
DATA TYPE MANAGEMENT IN A DATA MINING APPLICATION
FRAMEWORK

Lauri Tuovinen, Perttu Laurinen and Juha Röning
Department of Electrical and Information Engineering, P.O. Box 4500, FIN-90014 University of Oulu, Finland

Keywords: Data mining, Application framework, Pipes and filters, Data representation, Data type, Interoperability.

Abstract: Building application frameworks is one of the major approaches to code and design reuse in object-oriented
software engineering. Some frameworks target a particular application domain, adopting a number of domain-
specific problems to be addressed by the framework in such a fashion that there is no need for application
developers to devise solutions of their own to those problems. When the target domain is data mining, one
interesting domain-specific problem is management of the data types of model parameters and data variables.
This is not trivial because the framework must be able to convert parameter and variable values between
different representations, and it would be preferable to have these conversions take place transparently, without
involving the application programmer. This is not difficult to achieve if the framework restricts the programmer
to a predefined set of allowed data types, but if such a restriction is undesirable, the framework needs an
extension mechanism in its type management subsystem. Smart Archive, a framework for developing data
mining applications in Java or C++, includes such a mechanism, based on a type dictionary document and
a type renderer programming interface. These make it possible to handle even highly complex values such
as collections of instances of programmer-defined classes in a variety of platform-independent representation
formats. The benefits of this approach can be seen in how the framework interfaces with databases through
data sinks and in how it exports and imports application configurations.

1 INTRODUCTION

Reusing designs and code is considered desirable in
software engineering. An application framework—a
software skeleton that can be specialized into differ-
ent applications by plugging in a comparably small
quantity of new code—provides both a reusable de-
sign and a body of code that implements the design
in a reusable form. A good framework is therefore
a valuable commodity in software development, and
in certain areas a thoroughly indispensable one; one
would hardly consider writing a graphical applica-
tion for a modern desktop operating system without
adopting a framework such as MFC, Swing or GTK+
to take care of handling user interface elements and
events. (Fayad and Schmidt, 1997)

The purpose of an application framework is to
support a family of applications, often defined by
a particular type of functionality required. Smart
Archive (Laurinen et al., 2005; Tuovinen et al., 2008)
is a framework for applications that use data mining to
extract knowledge from a large body of data. It pro-

vides an application design based on the pipes-and-
filters architectural style, breaking down the solution
to a data mining problem into a sequence of transfor-
mations that can be implemented independently. The
transformations (filters) are encapsulated in compo-
nents, which may also contain a data sink for storing
the transformation results into a file or a database.

Smart Archive is intended to be highly generic,
adaptable to a wide variety of data mining problems
without having to modify the framework code. One
aspect of this generic nature is the manner in which
the data types of variables and parameters are han-
dled. Clearly it would make the framework less
generic if only a small fixed set of data types could
be used. On the other hand, there needs to be a way
of controlling the types used in Smart Archive appli-
cations in order to ensure interoperability between the
framework and other application subsystems such as
databases. Interoperability between different imple-
mentations of the framework is another important is-
sue, as Smart Archive is being concurrently developed
for two programming languages, Java and C++.

333
Tuovinen L., Laurinen P. and Röning J. (2009).
DATA TYPE MANAGEMENT IN A DATA MINING APPLICATION FRAMEWORK.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 333-338
DOI: 10.5220/0001658903330338
Copyright c© SciTePress



A concrete example of how the type management
problem affects application development can be seen
by considering the case of storing the results of a data
transformation into a database table. In order to ac-
complish this an application has to generate a table
structure with suitable column types and a sequence
of SQL queries to write the data into the table. This,
in turn, requires a mapping from application platform
(e.g. Java) types into SQL types and conversions of
values into strings that can be appended to anINSERT
query. Without type management this involves a con-
siderable manual effort.

Smart Archive solves this problem by introducing
an extensible data type engine. The engine offers a
range of commonly used default types and is open
to the addition of new types by developers using the
framework. The extension API ensures that each new
type created by application programmers satisfies cer-
tain conditions designed to enforce interoperability.
Thus the use of data types in Smart Archive is unre-
stricted without also being uncontrolled. The primary
contribution to the state of the art is an abstract type
system covering a number of concrete data processing
and storage platforms; the usefulness of the type sys-
tem is highlighted by important framework features
that could not be implemented without it.

