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Carretera de Valencia Km 7, 28031 Madrid, Spain

Corinne Fredouille
Laboratoire Informatique d’Avignon, Université d’Avignon et des Pays de Vaucluse
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Abstract: Advances in speech signal analysis during the last decade have allowed the development of automatic al-
gorithms for a non-invasive detection fo laryngeal pathologies. Performance assessment of such techniques
reveals that classification success rates over 90% are achievable. Bearing in mind the extension of these au-
tomatic methods to remote diagnosis scenarios, this paper analyses the performance of a pathology detector
based on Mel Frequency Cepstral Coefficients when the speech signal has undergone the distortion of an ana-
logue communications channel, namely the phone channel. Such channel is modeled as a concatenation of
linear effects. It is shown that while the overall performance of the system is degraded, success rates in the
range of 80% can still be achieved. This study also shows that the performance degradation is mainly due to
band limitation and noise addition.

1 INTRODUCTION

The social and economical evolution of developed
countries during the last years has led to an in-
creased number of professionals whose working ac-
tivity greatly depends on the use of their voice. It
has been reported that this number has reached one
third of the total labor force and, in parallel, that
approximately 30% of the population suffers from
some kind of voice disorder along their lives (Sder-
sten and Lindhe, 2007). In this context, methods for
objective assessment of vocal function have a relevant
interest (Umapathy et al., 2005) and, among them,
speech analysis has the additional features of being
non-invasive and allowing easy data colection (Baken
and Orlikoff, 2000).

Speech assessment for the detection of patholo-
gies has been traditionally realised through the analy-
sis of global distortion and noise measurements taken
from records of sustained vowels (Umapathy et al.,
2005) (Baken and Orlikoff, 2000). Classification
performances over 90% in terms of success rates
have been reported for automatic pathology detec-

tion systems based on such parameters (e.g. (Boy-
anov and Hadjitodorov, 1997)). Recently, alternative
approaches based on Mel-frequency Cepstral Coef-
ficients (MFCC) with similar performance (Godino-
Llorente and Gomez-Vilda, 2004) have also been pro-
posed. These approaches have the advantage of relay-
ing on robust parameters whose calculation does not
require prior pitch estimation (Fraile et al., 2008a).
Moreover, analysis in cepstral domain for this appli-
cation is further justified by the presence of in the
cepstrum information about the level of noise (Mur-
phy and Akande, 2005). Additional reasons that sup-
port the specific processing involved in MFCC calcu-
lation can be found in (Fraile et al., 2008a), (Godino-
Llorente et al., 2006) and (Fraile et al., 2008b).

From another point of view, remote diagnosis is
one of the foreseen applications of telemedicine (TM
Alliance Team, 2004). In this context, the use of
a non-invasive diagnosis technique such as speech
analysis is well suited to that application. Moreover,
since the analogue wired telephone network is one
of the most mature and widely extended communi-
cations infrastructures, it seems reasonable to expect
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that it will become one of the supporting technologies
for that medical service. However, the feasibility of
such application will heavily depend on the ability of
voice analysis to extract significant information from
speech signals even after the distortion caused by the
communications channel.

Up to now, some preliminary works on this is-
sue have been carried out and published. In the first
place, pathology detection on voice transmitted over
the phone has been shown to experiment a perfor-
mance degradation figure around 15% when detection
is based on traditional acoustic parameters (Moran
et al., 2006). Secondly, the impact of several speech
coders on voice quality has been studied, but with-
out regarding the additional degradation introduced
by communications channels (Jamieson et al., 2002).
Last, the problem of analysing the effect of the ana-
logue telephne channel on a MFCC-based system for
pathology detection has also been approached (Fraile
et al., 2007), but without differentiating among the
different distortions introduced by the channel and
without accounting for noise distortion.

