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Abstract: Mass spectrometry becomes the most widely used measurement in proteomics research. The quality of the 
feature set and applied learning classifier determine the reliability of the prediction of disease status. A well-
known approach is to combine peak detection and support vector machine recursive feature elimination 
(SVMRFE). To compare the feature selection and to search for alternative learning classifier, in this paper, 
we employ a distance metric learning to classification of proteomics mass spectrometry (MS) data. 
Experimental results show that distance metric learning is promising for the classification of proteomics 
data; the results are comparable to the best results by applying SVM to the SVMRFE feature sets. Results 
also indicate that the good potential of manifold learning for feature reduction in MS data analysis.

1 INTRODUCTION 

Mass spectrometry (MS), which includes a sequence 
of the ratios of mass/charge (m/z), is currently used 
for biomedical diagnosis and protein identification 
(Petricoin and Liotta, 2003). The data mining 
usually contains four steps, or pre-processing, 
feature extraction, feature selection and 
classification. 

The objective of pre-processing is to purify the 
data, and systematically represent the data for the 
following steps. Generally speaking, MS data 
contain two kinds of noise, electric noise and 
chemical noise, which damage the classification 
result. The chemical noise, usually shows as a 
baseline along the spectrum, is generated by matrix 
or ion overloading. Baseline correction computes the 
local minimum value and draws a baseline 
representing as the background noise and subtracts 
the baseline from the spectrum. Williams et al 
proposed a robust algorithm for computing the 
baseline correction of MALDI-MS spectra 
(Williams et al., 2005). The electronic noise, usually 
randomly distributed in the spectra, is produced 
from the electronic instrument. To remove the noise, 
Chen et al designed a wavelet-based denoising 
(Chen et al., 2007). The denoised data are 
normalized to provide a systematic representation of 
the spectra.  

The next steps include extracting features from 
the spectra, and forming the initial complete feature 
set. The simplest way is to obtain every data point as 
a discriminative feature, and finally have a huge 
feature set including more than 15000 features (Li et 
al., 2007), (Li et al., 2002), that is stupid for 
classification. Recently, some researchers employed 
an elaborated algorithm for peak detection and 
performed a more aggressive feature extraction 
(Coombes et al., 2007), (Hilario et al., 2006), (Shin 
and Markey, 2006). A popular method to deal with 
the feature selection in MS data classification is to 
apply support vector machine recursive feature 
elimination (SVMRFE) for getting a small subset of 
peaks as input variables for the classification (Guyon 
et al., 2002), (Vapnik, 1998), (Liu et al., 2008), 
followed by SVM for the final testing. 

To search for promising alternative classifiers 
and to feature dimensionality reduction, in this 
paper, we apply a distance metric learning, called 
large margin nearest neighbor classifier (LMNN) 
that is proposed by Weinberger (Weinberger et al., 
2006), to the classification of MS data. We also 
compare the testing results on the reduced feature 
sets with the use of a manifold learning. 
Experimental results show that distance metric 
learning is promising for the classification of 
proteomics data; the results are comparable to the 
best results by applying SVM to the SVMRFE 
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feature sets. Results also indicate that the good 
potential of manifold learning for feature reduction 
in MS data analysis. 

The remainder is organized as follows. Pre-
processing algorithms are briefly discussed in 
section two, LMNN is introduced in section three 
and experimental results are given in section four, 
followed by our conclusions in section five. 

2 PREPROCESSING DATA 

MS data have high dimensionality and small number 
of samples. Both chemical and electrical noises are 
involved in the signal. The redundancy of the 
spectra, different reference points, and unaligned 
feature points increase the computational intensity 
and decrease the classification accuracy. To deal 
with these issues, the proposed processing 
procedures include spectra re-sampling, wavelet de-
noising, baseline correction, normalization, peak 
detection and alignment. 

2.1 Spectra Re-sampling and Wavelet 
De-noising 

The mass spectrum data is in a discrete format and 
the intervals are not equal in the whole spectrum. 
For high-resolution data, the high-frequent noise and 
redundant data points harm the quality of the dataset. 
So, we have to set the common low-frequent mass 
value to every sample spectrum in order to give a 
unified representation. By using spline interpolation, 
we resample the data and confine the interval to a 
unified size. Before re-sampling, the sample 
spectrum has a little variation from the true 
spectrum. The data is re-sampled to a standard 
discrete data which could be analyzed in frequency 
domain. The electrical noise is generated during the 
mass spectrum acquisition by the instrument and it is 
almost random distributed noise. The next step is to 
employ discrete wavelet transform for eliminating 
the electrical noise. By applying a wavelet 
transform, the original signal is decomposed into 
multi-level wavelet coefficients. By setting up a 
threshold value, given percentiles of lower value 
coefficients are removed. Then, we apply 
polynomial filter of second order to smooth the 
signal and get better data quality. 

