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Abstract: This paper presents an approach for human authentication based on electrocardiogram (ECG) waveforms. 
ECG data was collected from 24 individuals during the realization of cognitive tests, where subjects held a 
surface mount triode placed on the V2 pre cordial derivation. Authentication is based on MAP, One-Class 
and 1-NN classifiers. Results show that ECG-based authentication may be a feasible tool for biometric 
systems. The One-Class classifier with class normalization has presented enhanced performance, with an 
equal error rate of 3.5%. 

1 INTRODUCTION 

Biometric authentication is a promising tool for 
security applications, attesting that the user of a 
system is who he claims to be through the use of 
some of its physical or behaviour characteristics 
(e.g., a fingerprint). Recent work, (Biel et al., 2001) 
and (Israel et al., 2005), suggests that the human 
heartbeat is a characteristic that can be used in 
biometric authentication schemes, as it exhibits 
features that are unique to an individual. 
Electrocardiogram (ECG) is the typical method to 
measure heartbeat, being extensively used in 
medicine. Figure 1 illustrates a typical ECG trace. 

 
Figure 1: A typical heartbeat waveform (adapted from 
(Wikipedia, 2008)). The R R interval indicates the 
duration of a heartbeat. P, QRS, and T indicate the major 
ECG complexes comprising one heartbeat. 

Some feasibility studies on the potential of ECG 
for biometrical applications are found in the 
literature. For example, in the identification scheme 
presented in (Wübbeler et al., 2007), authors use 234 
ECG recordings of 10 s length, obtained during 
several months up to several years. Records were 
taken from 74 subjects in a supine position in a 
resting state, from the three Einthoven leads. 
Classification is based on the heart vector and a 
simple distance measure, standard nearest 
neighbour, and threshold schemes being used. For 
verification, an error rate of 2.8% was achieved; 
while a rate of 98.1% was obtained for 
identification. Other study is presented in (Chan et 
al., 2008), where ECG data was collected from 50 
subjects during 3 sessions on different days, from 
two electrodes on the pads of their thumbs using 
their thumb and index fingers. Classification was 
performed using percent residual difference, 
correlation coefficient, and a novel distance measure 
based on wavelet transform. The wavelet distance 
measure has a classification accuracy of 89%, 
outperforming the other methods by nearly 10%. 

In this work we have addressed the problem of 
user authentication from ECG records using a single 
lead montage, while the subjects were performing 
cognitive tests on a computer. Classification is based 
on two Bayesian classifiers, the maximum a 
posteriori (MAP) (Duda et al., 2001) and the 
One-Class (Tax, 2001) classifiers, and also on a 
distance based method, the 1-Nearest Neighbour 
(1-NN) (Duda et al., 2001) classifier. The MAP 
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classifier assigns an object x to the class k with the 
largest a posteriori probability p(ωk|x). In One-Class 
classification only p(x|ωk), the probability density of 
the target class, ωk, is known. Estimating the 
probability density from the training data and given 
a threshold, the classifier accepts or rejects the test 
samples. The 1-NN classifier assigns an object x to 
its nearest class, with closeness measured by the 
Euclidean distance between the vectors of inputs. 

This paper is composed of 4 sections, besides the 
current one. The next section presents the data 
acquisition system from which ECG records were 
obtained. Section 3 describes the authentication 
system, detailing the implementation of the 
classifiers. An overview and discussion of results is 
provided in Section 4. Section 5 finalises the paper, 
drawing the main conclusions. 

2 DATA ACQUISITION AND 
PROCESSING 

The ECG data analysed in this work was acquired 
within the scope of the HiMotion Project (HiMotion, 
2008). The HiMotion Project consisted on the 
design, implementation and administration of a set 
of computer based experiments with cognitive tests 
related to memory, concentration, association, 
intelligence and insight (discovery). The underlining 
idea is that these activities produce noticeable 
changes in the physiological characteristics of 
subjects, which, on one hand, are task dependent, 
and therefore global task-related dynamics/features 
can be recognized, and, on the other hand, individual 
behavioural traits may be present in the acquired 
data, and thus contribute for human authentication. 
A set of physiologic signals was continuously 
acquired during the realization of the tests: 
electrodermal activity, blood volume pressure, 
electroencephalography and ECG. A population of 
24 male and female volunteers, with a mean age of 
23.4±2.5 years, was asked to complete the series of 
tests in individual sessions, designed to take, in 
average, 30 minutes. 

ECG measurements were taken using a surface 
mount triode placed on the V2 pre-cordial 
derivation. Each heartbeat waveform was 
sequentially segmented from the full recording, and 
then all individual waveforms were aligned by their 
R peaks in segments of equal temporal length. The 
mean wave for groups of 10 heartbeat waveforms 
(without overlapping), was computed to minimize 
the effect of outliers. A labelled database composed 

by 137 samples was compiled, in which each pattern 
corresponds to a mean wave. For each mean 
waveform (Figure 1), the latency and amplitude for 
each of the P QRS T peaks were extracted, along 
with a sub sampling of the waveform itself, 
providing a feature representation space of 53 
features. In this work, only the latencies and 
amplitudes of P, Q, S and T complexes were used, 
resulting in 8 features, Table 1. 

