
JAMOCHAAGENT
A Rule-based Programmable Agent

Uta Christoph, Karl-Heinz Krempels and Alexander Wilden
Chair of Computer Science 4, RWTH Aachen University, Aachen, Germany

Keywords: Agent programming, Speech-act consumption, Speech-act production, Rule-based system.

Abstract: Agent programming in compliance with standardized interaction mechanisms is a challenging task in agent
based application development. This results from standard-compliant agent development frameworks that
provide support for the interaction mechanisms on one hand and non-standardized high level programming
inference machines for knowledge processing on the other hand.
We propose an approach to automated speech act consumption and production within MAS by mapping agent
behaviour onto a rule-based system. We show how speech acts have to be transformed, resolved and retrans-
formed into the appropriate reply act to comply with predefined/given interaction protocols. This shift of
behaviour definition onto a rule-based system allows for a convenient adaptation of agent behavior at runtime
without the necessity of time consuming recompilation.

1 INTRODUCTION

Communication in third generation MAS (multi-
agent systems) is mostly based on interaction proto-
cols and speech acts recommended by FIPA (Foun-
dation for Intelligent Physical Agents) and existing
semantic languages (Botello et al., 2001), such as
KIF, Prolog, FIPA Semantic Language, ebXML etc.
Within the content of the messages constituting an in-
teraction protocol, ontologies are used for the speci-
fication of domain and task oriented terms and rela-
tions. The ontology design process is already well
supported by different development and maintenance
tools, like e.g. Protégé, which also afford a convenient
export of ontologies for direct use in existing agents,
agent systems and their development process.

The appropriate continuative step is the automated
semantic evaluation of speech acts and the used in-
teraction protocols by agents themselves. This pre-
sumes the ability of an agent to automatically process
the content of a message (speech act) represented by
a content language and an ontology. Furthermore, it
presumes that an agent is able to act according to its
internal state (which might be influenced by the eval-
uation of a message content), e.g to react (properly)
to a speech act. In this paper an approach for the au-
tomated evaluation of agent speech acts with the help
of a rule based inference machine is introduced.

The remainder of this paper is outlined as follows:

Section 2 gives an overview of FIPA-compliant in-
telligent agent programming, existing drawbacks in
present approaches, and states requirements that must
be met to resolve such drawbacks. This is followed
by the introduction of our approach in section 4 and
a detailed description of theJamochaAgentarchitec-
ture in section 5. Section 6 specifies a formalization
of the transformations between speech acts and rule-
based systems and depicts some chosen speech acts
in detail. In section 7 an example illustrates the trans-
formations. We finish this paper with a summary of
our results and some conclusions for future work in
section 8.

2 STATE OF THE ART

The implementation of intelligent agents supporting
FIPA-compliant interaction protocols(FIPA, 2002b)
has to consider complex speech acts, the used con-
tent language, as well as embedded ontological con-
cepts. In most FIPA-compliant agent systems Java
is used as programming language and FIPA-SL (se-
mantic language) (FIPA, 2002e) as the content lan-
guage. Ontologies are usually designed and main-
tained with ontology editing tools, e.g. Protégé, and
exported to a target language that can be handled
by the agent system, e.g. Java code generated with
Protégé’s Bean Generator plugin. Yet the challenge

447
Christoph U., Krempels K. and Wilden A. (2009).
JAMOCHAAGENT - A Rule-based Programmable Agent.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 447-454
DOI: 10.5220/0001558204470454
Copyright c© SciTePress



for developers is to manually create message content
for agent communication in Java and in the process
respecting the structure of the given ontology as well
as the FIPA-SL grammar rules. Thus the construction
of a simple query becomes a very extensive and time-
consuming job, due to the need to define the used
terms at all FIPA-SL grammar levels, to instantiate
them, and to initialize them with the according sub-
terms manually. (To get an idea of this task consider a
bottom-up approach on the FIPA-SL grammar (FIPA,
2002e)[pages 2-4]:VariableIdentifier, Variable, Wff.,
etc.)

