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Abstract: The activity of Control Center operators is important to guarantee the effective performance of Power 
Systems. Operators’ actions are crucial to deal with incidents, especially severe faults, like blackouts. In this 
paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in tasks 
like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System 
(ITS) approach is used in the training of the operators, taking into account context awareness and the 
unobtrusive integration in the working environment. 

1 INTRODUCTION 

Current Power Systems are highly complex and 
require sophisticated and precise operation and 
control. The most important real-time decisions 
concerning Power System operation are taken in 
Control Centres where human operators are the final 
link of a complex chain. Although Power System 
reliability has been increasing, incidents with more 
or less severe consequences still occur. In some 
cases, this can result in blackout situations, leading 
to consumer lack of supply, for which the economic 
and social impact can be dramatically high. Figure 1 
shows the impact of the 14th August 2003 blackout 
in the Northeast part of USA. 

Blackouts have been a major concern in Power 
Systems mainly since the occurrence of the 9th 
November 1965 Northeast Blackout in USA. In 
recent years, several blackouts caused major 
concerns making the need to keep lights on more 
important than ever. IEEE Power & Energy 
magazine edited a special issue titled “Shedding 
light on blackouts – From prevention through 
restoration” (vol.4, no. 5, September/October 2006). 
On the 4th October 2006, a Saturday, some minutes 
after 10 p.m., the UCTE (Union for the Coordination 
of Transmission of Electricity) European Network 

experienced a quasi blackout situation affecting 9 
European countries and North Africa and about 10 
million consumers, originated from a switching-off 
of the 380 kV double circuit line Conneforde-Diele 
in Germany. 

 
Figure 1: Northeast USA before and after the 14th August 
2003 Blackout (Source: NOAA – National Oceanic & 
Atmospheric Administration). 

Control Center operators’ performance is 
determinant to minimize the incident consequences. 
The need of a good response of Control Centres to 
severe faults, like blackouts, is even more important 
nowadays, due to the generalization of the 
Electricity Markets (Praça, Ramos, Vale, and 
Cordeiro 2003). As Power Systems reliability 
increased, the number of incidents offering occasion 
for operator on-the-job training has decreased. The 
consequences of incorrect operator behaviour are all 
more severe during a serious incident (Vale et all 
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1997). Operator training is vital for overcoming 
these problems, as well as the availability of 
decision support tools. 

 
Intelligent Tutoring Systems (ITS) has been the 

main approach selected to deal with the operators’ 
training in diagnosis and restoration tasks, namely 
because: 

1. They represent domain knowledge in a 
structured way, allowing the inference of new 
knowledge (access to the essential knowledge). 

2. They model the trainee, allowing action in a 
non-monotonous way, adapting better to the 
trainee’s characteristics and evolution (awareness of 
the needs of people). 

3. With the right didactic knowledge they allow 
the system to choose different pedagogical 
approaches in the different phases of the learning 
process (requirements customization). 

4. They are able to constantly monitor the 
trainee’s performance and evolution, gathering 
information to guide the system's adaptation (context 
awareness). 

5. They typically require very little intervention 
from the training staff, and can be used in the 
working environment without disturbing the normal 
working routines (unobtrusivity). 

 
Figure 2: Tutoring Environment Architecture. 

In this paper we present an Intelligent Tutoring 
System used for training Control Centre operators in 
fault diagnosis and power restoration. Several 

Artificial Intelligence techniques are used to make 
this system able to minimize network experts need 
in training preparation and to enable on the job and 
cooperative effective training. 

The Intelligent Tutoring System that has been 
developed for the Control Centre operators involves 
two main areas: one devoted to the training of fault 
diagnosis skills and another dedicated to the training 
of power system restoration techniques. Figure 2 
shows this tutoring environment architecture. 

2 TUTORING MODULE FOR 
FAULT DIAGNOSIS TRAINING 

In order to illustrate how a training session is 
conducted and the interaction between the operator 
and the tutor, this section presents a very simplified 
diagnosis problem containing a DmR (monophase 
tripping with reclosure) incident, occurred in panel 
204 of Ermesinde substation (SED). The relevant 
SCADA messages related to this incident are 
depicted in Table 1. These SCADA messages 
correspond to the following events: breaker tripping, 
breaker moving and breaker closing (Vale et all 
1997). In a real training scenario the operator is 
faced with a huge amount of messages, typically 
several hundreds. 

Table 1: Incident in panel 204 of SED substation. 

