
THE MAR&A METHODOLOGY TO DEVELOP AGENT SYSTEMS

Giacomo Cabri, Mariachiara Puviani and Letizia Leonardi
Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia

Via Vignolese 905, 41100 Modena, Italy

Keywords: Methodology, Infrastructure, SPEM.

Abstract: In this paper we present a new agent methodology called MAR&A. Its aim is to better connect agent method-
ologies and agent infrastructures, since in the agent development we can find a “gap” between them. Our
approach was not to build a new agent methodology from scratch, but to reuse “fragments” of existing method-
ologies. Besides presenting the methodology, we propose its use in a case study, to help readers understand
the exploitation of this methodology and to sketch the connections with agent infrastructures.

1 INTRODUCTION

The agent paradigm has proved to be useful in the
development of today’s systems, in particular those
that exhibit a certain degree of complexity (Jen-
nings, 2001). Nevertheless, the support for developers
shows some lacks and some fragmentations that de-
crease the help that can be concretely provided to de-
velopers. From the one hand, there exist appropriate
methodologies that support in particular the analysis
and the design of agent-based systems; on the other
hand, the agent community has provided agent in-
frastructures to support the implementation of agent-
based systems. The main fragmentation stems from
the fact that these two opposite approaches (one top-
down and the other bottom-up) hardly converge to a
common point: the agent infrastructures often do not
provide abstractions for the outcome of the method-
ologies, while methodologies fail in proposing arti-
facts suitable to be implemented by infrastructures.
This leads to a “gap” between methodologies and
infrastructures. Our aim is to overcome the previ-
ously explained limitations by bridging the gap ex-
isting between agent methodologies and infrastruc-
tures. To this purpose, we have evaluated different
agent methodologies and infrastructures, in particu-
lar considering the connections that exist but are not
so explicit. Exploiting meta-models, we were able to
focus on the entities that are shared between method-
ologies and infrastructures. Of course, some entities
are easy to connect (such as “agent”), while others re-
quire more work. Then, we have evaluated different
possible directions, sketched in this paper, but we felt

that they were not enough.
So, we decided to start building a new agent

methodology, called MAR&A, that focuses on the
main infrastructures’ abstractions. To avoid re-
inventing the wheel, we have not started from scratch,
but we have decided to reuse existing “fragments” of
methodologies; this is possible by means of the SPEM
approach (Object Management Group, 2007), which
decomposes agent methodologies into fragments that
can be composed somehow.

The aim of this paper is to describe the work that
has led to the definition of MAR&A and to present the
main feature of the methodology, sketching its con-
nections with infrastructures.

2 THE GAP
With regard to methodologies for developing agent
systems, we have evaluated the most spread ones:
ADELFE (Picard and Gleizes, 2004), Gaia (Zam-
bonelli et al., 2003), PASSI (Cossentino et al.,
2004), Prometheus (Winikoff and Padgham, 2004),
SODA (Molesini et al., 2006) and Tropos (Bresciani
et al., 2004).

With regard to the agent infrastructures, the fol-
lowing ones have been considered: CArtAgO (Com-
mon Artifact for Agent Open environment) (Ricci
et al., 2007), JACK (AOS Autonomous Decition-
Making Software, 2008), JADE (Bellifemine, 1999),
RoleX (Cabri et al., 2003), TOTA (Mamei and Zam-
bonelli, 2005), TuCSoN (Omicini and Zambonelli,
1999).

501
Cabri G., Puviani M. and Leonardi L. (2009).
THE MAR&A METHODOLOGY TO DEVELOP AGENT SYSTEMS .
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 501-506
DOI: 10.5220/0001661005010506
Copyright c© SciTePress



We have considered the chance of integrating
methodologies and infrastructures, evaluating possi-
ble matchings between the concepts described by
their meta-models.

From our study emerges that there is no continu-
ity between the methodologies and the infrastructures,
presenting a gap between analysis and design on the
one hand and implementation on the other hand.

In fact, only few entities can be found in both
methodologies and infrastructures with the same
meaning, while others are present either in method-
ologies or infrastructures. As an example, the goal
entity is significantly considered by the methodolo-
gies, but cannot be directly found as an entity in in-
frastructures. Even if this is caused by a “natural” dif-
ference between methodologies and infrastructures,
it could lead to some problems; first, resulting in a
fragmented development; but, more important, mak-
ing maintenance very difficult: if a methodology en-
tity has not a corresponding infrastructure entity, its
change requires to find out how such an entity was
implemented.