Section 2 describes how applications are devel-
oped using Smart Archive and briefly reviews other
data mining frameworks. Section 3 explains in detail
how the Smart Archive type engine works. Section 4
discusses the practical implications of type manage-
ment in Smart Archive, demonstrating how the type
engine benefits the framework. Section 5 discusses
the findings, pointing out strengths and opportunities
for future work as well as known shortcomings and
possible remedies. Section 6 concludes the paper.

2 DEVELOPMENT WITH SMART
ARCHIVE

Applications based on Smart Archive are built from
components. A component, in this context, is very
specifically defined as an instance of a class that im-
plements theComponent interface, which is one of the
core elements of the framework. A component class
may have some distinguishing features of its own, but
the functionality of a component is determined by the
filter and sink it contains. Simply put, a component is
a receptacle into which different filters and sinks can
be plugged as the application developer wishes.

Similarly, a filter is an instance of a class that im-
plements theFilter interface. A filter receives its in-
put from its parent component and likewise sends its

output to the parent component; in between the data is
transformed by the filter’s processing algorithm. The
interface between the filter and the component con-
sists of groups of logically interrelated data variables
called channels: input channels that the filter requires
to be supplied and output channels that the filter sup-
plies. For example, the filter could implement a sen-
sor fusion algorithm, in which case each input channel
would deliver the data generated by one sensor.

Finally, a sink is an instance of a class that imple-
ments theSink interface. A sink acts as an abstraction
layer between a component and a persistent data stor-
age system, typically a relational database. When a
component has a sink, all of the output produced by
the component’s filter is delivered to it, and the sink
executes the operations required to write the data into
persistent storage. Alternatively, the component can
retrieve data previously stored into the sink, in which
case the sink assumes the role of the filter, producing
data that becomes the component’s output.

Components are linked together with pipes to
form a directed graph with a single root node. Raw in-
put data is inserted into the graph at the root and then
pushed through each component in turn in an order
dictated by the inter-component links (pipes). Thus
the data is refined in a stepwise manner until the de-
sired result of the application is obtained. This style of
software architecture is natural for data mining appli-
cations, which generally progress in steps following
a process where each step brings the data closer to a
form that can be interpreted and applied.

D2K (Automated Learning Group, 2003), KN-
IME (Berthold et al., 2006) and RapidMiner (for-
merly YALE) (Mierswa et al., 2006) are data min-
ing frameworks that, like Smart Archive, employ the
paradigm of assembling independent components into
solutions. Each provides a graphical interface for se-
lecting, configuring and coupling components, which
is a convenient way of creating processing sequences.
Smart Archive trades off some of this convenience for
the ability of developers to decide exactly which parts
of the framework are used in an application and how,
allowing applications to be tailored in a greater vari-
ety of ways. The greater degree of control implies a
greater number of things to learn and to keep track of,
but it still leaves the option of hiding the greater com-
plexity behind a comparably simple interface, so in a
sense this is a best-of-both-worlds approach.

Another major difference is that only Smart
Archive is implemented and maintained in more than
one programming language, making cross-language
portability of applications a consideration that the
other frameworks do not need to address. An ex-
ception to this is the XELOPES library (Prudsys

ICAART 2009 - International Conference on Agents and Artificial Intelligence

334



AG, 2007), which uses a single platform-independent
model, mapped to multiple platform-specific models,
to achieve portability. However, the focus and un-
derlying paradigm of XELOPES differ so much from
the frameworks discussed above that it does not really
make sense to think of it as a parallel to them.

As reported in (Tuovinen et al., 2008), Smart
Archive has been successfully used to develop data
mining applications in diverse application domains.
Thus the framework is not merely a proven concept
but a practical foundation for the implementation of
real-world applications.

3 TYPE MANAGEMENT IN
SMART ARCHIVE

In Smart Archive, every data type used for parameters
or variables in applications must have a corresponding
entry in the type dictionary. The type dictionary is an
XML document containing the following information
about each type:

• abstract type name

• type renderer class

• concrete type names

• type parameters (if applicable)

An excerpt from the dictionary is shown in Figure 1.
The abstract type name is what is used in appli-

cation code to identify the type when specifying pa-
rameters and variables. An abstract type is realized
by one or more concrete types, each in a particular
context. One context is the framework itself, and con-
crete types in this context are types in the implemen-
tation language of the framework. In the other cur-
rently implemented context—relational databases—
concrete types are SQL data types. It is possible to
have more than one concrete type per context by mak-
ing the choice of type dependent on type parameters.