2.2 Baseline Correction and 
Normalization 

To minimize the chemical noise, the baseline should 
be subtracted from the spectrum. In order to obtain 

the baseline, the local minima should be computed 
by assigning an appropriate window size. Then, we 
use spline interpolation to fit the baseline. In order to 
compare sample spectra, we need to normalize the 
data to represent the data in a systematic scale. 

2.3 Peak Detection and Qualification 

The final feature acquisition of MS data is to obtain 
the peak position and its magnitude. In our mass 
spectrum experiment, the peak detection method 
proposed by Coombes et al (Coombes  et al, 2005) is 
performed on mean spectrum rather than individual 
spectra, and we used the ad hoc method based on 
signal to noise ratio to select the large peaks 
(Coombes et al., 2007).  

3 DISTANCE METRIC 
LEARNING 

Distance metric learning includes supervised 
learning and unsupervised learning.  

For unsupervised distance metric learning or 
called manifold learning, the main idea is to learn an 
underlying low-dimensional manifold where 
geometric relationship between most of the observed 
data are preserved. Every dimension reduction 
approach is essentially to learn a distance metric 
without label information. Manifold learning 
algorithms can be divided into global linear 
dimension reduction approaches, including Principle 
Component Analysis (PCA) and Multiple 
Dimension Scaling (MDS), global nonlinear 
approaches, for instance, ISOMAP (Tenenbaum et 
al., 2000), local linear approaches, including Locally 
Linear Embedding (LLE) (Saul and Roweis, 2003) 
and the Laplacian Eigenmap (Belkin and Niyogi, 
2003). Here we introduce a locally linear embedding 
proposed in Roweis and Lawrance, 2000) that is a 
local method to establish the mapping relationship 
between the observed data and the corresponding 
low-dimensional data and to preserve local order 
relation of data in both the embedding space and the 
intrinsic space, described as follows: 

1. Find the n nearest neighbor for each xi in 
the dataset. By assuming that each data 
point and its neighbors lie on a locally 
linear patch of the manifold, the local 
geometry of these patches can be 
characterized by linear coefficients that 
reconstruct each data point from its 
neighbors. The reconstruction error can be 
measured by  
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3. Construct a neighbor-preserving mapping. 
The idea is that the reconstruction weights 
reflect intrinsic geometric properties of the 
data and are invariant to the linear 
transform from a high dimensional 
coordinates of each neighborhood to global 
internal coordinates on a low dimensional 
manifold. The details are given in Roweis 
and Lawrance, 2000). 

Supervised distance metric learning can be 
divided into global distance metric learning and 
local distance metric learning. The global learns the 
distance metric in a global sense, i.e., to satisfy all 
the pairwise constraints. The local approach seeks 
only to meet local pairwise constraints.  

In supervised global distance metric learning, the 
representative work is to formulate distance metric 
learning as a constrained convex programming 
problem (Xing et al., 2003). It learns a global metric 
distance that minimizes the distance between the 
data pairs in the equivalence constraints subject to 
the constraint that the data pairs in the inequivalence 
constraints are well separated. In local adaptive 
distance metric learning, many researchers presented 
approaches to learn appropriate distance metric to 
improve KNN classifier (Domeniconi and 
Gunopulos, 2002), (Peng et al., 2002), (Goldberger 
et al., 2005), (Zhang et al., 2003), (Zhang et al., 
2005).  

Inspired by the work on neighborhood 
component analysis (Goldberger et al., 2005) and 
metric learning by energy-based models (Chopra et 
al., 2005), Weinberger et al. proposed a distance 
metric learning for Large Margin Nearest Neighbor 
classification (LMNN). Specifically, the 
Mahanalobis distance is optimized with the goal that 
k-nearest neighbors always belong to the same class 
while examples from different classes are separated 
by a large margin (Weinberger et al., 2006). LMNN 
has several parallels to learning in support vector 
machines (SVMs), for example, the goal of margin 
maximization and a convex objective function based 
on the hinge loss. In multi-classification, the training 
time of SVMs scales at least linearly in the number 

of classes, by contrast, LMNN has no explicit 
dependence on the number of classes (Weinberger et 
al., 2006). We introduce the idea of LMNN as 
follows: 

