
A KNOWLEDGE-BASED SYSTEM FOR RISKS EVALUATION
ON SOFTWARE PROJECTS VIABILITY

Javier Andrade, Juan Ares, Rafael García, Santiago Rodríguez and Sonia Suárez
Software Engineering Laboratory, University of A Coruña, Campus de Elviña s/n,15071, A Coruña, Spain

Keywords: Clips, CommonKADS, Knowledge-Based System, Project Management, Risk Management, Viability.

Abstract: In software development, an adequate risks management increases the quality of the final product. However,
the importance of this activity is not always acknowledged, and since it requires a high level of experience,
it is often not carried out. This article presents a Knowledge-Based System that allows software developers
and, or, project managers to evaluate the viability of a project on the basis of its risks: it offers an initial
estimation of the risks that must be taken into account and of their impact on the software development
project. The proposed system was designed according to the CommonKADS methodology and implemented
by means of the Clips tool.

1 INTRODUCTION

Risks are inherent to every activity and, software
development, as a particular case, is not an
exception. However, whereas some risks can be
assumed, other ones must be prevented to avoid their
effect on the final purposes of a project.

Software development is a complex process in
which many factors can fail. Countless software
projects surpass the initial budget and are delivered
late or not at all (Somerville, 2006). In order to
avoid or alleviate as much as possible this situation,
we must identify the existing risks, classify them,
and take proactive action to either avoid or manage
them to the maximum extent. As such, risk
management is a key practice in a successful
software projects management (Pressman, 2006).

Determining the viability (or not) of a software
development project on the basis of its inherent
risks, is a very important task. Nevertheless, it is
highly dependent on experience: it is fairly simple
with experience, but such it becomes very difficult
for the researcher to calibrate the impact of the risk
factors on the project without experience (Putnam
and Myers, 1997). This is why risk evaluation is
often not, or insufficiently, done and the
development process, as well as the final product, is
affected.

This paper proposes a Knowledge-Based System
(KBS) for risks evaluation on software project
viability. The system reduces the need for

experienced staff and simplifies the estimation of a
project’s risks based on its characteristics. Section 2
presents the design of this system according to
CommonKADS methodology (CommonKADS,
2008), and Section 3 presents its implementation by
means of Clips Tools (Riley, 2008). Section 4
presents the main conclusion to be drawn.

2 DESIGN OF THE PROPOSED
SYSTEM

The quality of KBS design depends on the
knowledge engineer’s programming skills, and on
his ability to devise, remember, and dynamically
update a design specification. This is a difficult task
for all but the smallest KBSs.

Difficulties like these can be alleviated by
producing representations of the expert’s knowledge
and of the design specification in the shape of text or
diagrams. The best known approach towards the
production of such documents is the CommonKADS
methodology (CommonKADS, 2008) (Schreiber et
al., 2000) (Kingston, 1998) (Valente et al., 1998). It
now is the European de facto standard for
knowledge analysis and knowledge-intensive
systems development, and it has been adopted as a
whole or has been partly incorporated in existing
methods by many major companies in Europe, as
well as in the US and Japan (CommonKADS, 2008).

139
Andrade J., Ares J., García R., Rodríguez S. and Suárez S. (2009).
A KNOWLEDGE-BASED SYSTEM FOR RISKS EVALUATION ON SOFTWARE PROJECTS VIABILITY.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 139-143
DOI: 10.5220/0001533101390143
Copyright c© SciTePress

By CommonKADS we elaborate a list of potential
components of the model for the KBS, select the
adequate template for the task, and construct the
initial domain scheme. The last stage is a complete
specification of the knowledge model. The following
sections describe how each of these activities was
carried out.

2.1 List of Potential Model
Components

The first task that is tackled by the present KBS
belongs to a highly specialized domain within
Software Engineering, and is therefore sustained by
empirically proven information on how project
viability can be considered on the basis of its
possible risks.

This task takes into account the fact that a given
organisation faces certain risks that have an
influence on the viability of a project. These risks
are identified a priori and grouped by their original
causes, whose presence can be extracted from a
series of questions related to the project
characteristics. In this way, the presence or absence
of certain causes determines the exposition to a
given risk (Somerville, 2006) (Pressman, 2006)
(Pritchard, 2001).

Also, not all the risks have the same impact in a
project, even though this impact can be considered
predefined in a concrete organisation (based on the
history and experience of the organisation in projects
of a similar nature to that of the project that is being
considered). By taking into account the impact of the
considered risks, as well as the probability that they
appear according to the present original causes, we
can determine the viability of a project (Putnam and
Myers, 1997).

The previous considerations are represented
schematically in the ontology of Figure 1, which
constitutes a first approach to the domain model.
Each section represents the possible risks, and for
each risk there is a series of causes that are
represented in the shape of questions.