Besides translating type names between different
contexts, the type engine also converts values be-
tween different representations. Each type has an in-
ternal representation, dictated by the framework im-
plementation language, and two external representa-
tions, SQL string and XML element. Conversions
between representations are handled by classes that
implement a special interface, known as type render-
ers. The framework includes a default renderer that
provides a number of commonly needed basic data
types. For types not supported by the default renderer
it is possible to build an extension by coding a new
renderer and writing entries for the new types into
the type dictionary. The framework, when started,

Figure 1: An excerpt from the type dictionary, showing en-
tries for some of the types supported by the default renderer.
The ctype elements indicate the concrete Java and SQL
data types corresponding to each abstract type.

will load all type renderers and place them into a data
structure where they can be accessed quickly.

Figure 2 illustrates what happens when the frame-
work needs to convert a value from one representation
to another. First, a ‘render’ message is passed to the
type engine; the message contains the abstract type
name, the current and target representation formats
and the value itself, anObject in Java. The type en-
gine uses the type name to look up the type renderer in
charge of the type in the type dictionary. It then passes
the ‘render’ message to the renderer, which returns
the converted value. Finally, the return value is passed
to the routine that generated the original ‘render’ mes-
sage. The return value, anotherObject, can then be
cast into its runtime type—in this case,String, as the
purpose of the rendering is to obtain a value that can
be appended to an SQL query string.

In the case of compound values such as lists and
maps the rendering mechanism is applied recursively:
a render operation invoked on such a value triggers
nested operations to render the elements of the com-
pound value. Figure 3 shows the result of this when a
map object is rendered as XML. The initial render op-
eration generates the hierarchy of XML elements and
then uses recursion to fill in the contents of thekey

DATA TYPE MANAGEMENT IN A DATA MINING APPLICATION FRAMEWORK

335



Figure 2: The processing sequence of a rendering operation.
The type engine receives a message (1.) and does a type
dictionary lookup (2.) to find out which type renderer to
call. The message is then forwarded to the renderer (3.),
which performs the conversion. Finally, the converted value
is returned (4.) to the routine that invoked the type engine.

Figure 3: A string-to-boolean map object rendered as XML
by the type engine.

and value nodes. The XML representation is also
used as the SQL form of these data types.

D2K, KNIME and RapidMiner each manage the
data types of variables in such a way that, while the
implementation approach varies, the overall effect is
largely the same. A concrete difference, however, is
that D2K, KNIME and RapidMiner each delegate the
responsibility for handling variables in external con-
texts to the components that interface with those con-
texts. For example, while each framework provides
a component whose function is similar to that of the
data sink in Smart Archive, the conversion of values
from internal to external representation is up to the
components themselves. In Smart Archive the con-
version functionality is provided by the framework
and available also to filters and other application el-
ements that employ some form of persistent storage.

Another notable difference is the treatment of pa-
rameters (values that control the behavior of com-
ponents): in Smart Archive, unlike the other frame-
works, the same mechanisms are used to handle both
parameters and variables. Thus in Smart Archive ev-

ery data type that is legal for parameters is also legal
for variables and vice versa. On the other hand, if one
knows that a type will only be used for a particular
purpose, extending the framework to support the type
can be simplified considerably; in the simplest case it
is sufficient to just insert an entry into the type dictio-
nary without writing any new code.

4 THE TYPE ENGINE IN
PRACTICE

To see how the type engine affects Smart Archive
application development in practice, let us consider
a simple example application with three components
that are executed sequentially. The first component
takes the raw input data, cleans and normalizes it
and outputs the preprocessed data in a format under-
stood by the second component, which extracts fea-
tures from the data. The third component takes the
extracted features and uses them for cluster analysis.

The outputs of the filters of the three components
are written into a database using a data sink. Creat-
ing the sinks requires generating database table struc-
tures suitable for storing the outputs of the filters.
The type engine makes this highly convenient because
it can translate the output variable specifications of
the filters into the equivalent SQL column specifica-
tions. All Smart Archive filters are required to de-
clare their output variables, so given a filter, the ap-
propriate sink can be generated with little extra work.
In fact, in Smart Archive a single method call is
enough, whereas setting up the table structures man-
ually would easily require tens of lines of code.