Considering all above-mentioned aspects, that is,
the adequateness of MFCC for automatic pathology
detection and the interest of analyzing the impact of
the analogue telephone channel on speech quality, this
paper offers a detailed report on the effect of the dis-
tortions introduced by the telephone channel on the
performance of automatic pathology detection based
on MFCC. More specifically, a study more complete
than that of (Fraile et al., 2007) is provided in which
the effects of band limitation, frequency response of
the channel and additive noise are analysed sepa-
rately. This way, the results of the study are useful,
not only for remote diagnosis applications such as the
one described before, but also for setting minimum
conditions, in terms of bandwidth and noise levels,
for speech recording in clinical applications.

The rest of the paper is organised as follows: sec-
tion 2 contains the specific formulation of MFCC and
the values for related parameters used in the study,
section 3 describes the model of telephone channel
that has been considered, in section 4 the database,
classifier and procedure used for the experiment are
detailed, results are reported in section 5 and, last,
section 6 is dedicated to the conclusions.

2 MFCC FORMULATION

As argued in (Fraile et al., 2008a), the variability of
the speech signal is specially relevant in the pres-
ence of pathologies, thus justifying the use of short-
term signal processing. A framework for such short-

term processing in the case of speech is provided
in (Deller et al., 1993). Within this framework, the
short-time MFCC definition given in (Fraile et al.,
2008b), which is slightly different from the original
proposal in (Davis and Mermelstein, 1980) but it has
an easier interpretation, is used:

cp [q] =
1

M +1

M

∑
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log
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where p is the frame index,q is the index of the
MFCC that ranges from 0 toM, M is the number
of Mel-band filters used for spectrum smoothing and∣∣∣S̃p(k)

∣∣∣ is the estimate of the spectral energy of the

speech signal in thekth Mel band. Specifically:
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whereSp (i) is the ith element of the short-time dis-
crete Fourier transform of thepth speech frame,f m

i is
its associated Mel frequency,
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is thekth band in Mel-frequency scale,∆ f m/2 is the
width of these Mel bands andFm is the maximum
frequency in Mel domain, which corresponds to half
the sampling frequency of the speech signal. The fre-
quency transformation that allows passing from linear
to Mel scale is:

f m = 2595· log10

(
1+

f
700

)
(4)

For the herein reported application, speech frame
duration has been chosen to be 20 ms, which allows
capturing the spectral envelope of speech for funda-
mental frequencies above 50 Hz, thus covering the
cases of both male and female voices (Baken and Or-
likoff, 2000). Overlap between consecutive frames
was 50%. The number of Mel band filtersM has been
made equal to 31, since that value has shown to ex-
hibit good preformance (Fraile et al., 2008b) and vec-
tors of 21 MFCC, that isq ∈ [0,20], have been used
as feature vectors for each speech frame.

3 TELEPHONE CHANNEL
MODEL

The task of assessing the impact of the analogue
telephone channel on the performance of a MFCC-
based pathology detector was done bearing in mind
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Figure 1: Block diagram of the analogue telephone channel
model.

the same modeling methodology as in (Fraile et al.,
2007). Such methodology comprises the main as-
pects of the model proposed in (Dimolitsas and Gunn,
1988). Namely, the linear effects of the channel have
been assumed to be the dominant ones: amplitude,
phase and noise distortions. Normative restrictions
on amplitude and phase distortion imposed by (ITU,
1998) have also been taken into account. The block
diagram of the overall channel model is drawn in fig-
ure 1 and it consists of the following elements:

• Amplitude Distortion.Its limits are normalised in
(ITU, 1998) for the 300-3400 Hz band and no re-
strictions are imposed outside that band.

• Phase Distortion.Its limits for the 300-3400 Hz
band are also specified in (ITU, 1998) and they are
mainly referred to the phase effects at the edges of
that band.

• Noise Distortion. This distortion can be split in
noise at the transmitter side, which undergoes the
same amplitude and phase distortion as the speech
signal, and noise at the receiver side that does not
suffer that distortion.