Table 1: Description of features. 

Feature Description 
1 Latency of P complex 
2 Latency of Q complex 
3 Latency of S complex 
4 Latency of T complex 
5 Amplitude of P complex 
6 Amplitude of Q complex 
7 Amplitude of S complex 
8 Amplitude of T complex 

Concluding, the available ECG data comprises 
24 classes (each corresponding to each one of the 
subjects under test) and 8 features. 

3 AUTHENTICATION SYSTEM 

The purpose of ECG-based authentication systems is 
to attest that the user of a system is who he claims to 
be, through the monitoring of its ECG records. In 
this work, three classifiers were implemented using 
Matlab (Matlab, 2007): MAP classifier, One-Class 
classifier and 1-NN classifier. 

The MAP classifier algorithm was constructed as 
follows. Two mutually exclusive sub-sets from the 
137 sample set are created, with 1 pattern for test 
and the remaining 136 for training (“leave-one-out” 
method). Then, density of the training data, p(x|ωk), 
is estimated according to a maximum likelihood 
technique later explained. p(ωk|x) is subsequently 
computed for each test sample according to (1) and  
the classifier decides on accepting test samples if (2) 
is verified. This process is repeated for all the 137 
samples. It is important to state that a Naive Bayes 
model is considered for used features, thus assuming 
statistical independence between them, (3). Also, 
classes are assumed to be equiprobable, (4). 
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For the One-Class classifier, a similar algorithm 
was adopted. The algorithm starts to estimate the 
distribution of training data. Then, the probability 
density of the target class, p(x|ωk), is estimated and 
normalized within a factor Fclass, which is the 
maximum value within each class, (5). Afterwards, 
given a threshold λ, the classifier accepts the test 
samples included in the acceptance region defined 
by threshold according to (6). This process is 
repeated for all the 137 samples. For comparison 
purposes, another version of the One-Class classifier 
was implemented, using a different normalization 
factor, Fall, which is the maximum p(x|ωk) value 
found over all classes, (7). 

max( ( | ))class kF p x ω=  (5)

( | )kp x ω λ>  (6)

max ( ( | ))all k kF p x ω=  (7)

Note that, regarding these two Bayesian 
classifiers, the density model of the training data was 
estimated based on its histogram plots, Figure 2. A 
Gaussian distribution, with mean µ and variance σ2, 
was assumed for each feature. It is important to state 
that this is a simplistic approach (e.g., feature 2 in 
Figure 2 is a Dirac function), with implicit 
drawbacks on the performance of the authentication 
system. A mixture of Gaussians will probably 
provide refined results, but has the additional 
complexity drawback. 

 
Figure 2: Histogram plots for subject id 10. 

The 1-NN classifier algorithm starts to compute 
and store the Euclidean distances between all data 
samples, and then normalizes the computed values 
to Fdis, which is the maximum distance found 
between two samples xa and xb, (8). After the 
creation of training and test sets, the minimum 
distances for the training set within each class are 
found and classification is based on that. Test 
samples are accepted if (9) is verified. This process 
is repeated 137 times, one per sample. 

max( ( , ))dis a bF d x x=  (8)

min ( | )kd x ω λ<  (9)

4 RESULTS AND DISCUSSION 

In what concerns the MAP classifier, the confusion 
matrix (average values obtained for the 137 runs) is 
presented in Figure 3. It is clear from this figure that 
test samples from different individuals are extremely 
uncorrelated, thus being correctly classified. About 
60% of the test samples achieve p(ωk|x) > 0.85. In 
Figure 4 and Figure 5 one may observe the average 
Receiving Operating Characteristic (ROC) and the 
False Acceptance Rate (FAR) / False Rejection Rate 
(FRR) curves, respectively, for the 137 runs. It is 
observed that FAR and FRR are dependant on the 
adjustable chosen threshold. If the threshold value is 
increased, FAR decreases, while FRR increases. 
When the value of threshold is decreased, the 
proportion FRR will decrease, while FAR increases. 
FAR lies between 5% and 17%, while FRR achieves 
values between 4% and 9%. The equal error rate 
(EER) occurs for λ ~ 2.6E-04, corresponding to 
FAR=FRR=7%. For this value of the threshold, 
FAR and FRR values were analysed within each 
class (see Figure 6). It is observed that classes 1, 18 
and 22 present the worst results. In order to 
determine EER within each class, the respective 
FAR and FRR values were computed. Table 2 
presents the λk values corresponding to the EER for 
each class k. An average EER of 5.9% was 
estimated, being lower to the one obtained for the 
MAP classifier with a global threshold. Thus, one 
concludes that specific thresholds per class will 
enhance the performance of the classifier. 
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Figure 3: Confusion matrix for the MAP classifier 
(average values). 

