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Abstract: A new formulation of principal component analysis (PCA) that considers group structure in the data is 
proposed as a Variable Subset Selection (VSS) method. Optimization of electrode channels is a key problem 
in brain-computer interfaces (BCI). BCI experiments generate large feature spaces compared to the sample 
size due to time limitations in EEG sessions. It is essential to understand the importance of the features in 
terms of physical electrode channels in order to design a high performance yet realistic BCI. The VSS 
produces a ranked list of original variables (electrode channels or features), according to their ability to 
discriminate between tasks. A linear discrimination analysis (LDA) classifier is applied to the selected 
variable subset. Evaluation of the VSS method using synthetic datasets selected more than 83% of relevant 
variables. Classification of imagery tasks using real BCI datasets resulted in less than 16% classification 
error. 

1 INTRODUCTION 

Brain-Computer Interfaces (BCI) enable people to 
control a device with their brain signals (Wolpaw et 
al., 2000).  BCIs are expected to be a very useful 
tool for impaired people both in invasive and non-
invasive implementations. Non-invasive BCI 
operation commonly uses electroencephalogram 
(EEG) from human brain for the ease of 
applicability in laboratory set ups as well as in 
patient applications. Datasets are generally high-
dimensional, irrespective  of the types of features 
(frequency band power, event-related 
desynchronization (ERD), movement-related 
potentials (MRP), event-related potentials (e.g. 
P300), etc.) extracted from EEG, if no previous 
knowledge about those features is considered. The 
low ratio of the number of samples to the number of 
variables is described as the curse of dimensionality 
(Duda et al., 2000). Frequently, in a BCI experiment, 
it is not easy to increase the number of samples to 
compensate for high-dimensionality. On the other 
hand, a variable subset calculation is feasible when 
few variables are relevant. 

The variables in a dataset can be divided into 
irrelevant, weakly relevant and strongly relevant 

variables (John et al., 1994). A good subset should 
include all the strongly relevant variables and some 
of the weakly relevant ones. The variable subset to 
choose should minimize the generalization error (i.e. 
cross-validation error). Typically, the term ‘feature’ 
is used in the literature (Yu and Liu, 2004) instead of 
‘variable’. Nevertheless, we here use the latter to 
avoid confusion about the dimensions of the dataset 
(electrode channels) and the characteristic features 
(e.g. band power, MRP) extracted from EEG raw 
signals.  

This work proposes a feature selection method 
based on a different formulation of Principal 
Component Analysis (PCA), introduced in (Dillon, 
1989) that accommodates the group structure of the 
dataset. In the PCA framework, data dimensionality 
reduction methods typically use the selected 
principal components (PC) as a lower-dimensional 
representation of original variables, for 
discrimination purposes (Dillon et al., 1989; 
Kamrunnahar et al., 2008). However, the proposed 
work suggests that the dimensionality reduction 
should take place on the original variable space 
instead of the components, since it becomes more 
obvious which original variables are really relevant. 
The datasets from each subset of variables undergo 
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linear discriminant analysis (LDA) for classification. 
The best subset in discriminating between task 
performances, for each subject, is evaluated by a 
cross-validation error. 

We evaluated the proposed VSS method through 
both synthetic and real datasets. A synthetic dataset 
enabled us to evaluate this method in a controlled 
environment and simulated the 3 levels of variable 
relevance mentioned above. The real datasets were 
generated from movement-related potentials (MRP) 
as EEG responses to movement imagery tasks 
(Babiloni et al., 1999). Four subjects were submitted 
to these experiments and no subject had previous 
BCI experience. The lowest cross-validation error 
for each subject and the corresponding number of 
variables selected were assessed. 