When a batch of data is fed into the application, it
is progressively refined by each filter and then written
into a database by the associated sink. The sinks use
the type engine to render as strings the variable values
produced by the filters. The rendered strings are for-
matted such that they can be directly appended to the
VALUES clause of an SQLINSERT query. The queries
are automatically generated by the sinks so that the
entire process is almost completely transparent; the
only database-related concepts the programmer needs
to address are the connection parameters.

Once the dataset has been processed by all compo-
nents, the database contains not only the final results
(from cluster analysis) but also an image of the data
after each intermediate step (preprocessing and fea-
ture extraction). Supposing that the application oper-
ator now wants to repeat the clustering with different
parameters, there is no need to start the whole process
over: the results of the feature extractor can be re-
trieved from its sink, leaving only the clusterer to be

ICAART 2009 - International Conference on Agents and Artificial Intelligence

336



re-executed. Similarly, if the operator wants to try out
a different feature set, the results of the preprocessor
can be retrieved, leaving only the other two compo-
nents to be re-executed. Thus Smart Archive can be
used to implement the stepwise approach to data min-
ing discussed in (Laurinen et al., 2004).

Finally, supposing that the operator wants to trans-
mit the application to someone else, it is enough to
send a description of the application configuration
provided that the recipient also has an installation of
Smart Archive. Another necessary condition is that
the recipient has access to all classes used by the ap-
plication. Application classes that are not part of the
framework are mainly filter classes, so the latter con-
dition is generally true if the application uses only
algorithms found in common libraries. Interfaces to
such libraries are among the planned future exten-
sions to Smart Archive.

Components, filters and sinks in Smart Archive
may have any number of parameters that control
their functions. The parameters, like variables, may
be of any data type supported by the type engine.
Smart Archive allows the values of the parameters,
along with all other information that defines a Smart
Archive application, to be written into an XML-based
configuration file. The type engine is used to render
the parameter values as XML elements.

Generating the configuration file proceeds from
the top of the application hierarchy to the bottom. The
top-level routine generates the outline of the configu-
ration document and iterates through the components
of the application, requesting each in turn to describe
itself as an XML element. Each component then re-
quests the same from its filter and sink and inserts
the results into the description it returns to the top-
level routine. The top-level routine collects the com-
ponent descriptions and inserts them into the config-
uration document. Loading a configuration into the
framework is basically a reversal of this process: ev-
ery component, filter and sink class also knows how
to generate an application object from an XML ele-
ment. The framework therefore simply needs to parse
the XML file, find the specified classes and have them
instantiate themselves by giving them as input the ap-
propriate sections of the configuration description.

The generation of component descriptions, like
the generation of data sinks, takes place in an entirely
transparent fashion. This is because the only parts of
a component description that need to be generated dy-
namically are the class names and parameter values of
the component and its filter and sink. The former are
trivial to find and the latter are handled by the type en-
gine, so the XML operations can be implemented in
a common superclass without any knowledge of the

classes that are derived from it. As long as applica-
tion programmers derive their component, filter and
sink classes from these standard abstract superclasses,
their classes are automatically able to perform config-
uration export and import operations as required.

5 DISCUSSION

The interchangeability of filters and sinks is one of
the most important design ideas in Smart Archive.
Whether a component is transforming data with its
filter or retrieving data from its sink makes no differ-
ence to the components that follow it: in either case
the component is producing output that the other com-
ponents process further. With sinks providing access
to all the data that has passed through the application,
the effects of a changed parameter or algorithm can be
tested by rerunning only the affected part of the pro-
cessing sequence. Compared to the tightly integrated
data sink, an external database interface would not
provide an adequate solution, but working with sinks
could easily become a nuisance if the mappings be-
tween variables and database columns had to be done
manually. The type engine prevents this.

The recursive approach adopted by the type en-
gine in rendering compound types can also be used
by application developers writing renderers for data
types they want to use in their Smart Archive appli-
cations. Provided that the state of a class consists
entirely of types already supported by the type en-
gine, a type renderer for the class mostly just needs
to invoke already implemented render operations and
compile their output. Conceivably this could even be
performed automatically by the framework, but at this
time the detailed specification and implementation of
such a mechanism must be deferred to future work.

A possible weakness in the Smart Archive type
rendering scheme is the restriction that there can be
only one renderer for each type. This could prove in-
convenient, in the future if the framework is extended
with a new representation for values. In this case one
might want to write a new renderer to handle the new
representation rather than modify existing ones, espe-
cially if one does not have access to the source code
of some of the renderers one is using. The restriction
may be lifted in future revisions of the framework.