 
Figure 4: ROC curve for the MAP classifier. 

 

Figure 5: FAR/FRR(λ) curves for the MAP classifier. 

 

Figure 6: FAR/FRR curves for each class, with 
λ ~ 2.6E-04 (MAP classifier). 

 

Table 2: ERR within each class (MAP classifier). 

Class, k λk ERR 
1 1.51E-04 27% 
2 4.66E-04 7% 
3 2.00E-09 0% 
4 6.40E-03 6% 
5 6.45E-06 4% 
6 9.90E-01 5% 
7 1.91E-06 11% 
8 3.00E-06 1% 
9 2.00E-03 1% 
10 1.56E-04 8% 
11 2.06E-08 2% 
12 2.10E-05 7% 
13 2.80E-10 2% 
14 1.60E-01 3% 
15 3.86E-04 4% 
16 3.30E-03 2% 
17 3.48E-06 9% 
18 4.70E-03 10% 
19 2.00E-08 0% 
20 1.56E-04 3% 
21 1.71E-04 5% 
22 3.11E-04 15% 
23 2.66E-04 7% 
24 2.03E-03 4% 
 average 6% 

Regarding the One-Class classifier, the confusion 
matrix (average values) obtained for the 137 runs, is 
presented in Figure 7. Again, it is observed that 
samples are extremely uncorrelated and almost all 
are correctly classified. 75% of the test samples 
achieve p(x|ωk) > 0.85. ROC and FAR/FRR(λ) 
curves for the One-Class classifier (with 
normalization within each class) are represented in 
Figures 8 and 9, respectively. One observes better 
results for this classifier when compared to MAP, 
with FAR ranging from 3% and 13%, while FRR 
lies between 7% and 13%. EER happens for 
λ ~ 1.4E-03, corresponding to FAR=FRR=3.5%. 
Worse results were obtained for the version of 
One-Class classifier with normalization to the 
maximum p(x|ωk). In this case, FAR lies between 
5% and 15%, while FRR ranges from 8% to 16%. 
EER occurs for λ ~ 2.5E-08, corresponding to 
FAR=FRR=10%. 

Regarding the 1-NN classifier, Figure 10 and 
Figure 11 represent the ROC and FAR/FRR(λ) 
curves for this classifier. For 1-NN, a symmetric 
trend is verified when compared to the Bayesian 
classifiers. With higher threshold levels, FAR will 
increase, while FRR decreases. This is intuitive, as 
increasing the distance threshold will lead the 
system to accept more users, thus increasing FAR 
and decreasing FRR. Poor performances were 
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obtained for 1-NN, with EER occurring for 
λ ~ 2.9E-02, corresponding to FAR=FRR=8%. 

 
Figure 7: Confusion matrix for the One-Class classifier 
with class normalization (average values). 

 
Figure 8: ROC curve for the One-Class classifier. 

 
Figure 9: FAR/FRR(λ) curves for the One-Class classifier. 

 
Figure 10: ROC curve for the 1-NN classifier. 

 
Figure 11: FAR/FRR(λ) curves for the 1-NN classifier. 

An overview of the obtained results is presented 
in Table 3, from which one concludes that all the 
implemented classifiers are promising for an 
ECG-based authentication scheme. 

Table 3: Overview of classifiers. 

Classifier EER 
MAP 7% 

One-Class 
(class normalization) 

3.5% 

One-Class 
(maximum normalization) 

10% 

1-NN 8% 

5 CONCLUSIONS 

This paper exploits possible approaches for 
ECG-based authentication schemes, using real data 
obtained by the HiMotion Project. ECG records 
from 24 individuals were gathered during realization 
of cognitive tests, where subjects held a surface 
mount triode placed on the V2 pre cordial 
derivation. Two Bayesian classifiers, MAP and 
One-Class, and a standard 1-NN were implemented 
using Matlab. Results show that the three schemes 
achieve feasible performances for an authentication 
system, with statistical classifiers presenting better 
results. 

Regarding the Bayesian classifiers, Gaussian 
distributions were assumed to estimate p(x|ωk). In 
the MAP classifier, decision is based on posterior 
probabilities, given a global threshold for the 24 
classes. This assumption results in an EER of 7%. It 
was shown that enhanced performance could be 
obtained, if one considers specific thresholds per 
class. The same conclusion is valid for the One 
Class classifier, which, in a first approach, considers 
class normalization factors, leading to an error rate 
of 3.5%. Without normalization to the maximum 
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p(x|ωk) within each class, performance degrades to 
error rates of 10%. Regarding the 1-NN classifier, 
which is based on distance measure, a slight worse 
performance was achieved with EER of 8%. 

It is concluded that the ECG biometric does 
provide a simple method for human authentication, 
which may be appropriate in some applications (e.g., 
sensor authentication in body area networks). 
Moreover, ECG may be a good source of additional 
information in a multi-biometrics approach, as well 
as integrated in health surveillance systems. 
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