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Abstract: Recent advances in computer hardware and signal processing assert that controlling certain functions by 
thoughts may represent a landmark in the way we interact with many output devices. This paper exploits the 
possibility of achieving a communication channel between the brain and a mobile robot through the 
modulation of the electroencephalogram (EEG) signal during motor imagery tasks. A major concern was 
directed towards designing a generalized and multi-purpose framework that supports rapid prototyping of 
various experimental strategies and operating modes. Preliminary results of brain-state estimation using 
EEG signals recorded during a self-paced left/right hand movement task are also presented. The user 
successfully learned to operate the system and how to better perform the motor-related tasks based on 
outcomes produced by its mental focus. 

1 INTRODUCTION 

In recent years, the appealing idea of a direct 
interface between the human brain and an artificial 
system – called Brain Computer Interface (BCI) – 
has motivated a growing community of researchers 
(McFarland, 2006). The conceptual approach is to 
model the brain activity variations and map them 
into some kind of actuation or command over a 
target output (e.g., a computer interface or a robotic 
system). Continuing advances in a number of fields 
have supported the thesis that the concept is viable, 
although a significant research and development 
effort has to be conducted before these technologies 
enter routine use. Nowadays, the principal reason for 
the BCI research is the potential benefits to those 
with severe motor disabilities (e.g., amyotrophic 
lateral sclerosis, brainstem stroke or severe cerebral 
palsy) (Kubler et al., 2005). 

The combination of these reasons led the authors 
to gradually start a project aiming to initiate a long-
term multidisciplinary research by combining 
developments in relevant fields, such as cognitive 
neuroscience, brain imaging, pattern recognition, 
electronics and computing. The ultimate goal is to 
promote the involvement of under and post-graduate 
students in international level stages such as 
competitions of the grade of BCI2000 (Schalk et al., 

2004) and similar. In the middle-term, the main 
scope has been the design and development of a BCI 
system to exploit the benefits of a closer interplay 
between neurosciences and robotics. A hypothesis is 
that brain-actuated control of a robotic device will 
improve human-robot interfaces and facilitates robot 
programming.  

Bearing this in mind, this paper presents the first 
steps towards the development of an EEG-based 
BCI system that analyzes the brain activity of a 
subject, tries to find out its intentions and generates 
output commands controlling an appropriate output 
device. The relevant feature of this implementation 
includes the movement imagery, based on the mu 
rhythms, as control strategy to command a Khepera 
mobile robot (Pineda et al., 2000). A major concern 
was directed towards designing a generalized 
framework that supports rapid prototyping of 
various experimental strategies and operating 
modes. From the current stage of development, 
based on Matlab and Simulink, it stands out the high 
versatility of implementation that allows the 
comparison of different spatial filters, spectral 
analysis algorithms and signal processing methods. 
Although some issues are yet to be addressed, our 
BCI is already mature for practical experiments and 
to obtain the first conclusions on the potential of the 
proposed solutions. 
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The remainder of the paper is organised as 
follows. Section 2 reports previous studies that 
produced valuable insights, focusing on strategies 
employed and the potential of mu rhythms in actual 
BCIs. Section 3 describes the design options, the 
developed tools and the applications of the IEETA 
BCI. Section 4 presents preliminary results of brain-
state estimation using EEG signals recorded during a 
self-paced left/right hand movement tasks, while 
controlling the Khepera mobile robot. Section 5 
concludes the paper and outlines the perspectives of 
future research.  

2 RELATED WORK 

Over the past decade, several working BCI systems 
have been described in the literature (Jos et al., 
2004, Pfurtscheller et al., 2006, Wolpaw et al., 
2003). These systems use a variety of signal 
acquisition methods, experimental paradigms, 
pattern recognition approaches and output interfaces, 
requiring different types of cognitive activity. Most 
solutions rely on brain electrical activity measured 
through electroencephalogram (EEG). Despite their 
poor spatial resolution, this non-invasive technique 
has proven to be a useful and practical tool in 
experimental research, mainly due to fast recording, 
easy subject preparation and reduced equipment 
required. Furthermore, the relationship between 
EEGs and brain function is well documented in the 
literature.  