The root of such a gap is likely to derive from
the different origins of methodologies and infrastruc-
tures: from the one hand, the traditional software
engineering approaches follow a top-down direction;
on the other hand, concrete requirements have called
for implementation-oriented solutions providing plat-
forms and frameworks to build agent applications, in
a bottom-up fashion.

3 TOWARD A NEW
METHODOLOGY

To bridge agent methodologies and agent infrastruc-
tures our first effort tried to map the existing agent
methodologies’ entities with the existing agent infras-
tructures’ ones. To this purpose, first of all we have
evaluated the entities common to the different infras-
tructures. This was useful to extrapolate the “core”
entities, which deserve a support by the methodolo-
gies. We spent an effort to use the meaning of the
entities, in order to map also entities with differ-
ent names but the same meaning. As a concrete
example, we have considered the PASSI methodol-
ogy and the RoleX infrastructure, and we have pro-
duced a mapping based on their meta-models (Cabri
et al., 2008). Molesini et al. have performed a
similar attempt (Molesini et al., 2006), considering
one methodology (SODA) and three infrastructures
(CArtAgO, TuCSoN and TOTA). As another attempt,
we have focused on the role entity, and we have
evaluated how it is dealt with in methodologies and

in infrastructures, in order to map the different ap-
proaches (Puviani et al., 2008b).
The lesson learned from these experiences is that ex-
act mappings (1 to 1) are not enough, and a more
global approach is needed. This is due also to the
fact that a lot of different methodologies and infras-
tructures exist, and point-to-point mappings would be
complex and perhaps not so useful.

So, we decided to propose a new agent method-
ology, which has the infrastructures’ main abstrac-
tions as goal for its outcome. Nevertheless, our aim
was not to define a completely “new brand method-
ology” because it risks to be “yet another methodol-
ogy”. The trade-off we propose is to create a new
methodology starting from the “fragments” of exist-
ing agent methodologies exploiting SPEM (Software
Process Engineering Metamodel) (Object Manage-
ment Group, 2007), an approach that decomposes the
methodologies in “fragments”, which can be assem-
bled to form new methodologies.

From the evaluation of the infrastructures, we re-
mark that three entities emerge as common: Agent,
Role and Action. Such entities are not only common
to different infrastructures, but also part of their foun-
dation. This makes them the best candidates to be
considered as the outcome of the new methodology;
this also lead the new methodology being developed
using different infrastructures.

4 THE MAR&A METHODOLOGY

In our study about the new methodology, we have fo-
cused on (i) the common processes and entities of
the methodologies and (ii) the entities that enable a
connection with the main entities of the infrastruc-
tures. MAR&A, “Methodology for Agent: Roles and
Actions”, has as main entities the same used in in-
frastructures (as said before), which helps developer
to implement applications developed by this method-
ology. The chosen model is the waterfall one, and
it relies on different important fragments of PASSI,
Gaia and Tropos. We have defined three main phases
of MAR&A: Requirement (Subsection 4.1), Analysis
(Subsection 4.2) and Design (Subsection 4.3), while
the Implementation phase is under definition. In the
following we briefly explain the exploited fragments.
Note that not all mentioned entities have a corre-
sponding fragment in the figures.

4.1 Requirement Phase

In the Domain Description Fragment, taken from
Passi, the concepts of goal and actor have been in-

ICAART 2009 - International Conference on Agents and Artificial Intelligence

502



tegrated, to create the Actor Diagram, that it is very
useful in the Analysis Fragment taken from Tropos
(Figure 1). Here some further work has to be done
to convert Tropos Goal Diagram (output of Analysis
Fragment)in a UML one.

Figure 1: Requirement phase.

Very important in this phase is the creation of a glos-
sary that will report all the created entities, and that
has to be updated during all the other phases (and
fragments). Here some important concepts are de-
fined: Requirement - A feature that the System-
to-Be (representing the general environment where
other actors live) must exhibit, it can be functional
or non-functional. Scenario - Represents a concrete
sequence of interactions between the system and the
actors. Actors - Entities that have strategic objectives
(goals) and wishes, in the system. Goals - Actors’
strategic interests. They can be divided in hard or soft
goals, based on their fulfilment. Plan - Procedures
that have to be executed to reach goals.