14-DEC-2003 04:24:45.200 SED 204 CCL,2 >>>TRIPPING 0 1

14-DEC-2003 04:24:45.240 SED 204 CCL,2 -BK  BREAKER 0 0

14-DEC-2003 04:24:45.860 SED 204 CCL,2 -BK  BREAKER 0 1

2.1 Reasoning about Operator Answers 

The interaction between the trainee and the tutor is 
performed through prediction tables (Figure 3) 
where the operator selects a set of premises and the 
corresponding conclusion. The premises represent 
events (SCADA messages), temporal constraints 
between events or previous conclusions (Faria, Vale, 
and Ramos, 2005). 

 
Figure 3: Prediction Table. 
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DiagTutor does not require the operator’s 
reasoning to follow a predefined set of steps, as in 
other implementations of the model tracing 
technique (Anderson et al., 1995). In order to 
evaluate this reasoning, the tutor will compare the 
prediction tables’ content with the specific situation 
model. This model is obtained by matching the 
domain model with the inference undertaken by 
SPARSE expert system (Vale et al., 1997). This 
process is used to: identify the errors revealing 
operator’s misconceptions; provide assistance on 
each problem solving action, if needed; monitor the 
trainee knowledge evolution; and provide learning 
opportunities for the trainee to reach mastery. 

The identified errors are used as opportunities to 
correct the faults in the operator’s reasoning. The 
operator’s entries in prediction tables cause 
immediate responses from the tutor. In case of error, 
the operator can ask for help which is supplied as 
hints. Hinting is a tactic that encourages active 
thinking structured within guidelines dictated by the 
tutor. The first hints are generic, becoming more 
detailed if the help requests are repeated. 

ce1

ce4
ct1

ce2

ct4

cc2cs11

ce1 ce4 ct1

cs6 ce2 ct4

cc2

cs8

TRIPPING / T1 BREAKER 00 / T2

BREAKER 01 / T3

|T1-T2|<=30

|T2-T3|<=100Mono-phase tripping 
of unknown type / T1

Mono-phase 
re-closure / T3

Mono-phase tripping 
with successful re-
closure (DmR) / T3

1 line-end DmR / T3

Higher granularity level Lower granularity level  
Figure 4: Higher and lower granularity levels of the 
situation specific model. 

The situation specific model generated by the 
tutoring system for the problem presented is shown 
in the left frame of Figure 4. It presents high 
granularity since it includes all the elementary steps 
used to get the problem solution. The tutor uses this 
model to detect errors in the operator reasoning by 
comparing the situation specific model with the set 
of steps used by the operator. This model’s 
granularity level is adequate to a novice trainee but 
not to an expert operator. The right frame of Figure 
4 represents a model used by an expert operator, 
including only concepts representing events (cei), 
temporal constraints between events (cti) and the 

intermediate (csi) and final conclusions (cci). Any 
reasoning model between the higher and lower 
granularity level models is admissible since it does 
not include any violation to the domain model. 
These two levels are used as boundaries of a 
continuous cognitive space. 

2.2 Adapting the Curriculum to the 
Operator 

The main goal of the Curriculum Planning module is 
to select, from a library, a problem fitting the trainee 
needs. 

The preparation of the tutoring sessions’ 
learning material is a time-consuming task. In the 
industrial environment, there is not usually a staff 
exclusively dedicated to training tasks. Specifically, 
in the electrical sector, the preparation of training 
sessions is done by the most experienced operators 
which are often overloaded with power system 
operation tasks (Faria, Vale and Ramos 2000). In 
order to overcome this difficulty, we developed two 
tools. The first one generates and classifies training 
scenarios from real cases previously stored. As these 
may not cover all the situations that control centre 
operators must be prepared to face, another tool is 
used to create new training scenarios or to edit 
already existing ones (Faria, Vale and Ramos 2000). 

The process used by the Curriculum Planning 
module to define the problems’ features involves 
two phases. First, the tutor must define the difficulty 
level of the problem, using heuristic rules. These 
rules relate parameters like the trainee’s 
performance in previous problems and his overall 
level of knowledge. In the second phase, the tutor 
uses the user model’s contents to choose the type of 
the most suitable incidents to be included in the 
problem, taking into account the domain concepts 
involved in each type of incident and the 
corresponding trainee’s expertise. 