One type of BCI that has been extensively 
studied derives information either from the user’s 
movements or the imagination of movement. These 
movement-based BCIs recognize changes in the 
human mu rhythm, which is an EEG oscillation 
recorded in the 8-13 Hz range from the central 
region of the scalp overlying the sensoriomotor 
cortex (Kuhlman, 1978, Pfurtscheller and Lopes da 
Silva, 1999). This activity is most pronounced when 
subjects are at rest, but not planning to initiate 
voluntary movement. At least a second before 
subjects initiate voluntary movement, the mu rhythm 
over the hemisphere contralateral to the region 
moved shows a decrease in amplitude and thus 
power. This attenuation becomes more symmetric 
over both hemispheres as subjects actually initiate 
the movement and remains until shortly after the 
movement is initiated. Mu activity returns to 
baseline levels within a second after movement is 
initiated and may briefly increase above baseline 
(Fatourechi et al., 2007, Pineda et al., 2000). These 
activity dependent changes in mu activity have also 

been called Event Related Desynchronization (ERD) 
and Event Related Synchronization (ERS) by 
Pfurtscheller and his co-workers (Pfurtscheller and 
Lopes da Silva, 1999).  

The mu rhythm thus has potential for BCIs for 
many reasons. It is present in nearly all adults, 
including many individuals with motor disabilities. 
Since it’s  easy to train in subjects while they are 
awake with eyes open (Kuhlman, 1978, Pfurtscheller 
and Lopes da Silva, 1999) and  can be affected by 
visual and imagined input (Muthukumaraswamy et 
al., 2004, Pineda, 2005, Hoshi and Tanji, 2006), it 
may be possible for users to learn to use a mu 
rhythm based BCI system by means of a multiplicity 
of stimuli and cognitive strategies. Therefore, the 
pattern recognition may be simple: detecting power 
changes can be fruitful in BCI design. Finally, the 
mu rhythm can be modulated in either or both 
hemispheres (Pfurtscheller and Lopes da Silva, 
1999, Pineda et al., 2000). 

These observations led us to utilise motor 
imagery as control strategy to achieve asymmetrical 
electrocortical responses and to use left-right 
differences in the sensoriomotor EEG to provide the 
required control options of a two dimensional 
environment. 

3 IEETA BCI: DESIGN AND 
OPERATION 

The IEETA BCI system was conceived having in 
mind the application to which it will be applied: 
control of a robotic device. Moreover, the BCI tools 
are optimized for each individual user by providing 
him with a training period in the presence of 
feedback. Indeed, present BCI systems depend on 
user control of brain electric activity, such as 
amplitude in a specific frequency band (e.g., mu 
rhythms) in EEG recorded over a specific cortical 
area (e.g., sensoriomotor cortex).  
This section describes the relevant development 
steps since they will reveal much about the 
problems, challenges and tradeoffs of the complete 
BCI prototype, as well as guide the selection of 
alternative designs.  
Matlab® and Simulink® were the platform chosen to 
develop the BCI system. This choice is justified by 
the fact that it’s the widely tool used in signal 
processing and classification. These two areas 
represent the main base of any BCI system. 

Due to the flexibility of Matlab programming, all 
the algorithms are written in Matlab code whereas 
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the driver of the acquisition hardware was created 
employing  C++, using a wrapper to integrate it. 

Another important aspect of developing any 
system in Matlab® is that, this can be done in a high 
abstraction level, letting the developer focus on the 
problems of the system and not on the tools that 
support it. Each new module can be chosen from 
Simulink library. Simulink library provides many 
Signal Processing modules for direct 
implementation. When a new module is needed with 
a specific task, it can be implemented using an S-
Function. 

S-Functions uses a callback method to perform 
each task that operate flawlessly within the main 
system, this way we guarantee a temporal 
performance, essential in online analysis. 

3.1 EEG Recording 

EEG signals were recorded from eight scalp 
electrodes placed over central (C3, C4), frontal (F3, 
F4) and parietal (P7, P8, P3 and P4) locations 
according to the 10-20 international system and 
referred to a linked-ear reference (Jasper, 1952). 
Using this spatial location we assume that a generic 
motor imagery task can relate to different subsets of 
cortical areas activation, resulting in the excitability 
of different regions such as the Premotor Cortex, the 
supplementary motor area, the primary motor cortex 
and the sensoriomotor cortex (Porro et al., 1996, 
Lacourse et al., 2005, Lotze et al., 1999).  