For intelligent agents in real world scenarios the
capability to use complex queries is essential. Assum-
ing that these queries are of a higher complexity than
the one in a trivial case, where one or two variables
in a boolean logic domain range have to be handled.
Additionally, the used ontological concepts have to
be instantiated, their slots have to be initialized with
corresponding values, and finally the new concept in-
stance must be integrated in the described FIPA-SL
term. An example for this can be consulted in (Caire,
2002)[pages 20-21].

Another point to be considered is that a sent mes-
sage also has to be checked syntactically and semanti-
cally on the receiving side. For that purpose the mes-
sage is passed to a parser for syntax-checking first and
then the used ontological concepts must be extracted
by hand. E.g. if the received message is a query
then the used operators have to be mapped to corre-
sponding operators of the programming language and
if necessary the used logic as well. If the received
message is a request for a specific action, then the
term specified in the used ontology for this agent ac-
tion needs to be bound, e.g to a JAVA method that
executes this action.

This again is a tedious job that in the field of artifi-
cal intelligence usually is done by inference machines
and not by developers. One possibility to simplify this
process is to create templates for message contents
with the ontology design tool Protégé and the Bean
Generator plugin. Though this is not a very sophis-
ticated solution because intelligent agents should be
able to generate queries and requests at runtime.

3 EXISTING APPROACHES

The following approaches resolve the necessity of
implementing each speech act manually for FIPA-
compliant interactions.

The JADE Semantics Add-on (Bellifemine et al.,
2007) provides basic support for FIPA-SL process-
ing and interpretation. An incoming message is for-

warded to an SL parser first and then the resulting
terms are evaluated with an embedded knowledge
base (KB) by syntactical term substitution. This how-
ever seems to be the main disadvantage of this ap-
proach as it can result in overflowing work memory
for large amounts of terms.

In Jadex (Pokahr et al., 2005) incoming messages
are handled as events according to their speech act
type. For each speech act type a corresponding pro-
cedure is required that processes the speech act with
respect to its content. The Jadex approach also pre-
sumes the separate programming of procedures in
Java and their postponed configuration with the help
of files, written in XML and a Java-like syntax. In
our opinion this language mismatch is the weak point
of this approach because it assumes that a developer
must know more than one programing language and
paradigm.

Zeus (Nwana et al., 1999) is another agent devel-
opment framework that is not fully FIPA-compliant.
Each incoming message is processed by a message
handler and is then dispatched to the relevant compo-
nents of the agent, e.g. action plans. All actions have
to be programmed by the agent developer in advance
and must be loaded to the action base of the agent be-
fore the execution is started.

In all these approaches one major drawback re-
mains. Namely the fact that agents and their behavior
have to be programmed and compiled completely be-
fore their execution. A reconfiguration of an agent
behavior at runtime is possible only in a very lim-
ited way, e.g. by replacing its behavior object by an-
other one. This requires a modification of the behav-
ior program and its recompilation, and therefore only
shifts the inflexibility from agent to behavior level.
This drawback has a high impact on the development
time of agent based applications, due to time consum-
ing testing and evaluation phases and consequential
restart cycles of the whole application.

3.1 Requirements

For the development of a model which resolves this
problem the following requirements must be taken
into account.

3.1.1 Standardized Interaction and
Communication Modes

The usage of standards is a requirement for interop-
erability in all fields of software development and
significant for the success of an application. It pro-
vides for using different components side by side or
conjointly. Especially in agent technology in its role
as intelligent middleware standardized interfaces are

ICAART 2009 - International Conference on Agents and Artificial Intelligence

448



the key for successful system and service integration.
Distributed agents which offer and use varying ser-
vices need a well-defined interaction layer in order to
solve problems in cooperative mode.