4.2 Analysis Phase

In the Agent Identification Fragment, taken from
Passi, the Actor Diagram has been introduced, to help
specifying Agent (Figure 2).Here we have to notice
that the Requirement Doc, is the same as the Require-
ment Statement used in Gaia, so it can be integrated
in a Gaia Fragment without modification.
In this phase, we have seen that the way of exploit-
ingIdentify the Role in the System Fragment from
Passi and of Roles Identification Fragment from Gaia,
is very similar, so we have mixed together these two
fragments. The only thing that is still missing is a
stronger connection between the Prototypical Role
Model and the Role Identification Diagram, that now
remain separated.

Figure 2: Analysis phase.

In this phase the following concepts are identified:
Agent - An autonomous entity that is composed of
roles and has a knowledge. An agent can be seen
from different levels of abstraction: it is a significant
software unit at both the abstract and concrete levels
of design. In this phase, an agent is specified as an
instance of an agent class. An agent may undertake
several functional roles during interactions with other
agents to achieve its goals. Here we tried to model an
agent that is independent of a specific platform, and
that can be used in different infrastructures without a
lot of changes. Role - A collection of tasks performed
by agent in pursuing a sub-goal; an agent could play
one or more roles in the system. Each role describes
an aspect of agent life cycle and it is often related to
a service offered by the agent to the society or to the
achievement of one of its goals (Social Role). Action
- The identification of activities that an agent may per-
form. Each action is composed of one or more tasks.

Task - A logical unit of individual or interactive
behavior. An agent uses tasks to execute its plan(s).
Each task is an entity that aims to reach a sub-goal.
The term “task” can be used as synonymous of Behav-
ior but with the meaning of atomic part of the overall
agent behavior.

4.3 Design Phase

Here the Create an Agent Model Fragment (from
Gaia) has been changed because it has to consider
Passi-like agents (and not Gaia-like ones), and to be
based on Single Agent Structure Diagram Figure 3).
The defined concepts are: Ontology - An ontology is
composed of concepts, actions and predicates. Com-
munication - An interaction between two agents, de-
scribed in terms of: ontology (related to the part of
knowledge exchanged by the agents), content lan-

THE MAR&A METHODOLOGY TO DEVELOP AGENT SYSTEMS

503



Figure 3: Design phase.

guage and interaction protocol. Message - An indi-
vidual unit of communication between two or more
agents. Messages are based on the standard FIPA
message format.
Some of these different fragments are well inte-
grated, even if they come from different methodolo-
gies, while other fragments have been changed in-
side to match input and output of the different phases.
This work presents some difficulties because, as said,
entities with the same name but coming from differ-
ent methodologies cannot be used in the same way
(e.g. the concept of “agent” in ADELFE is adaptive,
in PASSI is FIPA-like and in Prometheus is a BDI
one). In other cases, we have chosen the most suitable
concepts for our scope (e.g., we do not have chosen
ADELFE agent because it needs some concepts, like
skill, aptitude, NCS, etc., which need an ad hoc plat-
form to be implemented, and it is out of our scope).
The implementation and validation of this composed
methodology is still in progress, trying to adjust the
different fragments, in particular in the Design phase.

4.4 Case Study

As case study we exploit a conference organization,
which is a multiphase process that involves different
kinds of people and groups, and can be easily imple-
mented (and used) via Web. For length reasons, in
this paper we report a summary of the application of
MAR&A to the case study; interested readers can find
a more complete description in (Puviani et al., 2008a).

Here, the Conference Organization System is
briefly described: during the submission phase, au-
thors send papers, and a submission number is given

back to them when the paper is received. During
the review phase, the Program Committee (PC), com-
posed of a PC Chair and some PC Members, regis-
ters papers reviews: they will contact some reviewer,
asking them to do the review for some papers. With
the compiled review forms, the PC decides if the pa-
per has to be accepted or rejected. During the editing
phase, authors whose paper has been accepted, have
to write a new version of their paper according to the
suggestions of the reviewer. At the end, editors have
to collect the reviewed paper and to print the confer-
ence proceedings. In the following the case study de-
veloped by MAR&A is presented.

Figure 4: Domain Description Diagram.