 
Figure 1: Spatial Location of the EEG electrodes over the 
frontal, central and parietal areas. 

The BCI user utilizes a portable EEG acquisition 
system (Figure 2) with a sampling rate of 256 Hz. 
This EEG system imposes a maximum number of 8 
acquisition electrodes. This difficulty becomes 
secondary by the advantage of using a portable 
system that represents minor power consumption, 
essential to the implementation of a future 
ambulatory system. Another advantage resulting 

from using a small number of electrodes is the 
smooth online performance of the BCI system, as 
trivial to assume that a higher number of EEG 
electrodes results in a higher number of signals to 
process that if not equipped with fast, and expensive, 
hardware system could inflict slowdowns in the real-
time processing. 

 
Figure 2: TrackIt system: ambulatory acquisition of EEG 
signals (from LifeLines Ltd). 

3.2 Control Paradigm 

According to (Arroyo et al., 1993) mu waves are 
almost constantly present when the subject is relaxed 
and are heavily suppressed when the subject 
performs a motor (imagery or real) task exciting the 
contralateral side, i.e. mu waves disappear over the 
left brain hemisphere when the right hand is moved 
and vice versa. In addition, humans can learn to 
modify the amplitude of the mu rhythm after 
prolonged training (on the order of weeks or 
months) with the help of mental activities alone. 
This is the starting point of the systems described in 
(Fabiani et al., 2004, Guger et al., 2001, Wolpaw et 
al., 2000). Their idea is to take that amplitude – 
measured only by one pair of electrodes – and 
translate it into (one-dimensional) cursor movement. 
Using a simple computation, it estimates the FFT of 
the ongoing EEG (“online”), taking the square root 
of the power associated with the mu rhythm 
frequency range, and comparing the resulting value 
with adaptable voltage ranges. This leads to a trivial 
quantification (or classification) encoding the mu 
rhythm amplitude, and is directly translated into the 
movement of a cursor on a feedback video screen, 
where low amplitudes move the cursor down, while 
high amplitudes move it up (the magnitude of the 
upward or downward movement being part of the 
quantification, too). 

Although the accuracy that can be achieved with 
this system is relatively high (in up to 95% of all 
cases, the system really does what the user wants it 
to do), it cannot serve as the basis for a practical 
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device, since it is very slow. To cope with this 
problem, the solution relies in the multi-dimensional 
control provided by distinct EEG features. The idea 
was to record the EEG at two different sites on the 
scalp, hoping that subjects would be able to learn to 
intentionally vary the two mu rhythm amplitudes 
simultaneously and independently. The projected 
system was much more practicable, since it 
possessed the potential to “emulate” a computer 
mouse to a certain extent. However, despite the 
correctness of the “independence hypothesis”, the 
outcome was not much more than a laboratory 
phenomenon, because the achieved accuracy did not 
exceed 70%. Kostov and Polak, (2000) have also 
shown that     subjects can move a virtual object up and 
down on a computer screen by issuing various 
mental activities during a time window delimited by 
the pressing of two manual switches. 

3.3 Signal Processing and Classifier 

Each EEG raw signal was filtered in the 8-13 Hz 
band by a 20-order Band-Pass Butterworth Filter. 
After filtering, the signal was segmented in 
customized blocks of 128 samples (0.5s). Each 
signal block was transformed by a surface Laplacian 
in F3, C3, P3 and P7 for the left Hemisphere and F4, 
C4, P4 and P8 for the Right Hemisphere (see Figure 
1). 

The power spectrum Estimation was performed 
using the Yule-Walker Method (Kay, 1998). Each 
vector (8 channels with 128 frequency components) 
is then analysed by the ERD (Event Related 
Desynchronization) block, which verify for a 
specific frequency band if the ERD is confirmed. 
There are two ERD modules, one for each 
hemispheric signal. 