2.3 Difficulty Level Selection 

To evaluate the problems’ difficulty level, we need 
to identify the cases’ characteristics that increase 
their complexity, namely by the: number of 
incidents involved in the case; variety of incident 
types; number of involved plants; and existence of 
chronological inversion in SCADA messages. 

The choice of the difficulty level depends on two 
factors contained in the trainee’s model: the trainee’s 
global knowledge and a global acquisition factor. 
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The first parameter is a measure of the trainee’ 
knowledge level in the whole range of domain 
concepts and is calculated using the mean of his 
knowledge level in each domain concept.  The 
Curriculum Planning Module needs appropriate 
thresholds for deciding on the next problem 
difficulty level. The opinion of the trainees, 
regarding their personal evolution as the problems 
difficulty level is changed, can be used to tune these 
thresholds. 

The acquisition factors record how well trainees 
learn new concepts. When a new concept is 
introduced, the tutor monitors the trainee 
performance on the first few problems, namely how 
well and how quickly he solves them. This analysis 
determines the trainee’s acquisition factor. The 
procedure used to determine the trainee’s acquisition 
in each domain concept is based on the number of 
times the trainee’s knowledge level about the 
concept increased, considering the three first 
applications of the concept. 

The mechanism used to define the difficulty 
level of the problems is based on the following rule: 

If the global knowledge level and the global 
acquisition  factor change in opposite directions 
Then the problem difficulty level does not change 
Else the problem difficulty level changes in the same 
direction of the global knowledge level. 

2.4 Problem Type Adequacy to the 
Trainee Cognitive Status 

The mechanism used to classify each kind of 
incident in terms of adequacy to the trainee is based 
on a neural network (Fig. 5). The nodes belonging to 
the input layer correspond to the concepts included 
in the domain’s knowledge base (to be assimilated 
by the trainees). Each node represents the 
application of a concept in a specific context. For 
instance, the nodes ce1/T1 and ce1/T5 represents 
two instances of the same concept and characterize 
the application of the concept of breaker tripping in 
the situations of first tripping and tripping after an 
automatic reclosure. The input vector contains an 
estimate of the trainee’s expertise level for each 
concept or its application and is obtained from the 
user model. Therefore, this vector represents an 
estimate of the trainee’s domain knowledge.  

The output layer units represent the adequacy of 
an incident type to the current learner’s knowledge 
status. The number of units corresponds to the 
number of incident types of the following types: DS 
(single tripping); DtR (three-phase tripping with 
reclosure); DmR (monophase tripping with 

reclosure); DtD (three-phase tripping with reclosure 
at both ends of the line); and DmD (monophase 
tripping with reclosure at both ends of the line). 
Each output layer’s node, representing a type of 
incident, is connected only to the input nodes 
corresponding to concepts involved with that 
incident type. These connections are done with links 
of weight wij. 

The values used as weights are wij={1, 0, –} 
where ‘–‘ is used to indicate that there is no 
connection between node i of the output layer and 
the input node j. This means that concept j is not 
involved in an incident type i. 
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Figure 5: Classification mechanism. 

Each output neuron activation level is computed 
using the input vector and its weight vector. The 
activation is defined by the Euclidean distance, 
given by (1). 
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We can see that a neuron with a weight vector 
(w) similar to the activation level vector of the input 
nodes (x) will have a low activation level and vice 
versa. The output layer’s node with the lowest 
activation will be the winner. 
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In Figure 5 we illustrate a situation where all the 
model variables are set to their minimum value (0.1) 
and achieve a maximum value of 0.9. It is also 
assumed that the ideal operator applies correctly all 
the domain concepts involved in the problem and 
that the updating rate is constant. 

It can be observed that, after the third iteration, 
the concepts used in DS incident type overcome the 
medium level (0.5), leading to a new type of incident 
(DtR) in the next iteration. After the fourth iteration, 
some concepts that are not used in DS but are 
involved in DtR incident overtake the minimum 
level for the first time. 

We observed that an early introduction of new 
concepts can contribute to increase the instructional 
process efficiency. The problem selection 
mechanism ensures that the problem sequence is not 
monotonous, tending to stimulate the operator’s 
performance with new kinds of incidents. 

3 TUTORING MODULE FOR 
RESTORATION TRAINING 

3.1 Restoration Training Issues 

The management of a power system involves several 
distinct entities, responsible for different parts of the 
network. The power system restoration needs a close 
coordination between generation, transmission and 
distribution personnel and their actions should be 
based on a careful planning and guided by adequate 
strategies (Sforna and Bertanza, 2002). 