Given a training set of n labeled samples and the 

corresponding class labels { } 1
, n

i i i
x y

=
, the binary 

matrix {0,1}ijy ∈  indicates whether or not the 

labels iy  and  jy  match. And {0,1}ijη ∈  indicates 

whether jx  is a target neighbor of ix . Both matrices 

ijy  and ijη  are fixed during training. The goal is to 

learn a linear transformation L: R Rd →  that 
optimizes KNN classification. The transform is used 
to compute squared distance as 

2D( , ) || L( , ) ||i j i jx x x x=  (3)

The cost function is given as follows: 
2

2 2

(L) L( )

 (1 ) 1 L( ) L( )

ij i j
ij

ij jl i j i l
ijl

x x

C y x x x x

ε η

η
+

= −

⎡ ⎤+ − + − − −⎢ ⎥⎣ ⎦

∑

∑
 

(4)

Where [z]+ = max(z,0) denotes the standard 
hinge loss and the constant C > 0. The first term 
penalizes large distances between each input and its 
target neighbors and the second term penalizes small 
distances between each input and all other inputs 
that do not share the same label. 

The optimization of eq. (2) can be reformulated 
as an instance of semidefinite programming (SDP) 
Vandenberghe and Boyd, 1996) and the global 
minimum of eq. (2) can be efficiently computed.  
Mahalanobis distance metric M L LT= , then eq. (1) 
is  

D( , ) ( ) M( )T
i j i j i jx x x x x x= − −  (5)

Slack variables ijξ for all pairs of differently 
labeled inputs are introduced so that the hinge loss 
can be mimicked. The resulting SDP is given by: 
Minimize 

(L) ( ) ( )  (1 )T
ij i j i j ij jl ijl

ij ijl

x x M x x C yε η η ξ= − − + −∑ ∑
Subject to 

(1) ( )M( ) ( )M( ) 1i l i l i j i j ijlx x x x x x x x ξ− − − − − ≥ −

(2) 0ijlξ ≥  

(3) M 0≥
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4 MATERIALS AND 
EXPERIMENTS 

4.1 Dataset 

The following two mass spectrometry datasets have 
been tested in our experiment.  

1. High resolution time-of-flight (TOF) mass 
spectrometry (MS) proteomics data set from surface-
enhanced laser/desorption ionization (SELDI) 
ProteinChip arrays on 121 ovarian cancer cases and 
95 controls. The data sources can be accessed by 
FDA-NCI Clinical Proteomics at 

http://home.ccr.cancer.gov/ncifdaproteomics/ppatt
erns.asp 

2. The breast cancer QC SELDI spectra data set 
was studied by Pusztai et al. (Pusztai et al., 2004). 
Here we utilized data of 57 controls and 51 cases. 
The data set may be downloaded at: 

http://bioinformatics.mdanderson.org/Supplemen
ts/Datasets 

We process the dataset according to the methods 
described in section 2 for peak detection. And then 
apply LMNN to the detected peak spectra data. 
Since SVMRFE is a classical feature selection based 
on the weights of the support vectors (Guyon et al., 
2002) and is widely used in the classification of 
proteomics data with the use of SVM, we also 
compare the results by using LMNN with Euclidean 
distance, Mahalanobis distance, and energy-based 
classification (Weinberger et al., 2006) and SVM 
combining with SVMRFE on the detected peak data. 
In each experiment, 80% samples are randomly 
chosen for training and the remaining 20% samples 
are tested. We repeated the experiments 10 - 100 
times and compared the average testing results. 

Besides applying SVMRFE to the features 
chosen by peak-detection algorithm, we also apply 
the manifold learning to the features chosen by 
peak-detection and the features filtered by rank-sum 
test without peak-detection, and obtain the reduced 
features that are mapped from high-dimension to 
low-dimension, then we apply a support vector 
machine and KNN to the reduced feature sets and 
compare the testing results. 

4.2 Experiments on Peak Detection 
with SVMRFE  

Figure 1 list the average testing accuracy values by 
applying SVM to SVMRFE on ovarian cancer data 
set and breast cancer data set, respectively. These 
data sets were preprocessed with the use of peak-
detection algorithms before the use of SVMRFE. 

(a) Ovarian cancer (b) Breast cancer 

Figure 1: The testing accuracy by applying SVM to the 
feature sets with the use of SVMRFE on ovarian cancer 
data set (a) and breast cancer data set (b). 