3.1.2 User-friendly Programming Interface

A user-friendly programming interface is demanded
in order to reduce the agent development effort. The
agent should be programmable in a higher level pro-
gramming language at runtime without the need of
recompiling the source code. For this purpose a rule-
based systems is appropriate. To combine the stan-
dardized communication and interaction modes with
this approach the rule-based programming paradigm
the rule-based system must be integrated in the agent
framework.

3.1.3 Consolidation of Requirements

The consolidation of standards and a high level pro-
gramming interface promise to resolve the remaining
drawback. Thus in our approach we try to integrate
both requirements into one intelligent software com-
ponent, theJamochaAgent. In this wayJamochaA-
gentoffers the developers of agent-based applications
the advantage of convenient declarative programming
at runtime and at the same time ensures interoperabil-
ity with existing and well established systems.

4 APPROACH

To meet the above claimed requirements the follow-
ing standard and rule-based system are used in this
approach. The FIPA standard is already prevalent
in agent technology and has been admitted as a new
chapter of the IEEE computer society. Thus the ap-
proach introduced here is based on the FIPA interac-
tion and service models. Particularly the agent com-
munication language (ACL) (FIPA, 2002a) which is
based on speech acts, the content language FIPA-SL
and the interaction protocols provided by FIPA are the
essentially considered elements. Therefore, the agent
framework JADE which supports these models is cho-
sen as the preferred agent development platform.

As programming interface for the rule-based sys-
tem CLIPS (C Language Integrated Production Sys-
tem) (ASD, 2007) is chosen here, due to its user-
friendliness and the convenient way to describe the
behavior of an agent by rules and facts in a declara-
tive manner. Additionally it provides numerous well
established libraries for solving problems in the AI
field.

JamochaAgentinherits FIPA-compliant commu-
nication capabilities from the agent component pro-
vided by the JADE framework and serves therein
only as a communication interface to other agents.
The interaction among agents consisting of consecu-
tive speech acts is described by FIPA interaction pro-
tocols (FIPA-SC00001G, 2002) (FIPA-SC00023K,
2004) which are mapped onto the rule-based system
to allow for interaction protocol adaptations at run-
time. Incoming speech acts are consumed and out-
going speech acts are produced by the rule engine in
rule-based manner. This also allows for the adaptation
of agent behavior at runtime.

5 ARCHITECTURE

Figure 1 gives an overview of theJamochaAgentar-
chitecture. At first the functionality of the inter-
nal components of theJamochaAgentis introduced,
then the operation modes of the agent are discussed.
Therein the consumption and production of speech
acts are shown in Figure 2 and Figure 3.

Incoming message queuecontaining all the incom-
ing ACL messages of the agent.

Outgoing message queuecontaining all the outgo-
ing ACL messages of the agent.

Rule-based systemconsisting of a KB, a rule based
inference engine. The KB contains a description
of the agent world and the rule base a rule-based
description of the agents behavior and a rule-
based definition of the FIPA interaction protocols.
The inference engine applies the rules from the
rule base to the KB to deduce the next action of
the agent.

FIPA-SL to CLIPS adaptor transformes an ACL
message from the incoming message queue rep-
resented in FIPA-SL content language into the
equivalent CLIPS programming language repre-
sentation of the rule-based system.

CLIPS to FIPA-SL adaptor transforms propo-
sitions of the CLIPS programming language
describing a speech act into appropriate FIPA-SL
representation and generates an ACL speech act
that is added to the outgoing message queue of
the agent.

User interface enables the user to inspect the content
of the KB, the content of the rule base, and the
processing mode of the inference engine with the
help of a graphical user interface or a shell with a
command line interface.

JAMOCHAAGENT - A Rule-based Programmable Agent

449



rule-based agent

outgoing
ACL-messages

adaptor
FIPA-SL – CLIPS

incoming
ACL-messages

FIPA agent

adaptor
CLIPS – FIPA-SL

speech act

production

speech act

consumption

rule-based system

user interface

Figure 1: Architecture JamochaAgent.