2 EXPERIMENTAL DESIGN 

2.1 Symthetic Data 

Among all variables p in the synthetic dataset, q 
relevant and p-q irrelevant Gaussian distributed 
variables were generated. All the generated variables 
had the same standard deviation σ. In order to best 
simulate a typical multivariate dataset, the relevant 
features were generated in pairs with correlation 
between variables. In this way, the variables are 
more discriminative if considered together. The first 
variable in each pair is considered as the 
predominant variable since its mean has distance d 
between groups. The distribution parameters were 
set similarly to (Lai et al., 2006). Pairs of correlated 
variables were generated until the quantity of 
relevant variables is reached. The remaining p-q 
variables (i.e. discrimination irrelevant) were 
generated from the same Gaussian distribution (no 
mean difference) for both groups. Four different 
datasets were generated with 80 samples: p=79 and 
q=6; p=79 and q=12; p=40 and q=6; p=40 and q=12. 
The first 2 datasets were intended to simulate the 
high dimensional/low sample size problem. The last 
2 represent a lower high-dimensional space. The 
standard deviation σ was set to 2.5 in all datasets. 
The mean difference d was set to be equal to σ to 
simulate group overlapping. The values of both 
distribution parameters were set to best approximate 
the real variables extracted from the EEG data 
collected. 

2.2 EEG Data 

Four healthy human subjects, 25 to 32 years old, 
three males and one female, were submitted to 1 
session each of motor imagery. The experiments 
were conducted under Institutional Review Board 
(IRB) approval at Penn State University.  

Each session had 4 runs of 40 trials each. Each 
subject was instructed to perform one of 4 tasks in 
each trial. The tasks were tongue, feet, left hand and 
right hand movement imageries. The following 2 
imagery task discrimination cases were considered 
for VSS algorithm evaluation: tongue vs. feet; left 
hand vs. right hand. After the first 2 s of each trial, a 
cue warned the subject to be prepared and 1 s later, a 
cue about the required mental task was presented to 
the subject. The subject was instructed to perform 
the task in the 4 s after the cue. 

Data were acquired from 9 electrodes according to 
the standard 10-20 system (F3, Fz, F4, C3, Cz, C4, 
P3, Pz, P4). All electrodes were referenced to linked 
earlobes. Data were digitized at 256 Hz and passed 
through a 4th order 0.5-60 Hz band-pass filter. Each 
channel’s raw EEG signal was epoched from the cue 
time point (0 s) to 4 s after the cue. The epoch was 
subdivided in 1 s time windows with no overlap (4 
time windows). Each epoch was low-pass filtered at 
4 Hz with an 8th order Chebyshev type I filter. 
Then, the filtered 256 points time series was down 
sampled to be 10 points long. The Matlab 
“decimate” function was used to accomplish both 
the filtering and down sampling. Only the 1st-8th data 
points of the resultant time series form the feature 
vector for each time window. The last 2 points of the 
time series were discarded because they seemed to 
be irrelevant on previous analyses. The feature 
matrix of each time window had 72 variables (8 
features from each of the 9 electrodes) and 80 
samples. 

3 VARIABLE SUBSET 
SELECTION 

The proposed VSS algorithm can be partitioned in 3 
sequential procedures. Initially, the dataset 
dimensionality is reduced through a formulation of 
PCA that accommodates the group structure of the 
dataset (Dillon, 1989). Once the number of variables 
is reduced, the remaining variables are ranked 
according to their discrimination ability. Finally a 
cross-validation procedure is applied in order to 
determine the optimum subset of variables to select.  
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3.1 Dimensionality Reduction 

The original feature matrix Y has samples in rows 
(n) and variables (p) in columns (p < n-1). The PCs 
are linear projections of the variables onto the 
orthogonal directions that best describe the dataset 
variance independent of any group structure that 
might be present in the data. Initially, the p PCs in 
Un×p are calculated through singular value 
decomposition (SVD) of Y. Although the PCs are 
already organized by decreasing order of total 
variance accounted for, this order is optimized for 
orthogonality rather than discrimination between 
groups. In order to compensate for this and take the 
data group structure into account, the components 
should be ordered according to the across group 
variance (AGV) score (Dias, 2007), instead of the 
eigenvalues λi order that account for the total 
variance. The AGV score is used to rank each 
component in terms of the between group variance 
instead of the total variance. The AGV score is 
calculated according to (1) and its implementation is 
detailed in the appendix. 