• Bandwidth Limitation.This has to be carried out
as the first stage of the detector due to the uncer-
tainty about the distortion out of the 300-3400 Hz
band. Another reason for this limitation is that the
telephone network adds some signalling in the 0-
300 Hz band (ITU, 1998).

3.1 Amplitude Distortion

The analogue telephone channel acts as a band-pass
filter. Attenuation of high frequencies comes from
the low-pass behaviour of the transmission line while
attenuation of low frequencies (below 300 Hz) al-
lows the use of out-of-band signalling. Limits recom-
mended by (ITU, 1998) for the amplitude response
of the channel are represented as continuous lines in
figure 2.

The simulation of the amplitude and phase distor-
tion of the channel has been realised separately, as
proposed in (Dimolitsas and Gunn, 1988) and illus-
trated in figure 1. Within such a setup, the amplitide
distortion has been modeled as a band-pass linear-
phase system, hence achieving null phase distortion
in this stage, implemented by means of a symmetric
FIR filter. Bearing in mind restrictions in (ITU, 1998),
a 176-order filter has been designed that has the fre-
quency response plotted in figure 2 (dashed line).
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Figure 2: Amplitude response of the channel: restrictions
(continuous line) and model (dashed line).

3.2 Phase Distortion

Regarding phase distortion, (ITU, 1998) imposes
limits to group delay variations within the pass band.
Namely, different limits are specified for the low and
high parts of the band, as represented by the thick
lines in figure 3. A simple procedure to obtain an
all-pass filter that achieves phase distortion around
certain frequencies is to design an IIR filter having
zeros and poles in the frequencies at which phase
distortion has to be greatest. For the filter to be
all-pass, zero and pole modules must be symmetric
with respect to the unit radius circle of the z-plane.
Specifically, the implemented filter corresponds to
the following transfer function:

H (z) = Hap(z; flow) ·Hap
(
z; fhigh

)
(5)
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Figure 3: Phase response of the channel: restrictions (con-
tinuous line) and model (dahsed line).
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wherer = 1.01, flow = 250 Hz, fhigh = 3450 Hz

and fs is the sampling frequency of the speech record.
The obtained frequency-dependent group delay is de-
picted in figure 3. It can be noticed that the maximum
phase distortion happens at the limits of the pass band
of the FIR filter, as specified by (ITU, 1998).

3.3 Band Limitation

The above-mentioned specifications for the frequency
response of the telephone channel only cover the band
between 300 and 3400 Hz, thus leaving uncertainty
as for the distortion that the speech signal undergoes
out of that band. In addittion, as specified by (ITU,
1998), out-of-band signalling is allowed in the 0-300
Hz band. This adds the possibility of narrow-band
noise distortion to the lack of normalisation of the re-
sponse of the channel within that band. These facts
make it logical to perform a band limitation of the
speech signal prior to its analysis, as indicated in fig-
ure 1. In this way, only the 300-3400 Hz band of the
signal is further processed. This band limitation pro-
cedure is of common use in other speech processing
applications (Reynolds et al., 1995).

The band limitation has a direct effect on the com-
putation of MFCC. Specifically, the∆ f m parameter in
2 depends on both the bandwidth of the signal and the
number of mel-band filters used for MFCC calcula-
tion. When limiting the frequency band of the sig-
nal, two strategies may be followed in the subsequent
analysis: either maintaining the number of mel bands,
hence reducing∆ f m, or keeping∆ f m approximately
equal by reducing the number of bands. The perfor-
mance of these two options will be analysed in section
5.

3.4 Additive Noise

The fourth modeled distortion of the telephone chan-
nel is noise. Although more complex models ex-
ist for telephone noise modelling (Dimolitsas and
Gunn, 1988), herein a simpler approach, similar to
(Reynolds et al., 1995), has been chosen. Namely,
noise has been considered to be additive and white
Gaussian (AWGN). Yet, a differentiation has been
made between noise that suffers the same channel ef-
fects as the speech signal, accounting for the trans-
mitter side, and noise that does not pass through the
channel, hence the receiver side. In both cases, signal-
to-noise ratio (SNR) has been controlled by tuning the
power of noise to the specific power of each processed
signal.