((action      

     (agent-identifier        

         :name JA@igel:1100/JADE        

         :adresses (sequence http://igel:1099/acc))      

            (addTask        

                :aTask          

                  (Task            

                      :name Appendectomy            

                      :type operation)

             ...

(addTask

  (assert (Task 

    (name Appendectomy)

    (type operation)

    ...

speech act
(FIPA-SL)

speech act
(CLIPS)

FIPA-SL
parser

FIPA-SL 
interpreter rule-based system

incoming
ACL-messages

code-generator
(CLIPS)

FIPA-SL to CLIPS adaptor 

Figure 2: ACL processing.

A JamochaAgentconsumes an incoming message
with respect to the used interaction protocol by as-
serting a new fact into the KB of the agent. The new
fact activates a rule that is fired. The execution of this
rule transforms the content of the ACL message given
in FIPA-SL to the CLIPS language with the help of
the FIPA-SL to CLIPS adaptor and saves the result
in a special slot of the same fact. This activates an-
other rule that executes the CLIPS code produced in
the rule-based system. Figure 2 shows the architec-
ture of the FIPA-SL to CLIPS adaptor, that is com-
posed of a FIPA-SL parser, a FIPA-SL interpreter, and

a CLIPS code generator. The content of an ACL mes-
sage given in FIPA-SL is processed by the FIPA-SL
parser. The resulting syntax tree is used by the FIPA-
SL interpreter to configure descriptions of the syntac-
tical elements of the CLIPS language. From these de-
scriptions the CLIPS code generator will produce the
CLIPS code semantically equivalent to the FIPA-SL
content.

The architecture of the CLIPS to FIPA-SL adator
is shown in Figure 3. The adaptor consists of speech
act templates and a FIPA-SL code generator. An act-
ing agent writes a proposition describing its action

ICAART 2009 - International Conference on Agents and Artificial Intelligence

450



Table 1: Semantic characterization elements ofLSL.

Element Description

Action An action that is intended to
be executed by the receiving
agent.

ConstraintCondition A condition that has to be met
in order to execute an action.

Proposition An expression that describes
one or more elements of the
underlying ontology.

Re f erentialExpression An expression that describes
elements of the underly-
ing ontology and additionally
holds a reference variable
defining a specific scope.

speechact An additional speech act em-
bedded in the given speech
act.

(query, request, inform, etc.) in a new fact that is
based on the corresponding speech act template. The
new fact activates a rule that fires and transforms the
CLIPS proposition with respect to the chosen tem-
plate (speech act type) to FIPA-SL content. After the
transformation of the agent action into the FIPA-SL
representation, this is embedded in a FIPA-ACL mes-
sage and forwarded to the outgoing message queue of
the agent.

6 MAPPING SPEECH ACTS
ONTO RULE-BASED SYSTEMS

The semantics of FIPA-SL messages need to be
preserved when mapping speech acts onto a rule-
based system. Therefore it is necessary to define a
transformation from FIPA-SL representation to an-
other knowledge representation (in this approach: the
CLIPS language). The following definitions are given
to formalize this transformation:

Definition 1. Let LSL be the language of valid SL ex-
pressions andLKB the language of valid expressions
of a KB.

ThenτLSL,LKB : LSL→ LKB is a transformation,
that maps an element ofLSL onto appropriate ele-
ments inLKB.

The semantic characterization elements of the lan-
guagesLSL andLKB are listed and shortly described
in the tables 1 and 2 respectively.

The mapping of the SL elements varies for each

Table 2: Semantic characterization elements ofLKB.

Element Description

Fact A fact in the underlying KB.

FunctionCallI (I for Immediate) A function call
that will be executed in the under-
lying KB.

FunctionCallOD (OD for On Demand) A function
call that can be executed in the
underlying KB, but not immedi-
atly. Mostly it only has informa-
tive purpose and is stored in string
representation.