T
i Between i

i
i

v vAGV
λ

Ψ
=  (1) 

ΨBetween represents the between group covariance 
matrix (see appendix for calculation details) and vi 
represents the ith eigenvector of Ψ. 

The dimensionality reduction results from the 
truncation of the component matrix (U), previously 
ordered according to the AGV scores. The 
truncation criterion was set to 80% (unless otherwise 
noted) of the cumulative sum (in decreasing order of 
the AGV scores) of every component’s AGV. The 
truncated version of U (Un×k), with k < p 
components, is a lower dimensional representation 
of the original variable space in Y and is often used 
as a reduced feature matrix (Kamrunnahar, 2008). 

Although each component in U is a linear 
combination of all the original variables in Y, it is 
not always evident what each component means in 
the original variable space (Jolliffe, 2002). Hence, 
the original k variables (Yn×k) which have the most 
variance accounted for in the truncated component 
space (Un×k) are used as a representation of the 
original variable space Y. The vector sub keeps the 
indices of the k variables that were kept after this 
dimensionality reduction (see appendix for details). 

Therefore, at the end of this stage, the 
dimensionality of the dataset has been reduced from 
p to k.  
 

3.2 Variable Ranking 

On the one hand, 2 different variables might have 
the same variance accounted for the k PCs but have 
different importance as discriminators (predictor in 
LDA). We indeed found in the current analyses, for 
both synthetic and real BCI datasets, that variables 
with high variance accounted for the k PCs were 
poor discriminators. On the other hand, a variable 
that is a good discriminator is expected to have high 
variance in the k PCs that were kept in the previous 
subsection. Therefore, in this 2nd procedure, a ranked 
list of the variables in sub is calculated according to 
their discrimination ability. The rank, in (2), 
computes the multivariate distance penalization 
observed when each variable at a time is removed 
from the subset of k variables. 

( )j jrank Y D D−= −     , j sub∈  (2) 

The multivariate distance D is calculated as in (3). 
Μ1 and Μ2 are the multivariate means of groups 1 
and 2 respectively, and Ψk is the covariance matrix 
of the k selected variables. D-j is calculated by 
excluding the variable j to calculate the multivariate 
distance. 

1
2

1 2 1 2( ) ( )T
kD ⎡ ⎤= Μ − Μ Ψ Μ − Μ⎣ ⎦  (3) 

The output of this procedure is the reorganized 
version of sub with variables in descending order 
according to rank(Yj). 

In order to show the importance of the 
dimensionality reduction step in eliminating non-
relevant variables, all the p variables in Y were 
ranked and classified in a separate cross-validation 
step where the 1st procedure (i.e. dimensionality 
reduction) was omitted (figures 1 and 3). 

3.3 Cross-Validation 

Once the subset of variables sub is ordered 
according to (2), an LDA classifier is applied 
iteratively on each feature matrix Ysub(f) containing 
the f top most ranked variables in sub, for f=1,…,k. 
The leave-one-out error rate (LOOR) is calculated in 
each iteration. The lowest LOOR value achieved 
determines which subset of variables opt (opt ⊂ sub) 
is optimal according to this approach (results in 
figures 1 and 3). 

A different approach of Fisher Discriminant 
Analysis (Schiff, 2005) that was robust on 
spatiotemporal EEG pattern discrimination was 
applied. The canonical discrimination functions Zi 
are the result of a linear transformation of original 
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data Y according to (4). The discrimination 
coefficients of each ith canonical discrimination 
function are denoted by the columns of bi

T. 

( )
T

i sub j iZ Y b=  (4) 

The group membership prediction was based on 
the posterior probability πgz as the probability that 
the data of a given value z came from group g 
(Dias, 2007). The highest πgz value (g ∈ {1,2}: only 
left vs. right hand movements and tongue protrusion 
vs. feet movement imagery discriminations were 
assessed) was the predicted group membership for 
posterior calculations.  