The Classifier (Figure 3) has two inputs, one for 
each ERD block. It was implemented by mean of a 
decision tree, so if only the Right Hemisphere signal 
verifies the ERD, the classifier output is “LEFT”. If 
only the Left Hemisphere signal verifies the ERD, 
then the classifier output is “RIGHT”. If both the 
signals verify the ERD then the output is 
“FORWARD”. If neither one of the signals verifies 
the ERD, then the output is “STOP”. In this way, 
with only 2 mental tasks, we obtain 4 possible 
control orders.  

The majority of the BCI systems implemented 
devote a great part of the system resources and 
development time in the classifier. Nonetheless, a 
very important part of any BCI system, the authors 
of this BCI system realize that the importance of the 
classifier can easily be minored if we get better and  
enhanced features from the mental tasks carried out. 

This can be achieved selecting the best electrodes 
set-up, signal processing methods and new EEG 
processing techniques such as ERD, ERS, P300 and 
others yet to be found. 

 
Figure 3: Binary Tree Classifier perceiving four possible 
states based on the two ERD features. 

3.4 BCI Output 

The mobile robot used as the control application was 
a small Khepera. The Khepera robot (5.7 cm 
diameter), is a two-wheeled vehicle with 8 infrared 
sensors representing the ideal analogy for a 
wheelchair.  

Two other graphical applications where 
developed, BioFeedback I and BioFeedback II, both 
mainly used in user training. 

BioFeedback I provides the feedback in a 
graphical way, displaying one of four images 
according to the classifier output - “RIGHT”, 
”LEFT”, ”FORWARD”, ”STOP”.  

 
Figure 4: Training Module where each image correlates 
with a classification output (BioFeedback I).  

Feedback is provided by means of coloured 
arrows, one for each mental task, for easily 
recognition of the system output. 

The other graphical application (BioFeedback II) 
is also used in the online test of the system, and it’s a 
classical application of the BCI systems. The goal of 
this application is to place the cursor on one of three 
possible areas (Figure 5). The cursor is controlled by 
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means of the classifier outputs – “RIGTH”, “LEFT” 
and “FORWARD”. 

 
Figure 5: Second Graphical Application proposed for user 
training (Biofeedback II). 

The final application is the control application 
depicted before. This output module, depending on 
what the classifier output is, controls the velocity on 
each wheel. The Khepera robot provides 8 infrared 
sensors, this enables, in integration with the system, 
to detect when the robot reaches a wall, allowing in 
this case only two possible movements – forward 
and the opposite wall direction movement. 

The control communication with the Khepera 
Robot is performed through RS232 protocol and 
using the communication toolbox available from 
Matlab® in real-time performance. 

 
Figure 6: Control output. 

4 EXPERIMENTAL RESULTS 

4.1 Users’ Protocol 

During a session, the subject sat in front of a screen, 
and was asked to remain still (Figure 7a). Scalp 
electrodes (see montage in Figure 1) acquired 8 EEG 
channels, each one of them referenced to an 
electrode in the right ear lobe.  

The Experimental Procedure was designed in 3 
steps. First we acquire the Baselines through the 
BCI_GetBase sub-system that is essentially the BCI 
system without the output module, sharing all the 
main modules and its configuration. 

The Baseline is the core of any ERD based 
system. We acquire 3 Baselines, for 3 mental tasks: 
imagery finger tapping; imagery open/close hand; 
imagery free hand movement. We choose three 
different baselines, due to the fact that the definition 
of baseline is related with the definition of No 
Control (NC) state, that is when there is no 
intentional control, e.g., during periods of thinking 
or monitoring that do not correspond to the cortical 
excitation achieved by the two motor imagery tasks 
that are asked to the user. NC control support is 
necessary for most types of machine or device 
interactions where frequent actions are spaced by 
periods of inaction. In this way, and using the 
contralateral propriety of cortical activation, the 
baseline that shares all the common underlying brain 
activity of the motor imagery tasks asked to the user, 
is its opposite task, e.g., if we are analysing the 
presence of a right motor imagery task we compare 
the EEG signal with the recorded baseline for the 
left motor imagery task performed before, detecting 
in this way all the difference in signal amplitudes 
related to the modulation of the mu rhythms.  