In the specific case of the Portuguese 
transmission network, four main entities can be 
identified: the National Dispatch Centre (CC); the 
Operational Centre (CO); the Hydroelectric Control 
Centres (CTCH); and the Distribution Dispatch 
(EDIS). 

The power restoration process is conducted by 
these entities in such a way that the parts of the grid 
they are responsible for will be slowly led to their 
normal state, by performing the actions specified in 
detailed operating procedures and fulfilling the 
requirements defined in previously established 
protocols. This process requires frequent negotiation 
between entities, agreement on common goals, and 
synchronization. 

The purpose of the training tutor is to allow the 
training of the established restoration procedures and 
the drilling of some basic techniques. Power system 
utilities have built detailed plans containing the 
actions to execute and the procedures to follow in 

case of incident. In the case of the Portuguese 
network, there are specific plans for the system 
restoration following several cases of sectorial 
blackouts as well as national blackouts, with or 
without loss of interconnection with the Spanish 
network. Table 2 illustrates a service restoration 
plan. 

Table 2: Restoration Plan example. 

Step 
No. PLAN STEP 

0 Notify Distribution Dispatch Center about the 
incident and expected restoration time. Wait for 
150 kV to be available in SRA bus 

1 Feed the 150kV to SRA bus using 400/150 kV 
autotransformers 

2 Switch SVI substation to manual 
3 Energize the lines fed by the 150 kV bus of 

SRA with priority to lines connected to 
substations SOR and SRU and to power plants 
CCD and CVN 

4 Contact the Hydroelectric Power Plants’ CC, 
asking for the restoration of their lines with 
priority for the ones between CCD and CAR 
and between CCD and SVI/CVF 

5 Wait for the automatic operators of SCV and 
SGR substations to restore the 150/60 kV 
transformers, if no voltage is available in 60 kV 
buses 

6 Wait for SOR substation automatic operator to 
restore the service, including the line to SVI 

7 Finish the restoration of 150 kV line between 
substations SRA and SED 

8 Check if the automatic operators’ work is 
concluded and finish the restoration if it has not 
been done automatically 

9 Notify Distribution Dispatch Center about the 
end of the restoration process 

Our Restoration training system use the concept 
of agents (Jennings and Wooldridge, 1995), that can 
be seen as virtual entities that possess knowledge 
about the domain. As real operators, they have tasks 
assigned to them, goals to be achieved and beliefs 
about the network status and others agents’ activity. 
They work asynchronously, performing their duties 
simultaneously and synchronizing their activities 
only when this need arises.  Therefore, the system 
needs a facilitator (simulator in Figure 2) that 
supervises the process, ensuring that the simulation 
is coherent and convincing. 

In our system, the trainee can choose to play any 
of the available roles, namely the CO and the CC 
ones, leaving to the tutor the responsibility of 
simulating the other participants. 
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3.2 Trainee’s Model 

The   representation   method   used   to  model  the  
trainee’s knowledge about the domain knowledge is 
a variation of the Constraint-Based Modelling 
(CBM) technique (Ohlsson, 1993). This student 
model representation technique is based on the 
assumption that diagnostic information is not 
extracted from the sequence of student’s actions but 
rather from the situation, also described as problem 
state, that the student arrived at. Hence, the student 
model should not represent the student’s actions but 
the effects of these actions. Because the space of 
false knowledge is much greater than the one for the 
correct one, it was suggested the use of an 
abstraction mechanism based on constraints. In this 
representation, a state constraint is an ordered pair 
(Cr,Cs) where Cr stands for relevance condition, and 
Cs for satisfaction condition. Cr identifies the class 
of problem states in which this condition is relevant 
and Cs identifies the class of relevant states that 
satisfy Cs. Under these assumptions, domain 
knowledge can be represented as a set of state 
constraints. Any correct solution for a problem 
cannot violate any of the constraints. A violation 
indicates incomplete or incorrect knowledge and 
constitutes the basic piece of information that allows 
the Student Model to be built on.  

This CBM technique does not require an expert 
module and is computationally undemanding 
because it reduces student modelling processing to a 
basic pattern matching mechanism. One example of 
a state constraint can be found below: 
If there is a request to CTCH to restore the lines 
under its responsibility 
Then the lines that connect to the hydroelectric 
power plants must already have been restored 
Otherwise an error has occurred 

Each violation to a state constraint like the one 
above enables the tutor to intervene both 
immediately or at a later stage, depending on the 
seriousness of the error or the pedagogical approach 
that was chosen. 