The discrimination quality was assessed by 
LOOR and Wilks’ statistic W. Further details on the 
classification method can be found in (Dias, 2007). 

4 RESULTS 

The feature selection process on the synthetic data 
was evaluated for 4 different cases of number of 
features p and different number of relevant features 
q. Two cases are illustrated in figure 1. The 1st case 
(p=40; q=6) at figure 1 left plot achieved 7.5 % of 
LOOR and Wilks’ statistic W=0.33 which is very 
significant since the 99 % confidence value W99 (W 
is chi-squared distributed with p×(n-1) degrees of 
freedom) for this statistic is 0.74. All 6 relevant 
variables were selected for the optimal subset 
(minimum LOOR). The 2nd case (p=40; q=12) 
achieved 0 % LOOR for 10 variables (10 relevant 
features out of 12 were selected and all the 
predominant ones were selected) and W=0.16 
(W99=0.75). The 3rd case (p=79; q=6) at figure 1 
right plot reached 3.7 % LOOR for 5 variables (all 
the predominant variables were selected) and 
W=0.23 (W99=0.83). Finally the 4th case (p=79; 
q=12) reached 3.7% LOOR for 14 variables (all 
relevant variables were selected plus 2 irrelevant 
ones) and W=0.14 (W99=0.69). 

The FSS algorithm was also tested in real data 
from 4 subjects which achieved between 11.4 % and 
29.1 % LOOR (each subject’s best time window) for 
left vs. right imagery (figure 2 left plot). During 
tongue vs. feet imagery performance, the LOOR was 
between 15.2 % and 30.4 % (0-1 s time window), as 
seen on figure 2. The best occurrence from each 
discrimination case is depicted on figure 3. In both 
cases 4 variables were selected as the optimal subset. 
In JF’s left vs. right performance (figure 3 left plot) 
analyses, features from C4, Pz, F3 and Fz channels 
were selected. In JI’s tongue vs. feet performance 
(figure 3 right plot) analyses, features from P3, C3, 

Cz and Pz channels were selected. On figure 1 as 
well as figure 3, the variables selected until the 
minimum LOOR is reached (opt) are considered 
relevant and all the following variables selected are 
considered irrelevant. 
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Figure 1: Plots of LOOR vs. number of variables selected 
from sub for both the VSS algorithm (blue line) and VSS 
2nd step separately (green line). Two different cases were 
illustrated for q relevant variables out of p variables. 
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Figure 2: LOOR variation through 4 time windows (1-4 s 
after cue) for all 4 subjects (JF, JI, JM and SS) for left vs. 
right movement imagery performance (left plot) and 
tongue vs. feet movement imagery performance (right 
plot). 
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Figure 3: LOOR vs. number of variables selected for JF 
(left plot) and JI (right plot) in time window 1. 

5 DISCUSSION 
AND CONCLUSIONS 

The goal of this VSS approach is to find few 
relevant variables for discrimination in a high-
dimensional variable space. The results with 
synthetic datasets reveal that this goal is feasible: at 
least 83% of the relevant variables were selected for 
the optimal subsets; 100% of the predominant 
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variables were selected for all optimal subsets; all 
the discriminations reached less than 7.5% LOOR 
and were very significant. The 1st and 2nd cases show 
that this approach is also applicable for lower 
dimensional variable spaces (p=40;N=80) as well as 
high-dimensional ones (3rd and 4th cases). As shown 
in figure 1 for p=79 and figure 3 the LOOR is much 
larger when only the 2nd step of VSS is applied alone 
(green line) to all original variables, than the LOOR 
achieved when both steps are applied jointly (blue 
line). Although the LOOR increase in the absence of 
the 1st step is less evident for p=40 (figure 1), the 
optimal solution is still achieved when both steps are 
applied jointly. Therefore, it can be concluded from 
these results that the proposed algorithm reduces the 
number of variables efficiently as well as decreases 
the discrimination error.  