Rule A rule that can trigger one or more
actions in the underlying KB.

ConceptSet A simple character string that can
be interpreted in the underlying on-
tology in a reasonable way.

speech act (see (FIPA-SC00037J, 2002)). Thus the set
of all FIPA-compliant speech acts is defined first and
based on that the transformation of single elements
for each invidual speech act is defined.

Definition 2. S is the set of all speech acts defined in
the FIPA standards (FIPA-SC00037J, 2002).

In the following paragraphs the transformation
τLSL,LKB for all speech acts inS is defined separately.
For this reasonτLSL,LKB is extended by an indexs∈ S
for each speech act.

Definition 3. Let s∈ S.
ThenτLSL,LKB,s is the transformationτLSL,LKB that

only maps exactly the elements ofLSL onto elements
of LKB that are used in the speech act s.

Due to limited space only a selection of speech
act transformations is given here. A complete list of
defined speech acts will be published in a technical
paper. The selection discussed here covers all speech
acts which can occur in a FIPA-query (FIPA, 2002c)
and FIPA-request interaction protocol (FIPA, 2002d).

6.1 Agree

An agree speech act informs the receiver that the
sender agrees to perform some action the receiver pre-
viously requested him to do. This speech act con-
sists of anAction the sender is going to execute and
a Propositionthat gives one or more conditions that
must fulfilled prior to the execution. The transforma-
tion steps fors= agreeare defined as follows:

• τLSL,LKB,agree: Action 7→ FunctionCallI

JAMOCHAAGENT - A Rule-based Programmable Agent

451



(addTask

  (assert (Task 

    (name Appendectomy)

    (type operation)

    ...

((action      

     (agent-identifier        

         :name JA@igel:1100/JADE        

         :adresses (sequence http://igel:1099/acc))      

            (addTask        

                :aTask          

                  (Task            

                      :name Appendectomy            

                      :type operation)

             ...

CLIPS to FIPA-SL adaptor

decision context
of the agent

rule 1

rule 2

rule 3

rule 4

FIPA Agree

FIPA Cancel

....

FIPA Request

code generator
(FIPA-SL)

outgoing
ACL-messages

speech act
(FIPA-SL)

speech act
(CLIPS)

...

rule x

Figure 3: ACL production.

• τLSL,LKB,agree: Proposition7→ConceptSet

The information embedded in anagreespeech act
is just added to the KB and can be interpreted using
the underlying ontology.

6.2 Failure

A failure speech act indicates that the sender tried to
perform some action but failed during the execution.
It consists of anAction the sender tried to perform
and aPropositiondenoting the cause for the failure.
The transformation steps fors= f ailure are defined
as follows:

• τLSL,LKB, f ailure : Action 7→ FunctionCallI
• τLSL,LKB, f ailure : Proposition7→ConceptSet

The information embedded in anfailure speech
act is just added to the KB and can be interpreted us-
ing the underlying ontology.

6.3 Inform / Inform-if / Inform-ref

An inform speech act tells the receiver that the em-
bedded statement is true or not.inform-if andinform-
ref are just so called macro speech acts that further de-
scribe the content.inform-if gives information about
the truth value of a statement andinform-ref provides
one or more items that fulfill a given condition. In this
section those three speech acts will be treated com-
bined asinform.

The inform speech act just consists of one
Propositionthat is regarded as fulfilled and send to
the receiver for informational purpose. The transfor-
mation step fors= in f orm is defined as follows:

• τLSL,LKB,in f orm : Proposition7→ConceptSet

The information embedded in aninform speech
act is just added to the KB and can be interpreted us-
ing the underlying ontology.