4 SIMULATION PROCEDURE

4.1 Database

All the herein reported results have been obtained us-
ing a well-known database distributed by Kay Ele-
metrics (MEE, 1994). More specifically, the utilized
speech records correspond to sustained phonations of
the vowel /ah/ (1-3 s. long) from patients with nor-
mal voices and a wide variety of organic, neurologi-
cal, traumatic, and psychogenic voice disorders in dif-
ferent stages (from early to mature). The subset taken
corresponds to that reported in (Parsa and Jamieson,
2000) and it corresponds to 53 records from healthy
patients (normal set) and 173 to ill patients (patholog-
ical set).

The speech samples were collected in a controlled
environment and sampled at sampling rates equal to
either 50 or 25 kHz with 16 bits of resolution. A
down-sampling with a previous half band filtering has
been carried out over some registers in order to adjust
every utterance to the sampling rate of 25 kHz.

4.2 Classifier

The chosen classifier consists of a 3 layered Mul-
tilayer Perceptron (MLP) neural-network (Haykin,
1994) with 40 hidden nodes having logistic activation
functions (as in (Godino-Llorente and Gomez-Vilda,
2004)) and two outputs with linear activations. The
use of two linear outputs allows obtaining two val-
ues for each speech frame, characterised by its MFCC
vectorcp. In the training phase of the MLP, one output
is trained to produce a value of “0” for pathological
voice frames and “1” for normal voice frames, while
the other output is trained to produce a “0” for normal
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data and a “1” for pathological data. In the testing
phase, each output value is an estimation of the likeli-
hood of that frame to be either normalLnor (cp) (first
output) or pathologicalLpat (cp) (second output).

These likelihoods, whilst not probabilities, give
an idea of how feasible is that any particular frame
corresponds to each class or set. Their precise val-
ues depend on the value of the feature vector com-
ponents and on the learned parameters of the MLP.
Since the orders of magnitude of both likelihoods
may significantly differ, it is more usual to compute
log-likelihoods; the classification decision for thepth

frame is, then, based on the difference between log-
likelihoods, as described in (Bimbot et al., 2004):

log[Lnor (cp)]− log[Lpat (cp)] > θ (7)

If the previous condition is met, then the speech
frame is classified as normal, if not, it is considered
pathological. In ideal conditions, that is, if the like-
lihoods could be perfectly estimated by the classifier,
then the value for the thresholdθ should beθ =0. In
practice, however, this is not the case and the choice
of θ helps to make the decision system more or less
conservative. Nevertheless, since decisions in this
case should not be taken at the frame level, but at the
record level, a mean log-likelihood difference is com-
puted and this is the value actually compared to the
threshold:

1
Nf rames

·

Nf rames

∑
p=1

log[Lnor (cp)]− log[Lpat (cp)] > θ

(8)
whereNf rames is the number of frames of the speech
record.

4.3 Testing Protocol

The testing of each detection scheme consists of an
iterative process. Within each iteration 70% of the
available speech records have been randomly chosen
for training the classifier, that is, to estimate the likeli-
hood functions mentioned above. Among the remain-
ing 30% of records, one third (10%) have been used
for cross-validation during training in order to get
an objective criterion for finishing the training phase
(Haykin, 1994). The rest (20%) have been used for
testing. For each testing record, a decision accord-
ing to the previously described framework has been
taken. Last, with the decisions corresponding to all
the testing records, misclassification rates for differ-
ent values ofθ and the corresponding iteration have
been computed. Twenty iterations with independently
chosen training, validation and testing sets have been
repeated.