About configuration documents it is worth not-
ing that they describe applications in a format that
does not depend on a particular implementation of
the framework. A configuration exported from a
Smart Archive Java application could therefore be im-
ported into the C++ version of the framework. The
one language-specific feature of the format—class

DATA TYPE MANAGEMENT IN A DATA MINING APPLICATION FRAMEWORK

337



names—means, however, that an additional dictio-
nary would be needed, mapping the names of Java
classes to those of the equivalent C++ classes. This
aspect of the C++ version of Smart Archive has not
yet been fully developed, so testing the portability of
configurations has not been possible.

6 CONCLUSIONS

This paper addressed the problem of managing the
data types of parameters and variables in a data min-
ing application framework. This problem is inter-
esting and nontrivial because, on the one hand, ar-
tificially limiting the set of types a programmer can
choose from is undesirable, but on the other hand, not
controlling types at all may lead to problems in inter-
operability. Smart Archive, a data mining framework
for Java and C++, employs a solution based on a type
dictionary and one or more type renderers, allowing
developers to extend the selection of available types
while ensuring that the framework knows how to han-
dle each type in various situations relating to conver-
sion of values between representations.

The type dictionary is an XML document contain-
ing information on each data type, including the name
of the type renderer that handles the type. A type ren-
derer, in turn, is a class that implements a special ren-
dering interface through which the framework uses its
services. New types are created by editing the dictio-
nary and coding a renderer. The dictionary and ren-
derers allow the framework to keep track of any num-
ber of concrete types and representations associated
with a given type, while the application programmer
only needs to be aware of a single abstract type name
and a single representation, namely the one used in
the implementation language of the framework.

The main principles of Smart Archive application
development were first introduced, along with other
systems intended for the same purpose. The Smart
Archive solution to data type management was then
examined in detail. The practical implications of this
type engine were explored by walking through a hy-
pothetical case study. Finally, some notable strengths,
weaknesses and open issues were identified and an-
alyzed. The type engine has proved useful for im-
plementing framework features that make application
coding considerably quicker and more convenient.

ACKNOWLEDGEMENTS

The authors would like to thank the Finnish
Funding Agency for Technology and In-

novation (http://www.tekes.fi), Rautaruukki
(http://www.ruukki.com) and Polar Electro
(http://www.polar.fi) for funding the research on
Smart Archive in the SAMURAI project. L.
Tuovinen wishes to thank the Graduate School in
Electronics, Telecommunications and Automation
(http://signal.hut.fi/geta/) for funding his postgraduate
work.

REFERENCES

Automated Learning Group (2003). D2K Toolkit
User Manual. Technical manual, available at
http://alg.ncsa.uiuc.edu.

Berthold, M. R., Cebron, N., Dill, F., di Fatta, G., Gabriel,
T. R., Georg, F., Meinl, T., Ohl, P., Sieb, C., and
Wiswedel, B. (2006). Knime: The Konstanz infor-
mation miner. InProceedings of the 4th Annual In-
dustrial Simulation Conference, Workshop on Multi-
Agent Systems and Simulation.

Fayad, M. E. and Schmidt, D. C. (1997). Object-oriented
application frameworks. Communications of the
ACM, 40(10):32–38.

Laurinen, P., Tuovinen, L., Haapalainen, E., Junno, H.,
Röning, J., and Zettel, D. (2004). Managing and im-
plementing the data mining process using a truly step-
wise approach. InProceedings of the Sixth Interna-
tional Baltic Conference on Databases & Information
Systems, pages 246–257.

Laurinen, P., Tuovinen, L., and Röning, J. (2005). Smart
Archive: a component-based data mining application
framework. InProceedings of the Fifth International
Conference on Intelligent Systems Design and Appli-
cations (ISDA 2005), pages 20–25.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and
Euler, T. (2006). YALE: Rapid prototyping for com-
plex data mining tasks. InProceedings of the 12th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 935–940.

Prudsys AG (2007). Xeli’s Intro. Introduction to
XELOPES. Technical manual, available at
http://www.prudsys.com.

Tuovinen, L., Laurinen, P., Juutilainen, I., and Röning, J.
(2008). Data mining applications for diverse indus-
trial application domains with Smart Archive. InPro-
ceedings of the IASTED International Conference on
Software Engineering (SE 2008), pages 56–61.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

338