6.4 Not-understood

A not-understoodspeech act states that the sender
does not understand an action performed by the re-
ceiver or that he could not interpret a previous mes-
sage of the receiver. The latter can happen because
of an unknown ontology for example. This speech
act consists of anAction that was not understood
and aPropositiongiving the cause for the not un-
derstanding. The transformation steps fors= not−
understoodare defined as follows:

• τLSL,LKB,not−understood: Action 7→ FunctionCallI

• τLSL,LKB,not−understood : Proposition 7→
ConceptSet

The information embedded in annot-understood
speechact is just added to the KB and can be inter-
preted using the underlying ontology.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

452



6.5 Query-if

With a query-if speech act the sender can ask the re-
ceiver if a statement is true or false. Thequery-if
speech act only contains aPropositionthat should be
checked for its validity by the receiver. The transfor-
mation step fors= query− i f is defined as follows:

• τLSL,LKB,query−i f : Proposition 7→
RuleTrue,RuleFalse

The embeddedProposition is mapped onto two
rules. RuleTrue fires only if the statement is true,
RuleFalsefires if the statement is false, so for each op-
tion the corresponding interaction protocol speechact
can be triggered.

6.6 Query-ref

With a query-ref speech act the sender asks the re-
ceiver to supply one or more entities that validate the
embedded proposition. This speech act only consists
of oneRe f erentialExpressionfor which the receiver
should find valid entities. The transformation step for
s= query− re f is defined as follows:

• τLSL,LKB,query−re f : Re f erentialExpression7→
RuleTrue,RuleFalse

The embeddedRe f erentialExpressionis mapped
onto two rules in the KB. RuleTrue fires ex-
actly for those facts that satisfy the conditions of
the Re f erentialExpression. RuleFalse fires if the
Re f erentialExpressionreferences an empty set.

6.7 Refuse

Using arefusespeech act the sender informs the re-
ceiver that he refuses to perform an action that he has
been asked to do before. This speech act consists of
the Action which the sender refuses to execute and
a Propositiongiving the cause for the refusal. The
transformation steps fors= re f useare defined as fol-
lows:

• τLSL,LKB,re f use: Action 7→ FunctionCallI
• τLSL,LKB,re f use: Proposition7→ConceptSet

The information embedded in arefusespeech act
is just added to the KB and can be interpreted using
the underlying ontology.

6.8 Request

With a requestspeech act the sender informs the re-
ceiver that he wants him to perform some action. This
speech act contains anAction that should be exe-
cuted by the receiver. The transformation step for
s= requestis defined as follows:

• τLSL,LKB,request: Action 7→ FunctionCallI

After mapping theActionof a requestspeech act
onto a function of the KB it is executed in its context.

The reverse mapping of speech acts from CLIPS to
FIPA-SL representation is another complex part of
this approach and will therefore be discussed soon in
another paper with appropriate extent.

7 EXAMPLE

The following example shows how a receivedquery
speech act is processed by the agent.

Assume theJamochaAgentfeatures some KB con-
cerning cars whose appropriate ontology is called
cars. Items in this ontology are cars having a name, a
color and a certain horsepower. A query to this ontol-
ogy can look like this:

(query-ref
:sender (agent-identifier :name ←֓

buyer@nocturna:1099/JADE :addresses ←֓
(sequence http://nocturna:7778/acc))

:receiver (set (agent-identifier :name ←֓
seller@nocturna:1099/JADE))

:ontology cars
:content "((all ?x

(Car (name ?x) (color green) ( ←֓
horsepower 150))))"

:language fipa-sl
:protocol fipa-query)

Code 1: Example query.

The ACL message is asserted as fact in the rule
engine. The content of the speech act is automati-
cally transformed into the following CLIPS code by
the rule corresponding to thequery-refspeech act:

(bind ?*queryRef-temp* (create$))
(defrule query-ref
(Car
(name ?x)
(color green)
(horsepower 150)

)
=>
(bind ?*queryRef-temp* (insert-list$ ?* ←֓

queryRef-temp* 1 ?x))
)
(fire)
(undefrule "query-ref")
(assert
(agent-queryRef-result
(message <fact of the query-ref message ←֓

>)
(refOp all)

JAMOCHAAGENT - A Rule-based Programmable Agent

453



(items ?*queryRef-temp*)
)

)

Code 2: Example query as CLIPS code.