Figure 1: Initial relationships structure.

2.2 Selection of the Task Template

The final purpose of the proposed system is for an
organisation to have the possibility to fill out a form
with the characteristics of a development project, to
inquire as to the project viability, and to obtain a
summary of the risks that must be controlled.

In this context, and from the point of view of the
task, this is an activity that fits into the category of
assessment. These activities are provided with
various templates, from which we have selected the
one mentioned in (Schreiber et al., 2000).

The main motive for this choice is that the
associated inferential structure matches the purpose
of the application. A good technique to establish this
adequacy to the problem consists in building an
annotated inferential structure in which the dynamic
roles are annotated or made to correspond with
specific elements of the domain. This inferential
structure is shown in Figure 2.

Figure 2: Annotated inferential structure.

2.3 Construction of the Initial Domain
Scheme

As recommended in (Schreiber et al., 2000), this
activity was carried out in parallel to the previous
one. As a result, we obtain a set of domain-specific
conceptualizations—shown in Figure 3—and a set
of method-specific conceptualizations—shown in
Figure 4.

In the problem domain, we have detected three
main concept types: Project, Form, and Section.
Form represents the initial reasoning case, describes
a given Project—which contains an attribute that
refers to the viability—, and is composed by a series
of sections. Each Section refers to a predetermined
risk.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

140

Figure 3: Domain-specific conceptualizations.

Figure 4: Method-specific conceptualizations.

To reflect this relationship, we use an aggregation
between both concepts.

Finally, the Section concept presents five
attributes. The first attribute, name, refers to the
name of the section, i.e. the name of each risk. The
second attribute, total-questions, represents the total
number of questions of the Section, i.e. the number
of questions that refer to the project and allow us to
extract the probability that the considered risk may
appear. The third attribute, positives, determines
how many of the above questions received a positive
response in order to extract the presence level of the
risk. The fourth attribute, probability, refers to the
probability of appearance of the risk; and, finally,
the attribute impact pre-establishes the impact of the
risk on a project developed by the organisation that
wishes to implant the KBS.

We must keep in mind that, even though a form
presents a set of questions and answers, the only
relevant data for the KBS’ purpose are the attributes
of each Section: in order to take the viability
decision, the KBS considers the number of questions
that received affirmative answers against the total of
presented questions, and calculates on that basis the
risk probability. This probability is specified as
follows:

 If the positive answers represent less than
15%

 of the total, the probability that the risk
appears is considered zero.

 If the positive answers represent greater
than 15% or equal to 15% and less than
30% of the total, the probability that the
risk appears is considered low.

 If the positive answers represent greater
than 30% or equal to 30% and less than
70% of the total, the probability that the
risk appears is considered medium.

 If the positive answers represent greater
than 70% or equal to 70% and less than
85% of the total, the probability that the
risk appears is considered high.

 If the positive answers represent between
85% and 100% of the total, the probability
that the risk appears is considered very
high.

Once it is determined how the domain concepts
will be used, we must establish the criteria that will
be applied to the data in order to determine the
viability of the project. In this concrete case, we
have considered three different criteria, each one
with a truth-value attribute that determines whether
or not the criterion was fulfilled:

 Existence of risks: This criterion
determines whether or not risks exist. Even
though certain risks may exist, the criterion
may respond false if its probability (and
hence the project exposure to risks) is
small; this would mean that the risks are
not relevant to the project viability.

 Inevitable risks: This criterion determines
whether there are risks that, due to their
characteristics, require an important change
of orientation in the project.

 Manageable risks: This criterion determines
whether the existing risks, given their
exposition, can be manageable with a cost
that can be assumed in the project.

The project is considered viable in any of the
following situations:

 There are no risks: the “Existence of risks”
criterion must take the truth-value false.

 There are risks, but none of them is
inevitable and they can all be managed. The
“Existence of risks” criterion must take the
value true, the “Inevitable risks” criterion
must be false, and the “Manageable risks”
criterion value must be true.

On the contrary, the project will be considered
not viable if:

A KNOWLEDGE-BASED SYSTEM FOR RISKS EVALUATION ON SOFTWARE PROJECTS VIABILITY

141

 There are inevitable risks
 There are risks that are not inevitable but

cannot be managed.
The risk existence criterion automatically

determines the viability of the project if its value is
false; likewise, if the inevitable risk criterion is true,
the project is automatically determined to be not
viable.

We have established these three criteria to
simplify a posterior explanation of the KBS
decision.

2.4 Complete Specification of the
Knowledge Model

As explained before, the task to be modelled is an
instance of the assessment task type. The chosen
template shows an inferential structure that is
adequate for the purpose of the application, where
the inferences present a sufficient level of detail.