Real BCI data results, on figure 2, show three 
good discrimination cases (LOOR lower than 16%) 
for three different subjects. The presence of just few 
relevant variables in these BCI datasets seems likely 
once 4 (subject JF) and 7 (subject JI) variables out of 
72 were selected for the optimal subset in figure 3. 
As suggested in the literature (Babiloni, 1999), for 
all cases but one in figure 2, the best time window 
for classification appears to be the first second after 
cue. 

Our findings show a novel mean to down-select 
variables in BCI that accomplishes both 
discriminative power and dimensionality reduction. 
Such a strategy is valuable in decreasing the 
computational complexity of neural prosthetic 
applications. 
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APPENDIX 

This section details the dimensionality reduction 
implemented on the proposed variable selection 
algorithm. The algorithm presented on the bottom of 
this section enumerates every command of this 
procedure. 

On the line 1 of the algorithm, Y is decomposed 
through SVD into 3 matrices: Un×p (component 
orthogonal matrix), Sp×p (singular value diagonal 
matrix) and Vp×p (eigenvector orthogonal matrix). 
The eigenvalues vector λ is calculated on line 2 as 
the diagonal of S2. The AGV score is calculated for 
every PC through lines 4 to 6.  

Once it is considered that both groups to 
discriminate have the same covariance matrix, the 
pooled covariance matrix should be calculated as the 
within group covariance matrix ΨWithin:  
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1 1 2 2 1 2( 1) ( 1) 2Within n n n nΨ = − Ψ + − Ψ − −   
 
 Ψi and ni are respectively the covariance matrix and 
number of samples belonging to the ith group. 

Considering Ψ as the total covariance matrix, the 
between groups covariance matrix ΨBetween is 
calculated as: 

Between WithinΨ = Ψ − Ψ   

On line 7, the vector rAGV is a version of AGV 
in descending order. On lines 8 and 9, λ and the 
columns of V are similarly reordered in rλ and rV 
respectively, to match rAGV. Note that AGV is 
originally ordered according to the descending order 
of the eigenvalues λi (line 5). The reordered AGV 
indices are kept in dpc, which stands for 
‘discriminative PCs’, where rAGV=AGVdpc. 

Each component’s percentage of the sum of all 
AGV scores is calculated on line 10. The number of 
components k out of p to maintain determines the 
truncation to be performed in U. k is calculated on 
line 11 as the number of elements of %rAGV whose 
cumulative sum is higher than the component 
selection criterion (δ).  

Considering the spectral decomposition 
property of the covariance matrix:  

1

p
T

i i i
i

v vλ
=

Ψ = ∑   

The columns of V are the eigenvectors vi. The 
diagonal values of Ψ give the variance of the 
variables in Y accounted for the p PCs, as well as 
TruncVarj gives the ‘truncated’ variance of variable j 
accounted for the k PCs that were kept for 
dimensionality reduction. 

On lines 15 and 16, the vector rTruncVar is a 
descending ordered version of TruncVar and the 
indices of the k top most variables in rTruncVar are 
copied into the subset of variables sub. 
 
Input Data: Y, ΨBETWEEN, δ 
Output Data: sub 

1. [U,S,VT] = SVD(Y); 
2.  λ = diag(S2); 
3. p = # columns of Y; 
4. for i=1 to p do 
5.     AGVi = ViT×ΨBETWEEN×Vi/λi 
6. end for 
7. [rAGV,dpc] = sort AGV in 

descending order 
8. rλ = λdpc {λ is reordered to 

match rAGV} 
9. rV = Vdpc {V is reordered to 

match rAGV} 
10. %rAGV = 100*rAGV / Σi=1,..,p rAGVi 

11. k = number of first %rAGV 
elements whose cumulative sum > δ 

12. for j=1 to p do 
13.     TruncVarj = Σi=1,..,k rλi×rVji

2 
14. end for 
15. [rTruncVar,Index] = sort 

TruncVar in descending order 
16. sub = 1st k elements in Index  
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