After the record of the baselines the subject was 
given three possible conditions to control the 
Khepera robot.  

1)  Rest: the subject, sat in a comfortable chair, 
was asked to relax as much as possible and think of 
nothing in particular. 

2)   Self-generated movements: subject is asked 
to move each finger;  

(3) Imagination: subjects were instructed to 
image performing the self-generated movement 
without actually doing it. 

Only the results achieved using the motor 
imagery tasks were explored in validating the 
preliminary system results. 

4.2 Data Analysis 

The degree of mu suppression occurring during the 
imagery of movement can be expressed as a relation 
with the peak power value at rest and typically 
shows an average decrease that depends on the level 
and “quality” of attention. 

After we got all the 3 Baselines for each 
ipsilateral hemisphere (Figure 8 and 9), the system 
automatically chooses what is the Baseline that 
offers the best results. The notion of a good Baseline  
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Figure 7: Experimental Environment. 

is associated with the absence of involuntary 
desynchronization or artefacts.  

With the baselines for each mental task, the next 
step is to train the user in the system. To promote a 
fast learning on how to better control the cerebral 
rhythms it’s proposed to the user the BioFeedback I 
and II usage for a typical period of 30 minutes that 
can be (desirably) increased depending on the user 
available time  

 
Figure 8: Baselines for: imagery finger tapping, imagery 
close/open Hand and imagery free hand movement 
respectively (Ipsilateral Movement - Right Hand, Right 
Hemisphere). 

Finally, after the acquisition of the Baseline and 
the (ideal) extensive training of the user, we analyse 
the user performance in controlling the Khepera 
Robot.  In this step, all the BCI system configuration 
is set up specifically for the user, this is easily 
achieved due to the rapid-prototyping characteristic 
we included in the system. 

These distinctive features of any BCI system 
relate to the importance of the user training that after 
a few hours of train could certainly boost the system 
performance. 

The control of the Khepera robot was done in a 
free environment. The user had to move it to two 

possible areas as shown on Figure 7b using the 
motor imagery tasks depicted before.  

 
Figure 9: Baselines for: imagery finger tapping, imagery 
close/open Hand and imagery free hand movement 
respectively (Ipsilateral Movement - Left Hand, Left 
Hemisphere). 

Examples of the ERD achieved for both the 
“Right” and “Left” areas in the contralateral spatial 
filtered electrodes (C3 and C4) are shown below. 

 
Figure 10: ERD for the spatial filtered signal at C3 (Right 
Area target). 

 
Figure 11: ERD for the spatial filtered signal at C4 (Left 
Area target). 

The user achieved a 70% correct classification 
rate for each direction in a total of 7 trials. The 

A B
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classification rate has evolved during the sequential 
trials. Through time, the user developed own ways 
to better control the robot. This fact implies that an 
extensive training is essential to obtain very good 
results. 

Nonetheless the lack of extent of the online 
results, as referred earlier, these results are 
preliminary and mainly used to validate the system 
as a promising BCI structure. 

5 CONCLUSIONS 

We have shown the development of a multi-
application BCI system from the source to the 
output. Using rapid-prototyping tools we ensured an 
efficient time-progress window of development. 
This also represents a proficient ability to perform 
several optimizations quickly and in highly 
integration with the structural hierarchy of the BCI 
system implemented. 

An important aspect about this BCI system is its 
modular structure that allows it to perform a 
different function just by creating a new output 
module. This modular structure also improves the 
time-progress window due to its parallel 
development and optimization suited for each 
module individually. 

This system represents a new BCI platform 
developed using efficient and widely used signal 
processing tools ensuring in this way a maximum 
focus on the project itself and not on the 
development tools that support it. 

In spite of being in an inborn stage this system 
provided encouraging results in the preliminary 
online test made. The user demonstrated satisfaction 
in using the system and confirmed its controllability. 

More and extended online tests are needed to 
perform increasable optimizations, nonetheless, this 
process is already on course in two different BCI 
areas (Control and Bio-Encryption), that due to the 
system modularity interchange results and possible 
optimization between them in order to achieve the 
best possible results. 
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