The task that must be carried out is decomposed
into two subtasks, which means that the “task
method” structures the reasoning process in two
steps:

 Abstraction: the purpose of this step is to
determine the probability that a risk appears
in a given project. As mentioned before,
this probability can be zero, low, medium,
high, or very high.

 Compliance or no compliance with the
established criteria by matching the
abstractions.

Figure 5 shows the template that was chosen for
the modelling.

On the other hand, the knowledge scheme that
was finally obtained is shown in figure 6. We can
observe that the final domain scheme incorporates
three rule types:

 form abstraction: this rule type refers to
obtaining the probability of appearance of a
risk by using the attributes total-questions
and positives.

 viability requirement: the purpose of this
rule type is to offer real values to the
criteria existence of risks, manageable
risks, and inevitable risks.

 project decision rule: this rule expresses the
relationship between the different criteria
and the final decision taken by the KBS.

Figure 5: Decomposition of the task.

Figure 6: Final knowledge scheme.

3 IMPLEMENTATION OF THE
PROPOSED SYSTEM

The system was implemented according to the
design presented previously and by means of the
Clips tool (Riley, 2008). In order to provide the
application with modularity and make the
development and depuration processes easier, we
have defined the following five knowledge bases:

 elements.kb: This knowledge base contains
all the definitions of classes, objects, and
properties. Since it also contains the
operative knowledge of the system, it is the
base that must be loaded first.

 rSection.kb: This knowledge base is the
first of the rules bases. Its purpose is the
dynamic creation of the objects of the
Section class on the basis of the
corresponding text file.

 rAbs.kb: This knowledge base contains the
abstraction rules needed to obtain the
probability of a certain risk to appear in a
project. As explained in the knowledge
model, each risk entails a series of
questions that the organisation must
answer. Relevant to the system are not the
questions themselves but rather the number
of affirmative answers with respect to their

ICAART 2009 - International Conference on Agents and Artificial Intelligence

142

total amount. The abstraction of the
incidence probability is then calculated.

 rVblty.kb: This knowledge base contains
the necessary rules to evaluate the criteria
that were established and specified above
(existence of risks, manageable risks, and
inevitable risks), and uses them to
determine whether or not these criteria are
fulfilled.

 rDcson: The rules contained in this
knowledge base refer to the final
assessment decision according to the values
of the criteria specified above.

The Clips inference engine is started and the
corresponding knowledge bases are loaded. Once the
graphic interface is initiated, the inferential process
begins. Figure 7 shows the result of the execution of
the proposed KBS for a project that is evaluated as
viable: there are certain risks, but these can be
managed and financially assumed by the project.

Figure 7: An execution example.

The developed KBS is currently being tested in
three subjects at the Computer Science School of the
University of A Coruña. These subjects are related
to Software Engineering concepts, including
Software Risks Management. The students are using
the system to train the risk management
methodology studied in the classroom.

4 CONCLUSIONS

When a software project assumes risks, it is
necessary to carry out a risks analysis. Most projects
however do this only informally and superficially, if
they do. The time that would be invested in such an
analysis is worth the while for many reasons: less
incidents in the course of the project, increased

control of the project evolution, and procurement of
solutions before risks actually occur (i.e., problems).
Risk analysis can absorb a significant part of the
scheduled time, and the proposed KBS gives an
automatic support to evaluate the project viability
according to its risks, their possible impact on the
project, and their probability of occurrence.

REFERENCES

CommonKADS, 2008. CommonKADS home page. URL:
http://www.commonkads.uva.nl/frameset-
commonkads.html. Last access: 18/06/2008

Kingston, J., 1998. Designing Knowledge Based Systems:
The CommonKADS Design Model. Knowledge-Based
Systems, Vol. 11(5-6). Elsevier. 311-319.

Pressman, R.S., 2006. Process Improvement Software
Engineering: A Practicioner’s Approach, McGraw
Hill. International Edition.

Pritchard, C., 2001. Risk Management: Concepts and
Guidance. ESI International.

Putnam, L., Myers, W., 1997. Implementing Industrial
Strength Software, IEEE Computer Society Press.

Riley, G., 2008. Clips. A Tool for Building Expert
Systems. URL: http://clipsrules.sourceforge.net/. Last
access: 15/07/2008

Schreiber, G., de Hoog, R., Akkermans, H., Anjewierden,
A., Shadbolt, N., de Velde, W.V., 2000. Knowledge
Engineering and Management: The CommonKADS
Methodology. The MIT Press.

Sommerville, I., 2006. Software Engineering, Addison
Wesley.

Valente, A., Breuker, J, van de Velde, W., 1998. The
CommonKADS Library in Perspective. International
Journal of Human-Computer Studies, Vol. 49(4).
Elsevier. 391-416.

A KNOWLEDGE-BASED SYSTEM FOR RISKS EVALUATION ON SOFTWARE PROJECTS VIABILITY

143