Table 1 lists the average testing accuracy by 
applying LMNN classifiers to the peak data sets. 
Table 2 lists the best averaging testing accuracy by 
applying SVM to the feature sets chosen by 
SVMRFE from the peak data sets. 

Table 1: Average testing accuracy with LMNN classifiers. 

Data set Classifier Testing 
accuracy 

Ovarian 
cancer 

LMNN_energy 99.3% 

LMNN_Euclidean 84.6% 

LMNN_Mahalanobis 99.0% 

Breast 
cancer 

LMNN_energy 81.8% 

LMNN_Euclidean 84.6% 

LMNN_Mahalanobis 81.7% 

Table 2: The best average testing accuracy by applying 
SVM to feature sets ranked by SVMRFE. 

Data set  Testing accuracy 
Ovarian cancer 98.0% 
Breast cancer 89.5% 

Comparing the results listed in tables 1 and 2, we 
can see that, although the testing results in table 1 
are not as good as the best result by applying SVM 
to SVMRFE feature sets for breast cancer data set, 
the results by applying LMNN classifiers based on 
energy classification and Mahalanobis distance are 
both better than the best result obtained by applying 
SVM to SVMRFE feature sets. It indicates that 
LMNN classifiers with energy classification and 
Mahalanobis metric are competitive for the 
classification of proteomics data, especially 
considering that the best testing accuracy by 
applying SVM to SVMRFE feature sets after we 
tested each dimensionality from 1 to 200 for ovarian 
cancer data set and tested each dimensionality from 
1 to 150 for breast cancer data set. Furthermore, 
normally we cannot accurately predict the best 
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testing results that correspond to which 
dimensionality. 

We also test the classification results by applying 
LMNN to the feature sets chosen by SVMRFE, and 
compare the best testing result and the least number 
of the features corresponding to the best result in 
each experiment against the results with the use of 
SVM, shown in table 3. Experimental results 
indicate comparable results by applying LMNN and 
support vector machines. 

Table 3: The highest testing accuracy and the least number 
of the features corresponding to the highest testing results.  

Data 
set Classifier Testing 

accuracy 
Feature 
number 

Ovaria
n 

cancer 

LMNN_energy 99.5% 14 
LMNN_Euclidean 98.4% 10 

LMNN_Mahalanobis 99.5% 15 
SVM 99.3% 11 

Breast 
cancer 

LMNN_energy 92.6% 27 
LMNN_Euclidean 90% 28 

LMNN_Mahalanobis 92.5% 25 
SVM 94% 68 

4.3 Manifold for Feature Reduction  

We also preprocess the data sets by using peak-
detection algorithms (method one) and filtered the 
data sets by using rank sum test without peak-
detection (method two), then we apply the manifold 
learning Roweis and Lawrance, 2000) to reduce the 
features, finally we employ a SVM and a KNN to 
classify the data sets. Figure 2 gives the comparison 
of the testing accuracy of these two methods, with 
and without peak-detection on the ovarian cancer 
data. Figure 3 plots the testing results on breast 
cancer data.  

Figures 2 and 3 indicate that the testing results 
on the reduced feature sets preprocessed from rank 
sum test are better than the results on the reduced 
feature sets preprocessed by peak detection. It seems 
to imply that peak detection cannot include all useful 
features. This is worthy of further study. 

We also note that the testing results on ovarian 
data set are not better than the results obtained by 
using SVMRFE, shown in 4.2. However, the results 
on breast cancer are comparable to the results with 
the use of SVMRFE, given in section 4.2. It 
indicates that unsupervised metric learning or 
manifold learning holds good promise in dealing 
with high-feature dimension data for dimension 
reduction and this makes interesting future study. 

 

 

 
Figure 2: The testing results of the LLE reduce feature sets 
on peak-detection and rank sum test, ovarian cancer data. 

 

 
Figure 3: The testing results of the LLE reduce feature sets 
on peak-detection and rank sum test, breast cancer data. 

5 CONCLUSIONS 

In this paper, we compared a supervised distance 
metric learning, large margin nearest neighbor 
classifier and SVM for classification of mass 
spectrometry proteomics data. Experiments 
produced good results of applying distance metric 
learning to proteomics data, comparable to the 
results by applying SVM. Our results also indicate 
the potential of manifold learning in feature 
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reduction. Further, our results also indicate that, 
peak detection may not be the optimal choice for 
pre-processing proteomics data. 
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