Theagent-queryRef-resultfact activates and fires
another rule that will process the CLIPS code. It gen-
erates an answer with all the possible items matching
the query. The buyer agent then would receive a list of
the names of all green cars with 150 hp. More details
regarding theJamochaAgentexamples are provided
in the web1.

8 CONCLUSIONS AND
OUTLOOK

Combining knowledge processing with standardized
interaction mechanisms into one software component
enables agent application developers to program their
problem solving methods (algorithms, heuristics) in a
convenient manner. This is provided by the declar-
ative programming language CLIPS and the well in-
tegrated (hiding technical details from the developer)
speech act production and consumption mechanisms
implemented in the presented approach.

With the help of the developed intelligent soft-
ware componentJamochaAgentwe speed up the de-
velopment process of intelligent agent-based appli-
cations (Krempels and Panchenko, 2007) leading to
shorter development cycles and a faster time to mar-
ket. The main applications areas of theJamochaAgent
are distributed agent-based applications in planning,
coordination, and scheduling in the areas: health care,
supply chain management, aviation, etc.

Future work will be focused on agent-based
infrastructures for cloud computing in which the
JamochaAgentis used as main component for dis-
tributed reasoning and knowledge processing.

ACKNOWLEDGEMENTS

This work is motivated by experiences made in the
German priority research programme 1083 Intelligent
Agents in Real-World Business Applications (2000-
2008).

1http://tinyurl.com/JamochaAgent

REFERENCES

(2007). CLIPS Reference Manual: Basic Programming
Guide, quicksilver beta edition.

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007).
Developing Multi-Agent Systems with JADE. Wiley.

Botello, L., Willmott, S., Zhang, T., and Dale, J. (2001).
Multilingual agents: Ontologies, languages and ab-
stractions. Technical report no. 01/362, Swiss Federal
Institute of Technology (EPFL), Lausanne (Switzer-
land).

Caire, G. (2002). JADE Tutorial - Application-defined Con-
tent Languages and Ontologies. Manual, TILAB.

FIPA (2002a). FIPA ACL Message Structure Specification.
Standard, Foundation for Intelligent Physical Agents,
http://www.fipa.org/.

FIPA (2002b). FIPA Iterated Contract Net Interaction Proto-
col Specification. Standard, Foundation for Intelligent
Physical Agents, http://www.fipa.org/.

FIPA (2002c). FIPA Query Interaction Protocol Specifi-
cation. Standard, Foundation for Intelligent Physical
Agents, http://www.fipa.org/.

FIPA (2002d). FIPA Request Interaction Protocol Specifi-
cation. Standard, Foundation for Intelligent Physical
Agents, http://www.fipa.org/.

FIPA (2002e). FIPA SL Content Language Specification.
Standard, Foundation for Intelligent Physical Agents,
http://www.fipa.org/.

FIPA-SC00001G (2002). FIPA Abstract Architecture Spec-
ification.

FIPA-SC00023K (2004). FIPA Agent Management Speci-
fication.

FIPA-SC00037J (2002). FIPA Communicative Act Library
Specification.

Krempels, K.-H. and Panchenko, A. (2007). KR-driven De-
velopment Process Integration. In Vendetti, J., Hop-
per, T., and Tudorache, T., editors,Proc. of 10th Intl.
Protégé Conference, Budapest, Hungary.

Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C.
(1999). Zeus: A toolkit and approach for building dis-
tributed multi-agent systems. InAgents, pages 360–
361.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).
Jadex: A bdi reasoning engine. In Bordini, R. H., Das-
tani, M., Dix, J., and Fallah-Seghrouchni, A. E., edi-
tors,Multi-Agent Programming, volume 15 ofMulti-
agent Systems, Artificial Societies, and Simulated Or-
ganizations, pages 149–174. Springer.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

454