In the Requirement Phase, system requirements are
described in term of objectives (goals) and actors;
the problem to solve is presented, along with its con-
strains and limits. Here we can see that the concept
of Agent (as used in infrastructures) is introduced us-
ing the concept of Actor. In the Domain Description
Fragment, the system’s requirements are described
using Use Case Diagrams: system goals and actors
are specified along with their relations. Figure 4 re-
ports an example of Review Phase Domain Descrip-
tion Diagram.

The following step identifies and models Actors
as social actors that depend one to each other con-
sidering goals to reach, tasks to obtain, and resources
to use. The Actor Diagram (Figure 5) underlines ac-
tors and the dependences between them. This phase
is very relevant because it begins to create an interac-
tion map, useful when we need to build this applica-
tion using infrastructures, where usually interactions
are very important and well defined. Another actor
that has to be considered is the System-to-Be, and the
Actor Diagram can be redefined with this actor in an
easy way thanks to the adaptability of the methodol-
ogy. Defining actors is very useful because, unlike
agents, they are always platform independent, and so
they can help developer to build agents in different
infrastructures. Then Actor Diagram is extended with
the relationship taken from systems goals.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

504



Figure 5: Actor Diagram.

Figure 6: Agent Class.

In the Analysis Phase agents are defined as well as
tasks and roles they play, and actions are introduced.
In the Agent Identification Fragment, diagrams of the
Requirement Phase are used to analyze actors: agents
can be seen as single Use-Case or as a Use-Case pack-
age: every package defines agents’ functionalities. In
Figure 6 we can see an example of Agent Classes that
are very useful to be used during agents implementa-
tion in infrastructures.

During the Identify Roles Fragment, a Prototyp-
ical Roles Model is defined: it presents roles along
with their responsibilities (liveness and safety) and
permissions, using Gaia notation. Then, using the
Roles Identification Diagram (e.g. Figure 7), inter-
agent communications are well described, defining
every path of the Agent Identification Diagram. In the
Task Specification Fragment, for each Agent, a Task
Specification Diagram is defined: it contains agent’s
tasks on the right and interacting agents on the left. At
the end of this phase, starting from Roles and Tasks,
a preliminary list of Actions is created, to help devel-
opers deal with infrastructures.
During the Design Phase, in the Domain Ontology
Description Fragment, some Domain Ontology Dia-
grams (Class Diagrams) that describe the used on-
tology in terms of concepts, predicate and actions
are built. The Communication Ontology Diagrams
Fragment presents agent interaction along with do-

Figure 7: Role Identification Diagram.

main ontology. They are very important because can
help developer map entities between the methodology
and the chosen infrastructure. These diagrams fur-
ther develop actions played by agents. Then, during
the Roles Description Fragment, agents’ life cycle is
modeled, considering roles, collaborations, and con-
versations; the result is a Role Description Diagram,
where each agent is identified by a package contain-
ing its roles’ classes, and each role is obtained com-
posing different tasks. In this latter diagram, connec-
tions between roles played by the same agent are re-
ported and they can represent role changes.

During the Agent Structure Definition Frag-
ment, which uses Agent Identification Diagram and
the Communication Ontology Diagram as input, a
Single-Agent Class Diagram is built (e.g. Figure 8),
focused on the internal structure of each agent. At the
end, during the Create an Agent Model Fragment, an
Agent Model is defined with a set of roles that can be
mapped by each agent class.

Figure 8: Single-Agent Structure Definition.

With the help of this case study, we can see that the
composed methodology stressed out the entities rel-
evant for infrastructure, that will help developers in
system implementation using not an a-priori decided
infrastructure. For instance, the implementers can
chose the Jade and the RoleX platforms, and map
the agent artifacts produced by MAR&A onto the

THE MAR&A METHODOLOGY TO DEVELOP AGENT SYSTEMS

505



agent abstraction of Jade; the MAR&A roles onto the
RoleX role descriptors; and the MAR&A actions on
the AgentAction Jade class or to the Action class of
RoleX.

5 CONCLUSIONS
In this paper we have presented MAR&A, a method-
ology that aims at being infrastructure-oriented, in the
sense that it is oriented to the main abstractions of the
existing agent infrastructures, in order to propose a
step toward bridging the gap between agent method-
ologies and agent infrastructures.