5 RESULTS

There are several performance indicators for the eval-
uation of detection systems. A summary of the most
typically used for speech applications can be found
in (Bimbot et al., 2004). Among these indicators, the
DET plot (Martin et al., 1997) and the Equal Error
Rate (EER) have been chosen for this study as graphic
and quantitative indicators, respectively. For the DET
plot, false alarmhas been defined as the event of de-
tecting a normal voice as pathological, whilemiss
means the event of detecting a pathological voice as
normal. In this context, the DET curve represents the
relationship between miss and false alarm rates as the
thresholdθ in (7) and (8) changes and the EER is the
point at which the DET curve crosses the diagonal of
the graph, i.e. the value of miss and false alarm rates
whenθ is tuned so that they coincide. In all experi-
ments, the results have been computed both at frame
and record levels, corresponding to (7) and (8).

5.1 Effect of Band Limitation

As indicated in figure 1, the first step in the speech
analysis after transmission through the telephone
channel is band limitation. This involves taking only
the spectral energy between 300 Hz and 3400 Hz for
spectrum smoothing using the Mel filter bank. Such
bandwidth reduction can be achieved in two differ-
ent ways. The first of them consists in maintaining
the number of filters (M=31), thus reducing their in-
dividual widths. The second option, instead, involves
maintaining the filter width by reducing the number
of filters. It can be checked that if the band is split in
16 Mel bands (M=16), very similar Mel-filter widths
are achieved. However, this means reducing the num-
ber of MFCC from 21 (q∈ [0,20]) to 16 (q∈ [0,15] ),
sinceq< M due to the periodic nature of the discrete-
time Fourier transform.

In figure 4, the different performances of both al-
ternatives are represented by means of the averaged
empirical EER and their 95% confidence intervals.
The results indicate, on the one hand, that a signifi-
cant increase in EER is produced by the band limita-
tion inherent to the telephonic channel. Such obser-
vation is complementary to results reported in (Pou-
choulin et al., 2007), where it was shown that the most
relevant band for dysphonia detection was between 0
and 3000 Hz. The herein reported results indicate that
there is significant information within the lower part
of that band, that is, below 300 Hz. On the other hand,
the plot in figure 4 also indicates that maintaining the
size of the Mel-bands gives similar results to keep-
ing the number of bands, but with the advantage of
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Figure 4: Average EER (central line of each box) and their
95% confidence interval (top and bottom of each box) at
frame level (up) and record level (down). Case (1) corre-
sponds to the original records and 31 Mel-band filters, (2)
to band-limited signals with 31 Mel bands and (3) to band-
limited signals with 16 Mel bands.

lower dimensionality. Consequently, this will be the
preferred option for the next experiments.

5.2 Effect of Amplitude Distortion

In (Fraile et al., 2007), it was shown that the am-
plitude distortion of the speech signal has the ef-
fect of performing a quasi-linear transformation in the
MFCC values. Taking this into account and recalling
(1), the transformed MFCC can be written as:

c̃p [q] = A+cp [q]+ (9)

+
1

M +1

M

∑
k=1

log|ξ(k)| ·cos

(
πk

M +1
·q

)

whereA is a constant that depends on the amplitude
response of the filter andξ(k) is a variable term that
depends on the relation between the spectrum of the
speech signal and the response of the filter within the
kth Mel-frequency band.

Figure 5 shows the plots that illustrate the av-
erage EER with the associated confidence intervals
when the training stage of the classifier is done with
the original speech records, with band limitation and
M=16, and the testing is done with the outputs of fil-
tering those records with the filter corresponding to
figure 2 (case 3). To ease comparison, plots corre-
sponding to the original records without band limita-
tion (case 1) and the band limited analysis with no dis-
tortion (case 2) are plotted in the same graph. It can be
noticed that the limited distortion allowed within the
300-3400 Hz band by ITU specifications (ITU, 1998)
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Figure 5: Average EER and 95% confidence intervals at
frame level (up) and record level (down). Case (1) cor-
responds to the original records and 31 Mel-band filters,
(2) to band-limited signals with 16 Mel bands and (3)
to amplitude-distorted band-limited signals with 16 Mel
bands.

has the consequence of not affecting greatly the per-
formance of the system.