This technique has allowed us to give the tutor 
the flexibility needed to address trainees with a wide 
range of experience and knowledge, tailoring, in a 
much finer way, the degree and type of support 
given, and, at the same time, spared us the 
exhaustive monitoring and interpretation of student’s 
errors during an extended period, which would be 
required by alternative methods.  

Nevertheless, it was found the need for a 
metaknowledge layer in order to adapt the CBM 
method to an essentially procedural, time-dependent 

domain like the power system restoration field. This 
layer is composed of rules that control the 
constraints’ application, depending on several 
issues: the phase of the restoration process in which 
the trainee is; the constraints previously satisfied; 
and the set of constraints triggered simultaneously. 

These rules establish a dependency network 
between constraints that can be represented by a 
graph (Figure 6) (Silva, Vale, and Ramos, 1995). 
The relationships between constraints expressed by 
this graph can be of precedence, mutual exclusion or 
priority. 

 
Figure 6: Constraint Dependency Graph. 

3.3 The Cooperative Learning 
Environment 

This tutor is able to train individual operators as if 
they were in a team, surrounded by virtual 
“operators”, but is also capable of dealing with the 
interaction between several trainees engaged in a 
cooperative process. It provides specialized agents to 
fulfil the roles of the missing operators and, at the 
same time, monitors the cooperative work, stepping 
in when a serious imbalance is detected. The tutor 
can be used as a distance learning tool, with several 
operators being trained at different locations. 

To support the tutor monitoring activities of the 
cooperative discussion and decision processes, 
several provisions were made in order to be able to 
accurately model the interactions between trainees. 
The core data contained in the student model has 
been complemented with information concerning the 
quantity and characteristics of the interactions 
detected between trainees. This data is gathered by 
the tutor by means of a loose monitoring of the 
interaction patterns coupled with a surface level 
analysis of the messages contents. 
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The tutor will be active by its own initiative only 
if it detects a clear imbalance in the discussion 
process. It may be called to step in though by the 
trainees themselves, if they agree on a course of 
action or if they find themselves in an impasse 
situation. In the first case, the tutor will use the 
knowledge contained in the CBM module to 
evaluate the divergent proposals. In the later case, it 
will combine the constraint satisfaction data 
previously gathered with procedural knowledge 
containing the sequence of the specific restoration 
plan, in order to issue recommendations about the 
next step to fulfil. 

 
Figure 7: CoopTutor Interface. 

The general aspect of the ITS interface is shown 
in Figure 7. 

4 CONCLUSIONS 

This paper described how an Intelligent Tutoring 
System can be used for the training of Power 
Systems Control Centre operators in two main tasks: 
Incident Analysis and Diagnosis; and Service 
Restoration. Several Artificial Intelligence (AI) 
techniques were joined to obtain an effective 
Intelligent Tutoring environment, namely: Multi-
Agent Systems, Neural Networks, Constraint-based 
Modelling, Intelligent Planning, Knowledge 
Representation, Expert Systems, User Modelling, 
and Intelligent User Interfaces. 

The developed system is used in the training of 
Electrical Engineering BSc students, since the 
selection of new operators is done from this kind of 
students. It is also important to notice that this 
environment has been selected as one of the most 
important systems combining AI techniques to be 
available in the “AI-50 years” Exhibition in Portugal 

(Ramos, 2006), being experimented by many 
undergraduate students, motivating them for the 
Electrical Engineering and Computer Science fields. 

Concerning the operators’ training, the most 
interesting features of this environment are: 

1. The connection with SPARSE, a legacy 
Expert System used for Intelligent Alarm Processing 
(Vale et al, 1997). 

2. The use of prediction tables and different 
granularity levels for fault diagnosis training. 

3. The use of the model tracing technique to 
capture the operator’s reasoning. 

4. The development of two tools to help the 
adaptation of the curriculum to the operator - one 
that generates training scenarios from real cases and 
another that assists in creating new scenarios. 

5. The automatic assignment of the difficulty 
level to the problems. 

6. The identification of the operators’ 
knowledge acquisition factors. 

7. The automatic selection of the next problem 
to be presented, using Neural Networks. 

8. The use of Multi-Agent Systems paradigm to 
model the interaction of several operators during 
system restoration. 

9. The use of the Constraint-based Modelling 
technique in restoration training. 

10. The availability of an Intelligent User 
Interface in the interaction with the operator. 
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