The two peculiar aspects of MAR&A are: (i) it
has been built starting from the infrastructures’ ab-
stractions, so to make the passage from the method-
ology design phase to the infrastructure implementa-
tion phase easier; and (ii) it is not a completely new
methodology, but it is “composed” from fragments of
existing agent methodologies.

There are some advantages in exploiting frag-
ments of existing methodologies. First, it is not “yet
another methodology”, because it takes concrete parts
of the other methodologies, not only ideas and con-
cepts; then, the exploited fragments have been tested
by developer for different years and in different sce-
narios; further, there are already related documenta-
tion, case studies, tools and practice; moreover, frag-
ments can be exchanged on the base of the application
needs; finally, some developers can find some parts of
the methodology they are used to.
With regard to future work, we are defining the Imple-
mentation Phase in details, to make it possible to pro-
duce code that can be used by an agent infrastructure.
Of course the methodology must be tested also with
other case studies, to better validate its usability. An-
other important thing that is still missing, but which
we are working on, is the introduction of AMAS Ad-
equacy from Adelfe, and a better specification of a
Communication Protocol in the Design Phase.

ACKNOWLEDGEMENTS
Work supported by the Italian MiUR in the frame of
the PRIN project MeNSA. The author thank Cate-
rina Barbieri for her work in the development of the
MAR&A methodology.

REFERENCES

AOS Autonomous Decition-Making Software (2008).
Agent oriented software, jack agent platform.

http://www.agent-software.com/.

Bellifemine, F. (1999). Developing multi-agent systems
with jade. In Proceedings of PAAM 99, London (UK),
pages 97–108.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. (2004). Tropos: An Agent-Oriented
Software Development Methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236.

Cabri, G., Ferrari, L., and Leonardi, L. (2003). Enabling
mobile agents to dynamically assume roles. In Pro-
ceedings of the ACM Symposium on Applied Comput-
ing, Melbourne (USA), March, pages 56–60.

Cabri, G., Leonardi, L., and Puviani, M. (2008). Method-
ologies and Infrastructures for Agent Society Simula-
tion: Mapping PASSI and RoleX. In Proceedings of
the 19th EMCSR, Wien, March 2008.

Cossentino, M., Sabatucci, L., and Chella, A. (2004). Pat-
terns Reuse in the PASSI Methodology. LNCS, pages
294–310.

Jennings, N. (2001). An agent-based approach for building
complex software systems. Communications of the
ACM, 44(4):35–41.

Mamei, F. and Zambonelli, F. (2005). Programming stig-
mergic coordination with the TOTA middleware. In
Proceedings of the 4th International Conference on
Autonomous Agents and Multi-Agent Systems, New
York, USA, pages 415–422.

Molesini, A., Omicini, A., Denti, E., and Ricci, A. (2006).
SODA: A roadmap to artefacts. Engineering Societies
in the Agents World VI, 3963:49–62.

Object Management Group (2007). SPEM.http://www.omg
.org/technology/documents/formal/spem.htm.

Omicini, A. and Zambonelli, F. (1999). Coordination for
internet application development. Autonomous Agents
and Multi-Agent Systems, 2(3):251–269.

Picard, G. and Gleizes, M. (2004). The ADELFE
Methodology–Designing Adaptive Cooperative
Multi-Agent Systems. Methodologies and Software
Engineering for Agent Systems. Kluwer Publishing.

Puviani, M., Barbieri, C., Cabri, G., and Leonardi, L.
(2008a). A Case Study for MAR&A. Technical Re-
port DII-AG-2008-1, DII, University of Modena and
Reggio Emilia.

Puviani, M., Cabri, G., and Leonardi, L. (2008b). Agent
Roles: from Methodologies to Infrastructures. In Pro-
ceedings of CTS 2008, Irvine, USA, May 2008.

Ricci, A., Viroli, M., and Omicini, A. (2007). CArtAgO:
A framework for prototyping artifact-based environ-
ments in MAS. In Weyns, D., Parunak, H. V. D., and
Michel, F., editors, Environments for MultiAgent Sys-
tems, volume 4389 of LNAI, pages 67–86. Springer.

Winikoff, M. and Padgham, L. (2004). Developing Intelli-
gent Agent Systems: A Practical Guide.

Zambonelli, F., Jennings, N., and Wooldridge, M. (2003).
Developing multiagent systems: The Gaia methodol-
ogy. ACM TOSEM, 12(3):317–370.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

506