5.3 Effect of Phase Distortion

As proven in (Fraile et al., 2007), the computation of
MFCC involves calculation of the modulus of the dis-
crete Fourier transform of the signal, as indicated in
(1). Consequently, MFCC are insensitive to phase dis-
tortions and there is no need to analyse this effect of
the channel.

5.4 Effect of Noise Distortion

The last effect of the channel to be analysed is noise
distortion. This has been modelled as AWGN with
different power levels. The effect of noise was anal-
ysed both independently and in conjunction with the
band-limiting scheme explained before. As for the
independent analysis, the obtained distributions of
EER for different levels of signal-to-noise ratio (SNR)
are plot in figure 6. In all cases, the training was
done with the clean records and the testing with the
noisy ones. The plot indicates that for SNR values
around 30 dB the overall performance does not de-
grade greatly. However, if SNR falls below 24 dB,
the error rate at record level tends to grow above 15%.
While the effect of noise in the case of the telephone
channel is not isolated from other distortions, these
results are also useful for determining the minimum
required quality of speech recordings for pathology
assessment. Under the AWGN assumption, SNR val-
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Figure 6: Average EER and 95% confidence intervals at
frame level (up) and record level (down). Case (1) corre-
sponds to the original records and cases (2) to (5) to SNR
values of 30 dB, 24 dB, 18 dB and 12 dB, respectively.

ues below 24 dB seem not to be acceptable for this
application.

The figure of 20 dB has been considered as a
reference for the combined analysis of band limita-
tion and amplitude and noise distortions. It has been
found that, coherently with above-reported results,
there is not any significant difference between adding
the noise previously to the amplitude distortion (trans-
mitter side) or after (receiver side). For the subse-
quent experiment, noise addition has been split in two
parts: half of the power prior to amplitude distortion
and half of the power after. Figure 7 shows the plots
of average EER for the original speech records and
those obtained after the three distortions (band limi-
tation, amplitude distortion and noise addition). On
the whole, the average EER suffers a degradation of
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Figure 7: Average EER and 95% confidence intervals at
frame level (up) and record level (down). Case (1) corre-
sponds to the original records and case (2) to records under-
going the full modeled channel distortion.
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Figure 8: DET plot of the pathology detection system for
the original speech records (gray) and those with simulated
telephone channel distortion (black).

below 10%, yielding a success classification rate over
80% at the record level. A DET plot of the same re-
sults is depicted in figure 8.

6 CONCLUSIONS

Within this paper, the performance of a speech pathol-
ogy detector based on Mel Frequency Cepstral Coeffi-
cients when the speech signal has undergone the dis-
tortion of an analogue communications channel has
been analysed. Namely the telephone channel has
been modeled as a concatenation of linear effects:
band limitation, amplitude distortion, phase distor-
tion and noise addition. It has been shown that while
the overall performance of the system is degraded,
success rates over 80% can still be achieved. This
study also reveals that the performance degradation
is mainly due to band limitation and noise addition.
Amplitude distortion, if complying with norm (ITU,
1998), has little impact and phase distortion has no
impact at all.

As for the most relevant sources of distortion, it
has been shown that the loss of information in the 0-
300 Hz band makes performance to decrease signif-
icantly. Additionally, the effect of noise degradation
becomes very relevant for values of SNR below 24
dB. For SNR equal to 20 dB, and considering band-
width limitation and amplitude distortion too, success
classification rate can reach 80%. This figure is better
than the results reported in (Moran et al., 2006).

The whole set of reported results allow to con-
clude, in the first place, that remote pathology de-
tection on speech transmitted through the analogue
telephone channel seems feasible and, in the second
place, that MFCC parameterization can provide a ro-
bust method for assessing the quality of degraded
speech signals.
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