decision tree algorithm to first infer a
tree structure adapted well to training data then
prune the tree to avoid over-fitting;

• PART: a rule-based learning algorithm to infer
rules from a partial decision tree;

• Multi-layer perceptron (MLP): a supervised arti-
ficial neural network with back propagation to ex-
plore non-linear patterns.

We should stress that this comparison may be un-
fair to LVQ. Indeed, as discussed, LVQ is mainly a
projection method that can also be used for classifi-
cation purposes. So, for the sake of comparison, the

2A Java implementation of popular C4.5 algorithm.
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Table 4: Accuracy ratio comparison (the value of k is given for KNN).

Naive SMO BNC
datasets Bayes SVM KNN J4.8 PART MLP LVQ LVQ
soybean 100 100 100(1) 98 100 100 100 100
mushroom 93 99 99(1) 98 98 99 98 98
tictactoe 70 98 99(1) 85 95 97 96 85
credit 78 85 85(5) 86 85 84 80 86
heart 83 84 83(5) 77 80 79 78 82
horse 78 83 82(4) 85 85 80 79 84
zoo 95 93 95(1) 92 92 95 92 99
iris 95 96 95(2) 96 94 97 95 95

standard LVQ is also tested. For doing so, categorical
data are preprocessed by translating each categorical
feature to multiple binary features (i.e., the standard
approach for applying LVQ to mixed datasets).

The summary of results is given in Table 4. For
each data set, the best accuracy is emphasized by
bold. The high-bias performance of naive bayesian
can be explained by the assumption of single proba-
bility distribution (Kotsiantis, 2007). On the contrary,
the other algorithms have high-variance property to
different data sets. Although BNCLVQ is not the best
one for all data sets, it produces desirable accuracy in
most cases, especially on data of mixed types. Also,
BNCLVQ is always better than standard LVQ, the
only exception on tictactoe data is probably caused by
the presence of interaction between features (Stephen,
1999). In (Matheus, 1990), tictactoe original features
were regarded as primary and the inclusion of domain
knowledge and feature generalization improved clas-
sification accuracy in a very meaningful way. So, BN-
CLVQ seems to be more sensible to some bad encod-
ings of features than standard LVQ. Same pattern is
also observed when comparing J4.8 and PART preci-
sions. This latest result points to some sort of over-
fitting resulting from tictactoe features. Since, like in
decision trees, BCLVQ is a data visualization method,
maybe the same kind of pattern is present. However,
further research needs to be preformed on this dataset
to confirm these hypothesis (Bader et al., 2008).

The robustness of a particular method means how
well it performs in different situations. To compare
the robustness of these classification methods, the rel-
ative performancebm on a particular data set is cal-
culated as the ratio of its accuracy and the highest ac-
curacy among all the compared methods (Geng et al.,
2005). A large value of the criterion indicates good
robustness. The robustness distribution is shown in
Figure 4 for each method over the 8 data sets in a
stacked bar. As shown, BNCLVQ achieves a high
summed value only next to SMO and KNN (In fact,
the bm is equal or close to 1 on all the data sets ex-
cept tictactoe), which means BNCLVQ performs well

in different situations.

Figure 4: Robustness of compared methods.

5 CONCLUSIONS

Learning vector quantization is a promising and ro-
bust approach for classification modeling tasks. Al-
though originally designed in metric vector spaces,
LVQ could be performed on non-vector data in a
batch way. In this paper, a batch type LVQ algorithm
capable of dealing with categorical data is introduced.

SOM topological maps are very effective tools for
representing data, namely in data mining frameworks.
LVQ is, by itself, a powerful method for classifying
supervised data. Also, it is the most suitable method
to tune SOM topological maps to supervised data.
Unfortunately original LVQ can not handle categor-
ical data in a proper way. In this paper we show
that BNCLVQ is a feasible and effective alternative
for extending previous NCSOM to supervised classi-
fication on both numeric and categorical data. Since
BNCLVQ is performed on an organized map, only a
limited number of known samples is needed for the
fine-tuning and labeling of map units. Therefore, BN-
CLVQ is a suitable candidate for tasks in which scarce
labeled data and abundant unlabeled data are avail-
able. BNCLVQ is also easy for parallelization (Silva
and Marques, 2007) and can be applicable in frame-
works with very large datasets.
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Moreover, BNCLVQ is easily extended to fuzzy
case to solve the prototype under-utilization problem,
i.e., only the BMU is updated for each input (Zhang
et al., 2004), simply replacing the indicative function
by the membership function (Bezdek, 1981). The
membership assignment of fuzzy projection implies
the specification to classes, and can be used for the
validity estimation of classification (Vuorimaa, 1994).

In the future work, the impact of overfitting prob-
lem will be further studied using early stopping strat-
egy on an independent data set and the benefit of
fuzzy strategies in BNCLVQ will be investigated by
cross-validation experiments on both UCI data sets
and state-of-art real world problems. In a first real
world case study, we are currently applying NCSOM
topological maps to fine tune mixed numeric and cat-
egorical data in a natural language processing prob-
lem (Marques et al., 2007). In this domain we have
some pre-labeled data available and NCSOM is help-
ing to investigate accurateness and consistency of
manual data labeling. However, already known cor-
rect cases (and possible some previously available
prototypes) should be included in the previously NC-
SOM trained topological map. For that we intend to
use BNCLVQ as the appropriate tool. According to
our results, BNCLVQ can achieve good precision in
most domains. Moreover BNCLVQ is more than a
classification algorithm. Indeed BNCLVQ is also a
fine-tuning tool for topological features maps, and,
consequently, a tool that will help the data mining
process when some labeled data is available.
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