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Abstract: Pattern recognition of electromyographic signals consists of a hard task due to the high dimensionality of 
the data and noise presence on the acquired signals. This work intends to study the data set as a multivariate 
pattern recognition problem by applying linear transformations to reduce the data dimensionality. Five 
volunteers contributed in a previous experiment that acquired the myoelectrical signals using surface 
electrodes. Attempts to analyse the groups of acquired data by means of descriptive statistics have shown to 
be inconclusive. This works shows that the use of multivariate statistical techniques such as Principal 
Components Analysis (PCA) and Maximum uncertainty Linear Discriminant Analysis (MLDA) to 
characterize the acquired set of signals through low dimensional scatter plots provides a new understanding 
of the data spread, making easier its analysis. Considering the arm horizontal movement and the acquired 
set of data used in this research, a multivariate linear separation between the patterns of interest quantified 
by the distance of Bhattacharyya suggests that it’s possible not only to characterize the angular joint 
position, but also to confirm that different movements recruit similar amounts of energy to be executed. 

1 INTRODUCTION 

The human movement characterization represents a 
great challenge and a relatively new field in the 
scientific investigation. Several techniques have 
been used in the attempt to describe and classify 
these movements (Kleissen et al., 1998; Bittar and 
Castro, 2008). 

The study of muscular bio-potentials has been 
developed impelled by the diagnosis of 
neuromuscular disturbances and by the development 
of mechanical prostheses for amputees.  The 
myoelectric signal, through the electromyography, 
helps to describe, standardize and define the 
operation of the muscular movement. The 
electromyography consists of acquiring and 
registering the electric signals emitted by the 
muscular cells. 

Electric signals, generated by motor units in the 
skeleton muscles, control the position and the 
movements of the limbs, while traveling between the 
muscles and the peripheral/central nervous system 
(Henneberg, 2000). By acquiring and studying these 

signals through the electromyography, it’s possible 
to determine patterns of interest and use such 
discriminative information to control a wide variety 
of devices. Unfortunately this information is not 
totally reliable due to a great susceptibility to noise, 
redundancy, and the small sample size inherent to 
the acquired data set. 

This paper introduces some techniques that aim 
to improve the understanding and reliability of the 
acquired data set by applying multivariate linear 
transformations such as Principal Components 
Analysis (PCA) (Fukunaga, 1990) and Maximum 
uncertainty Linear Discriminant Analysis (MLDA) 
(Thomaz et al., 2005). Experiments mixing the 
signals provided by the biceps and triceps, in an 
experience that intends to identify the angular 
position of the arm, have shown that it’s possible to 
have a good and reliable separation of myoelectric 
signals for further classification. 
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2 EXPERIMENTS 
AND METHODS 

2.1 Experiments 

For the extraction and analysis of myoelectric 
signals used in this experiment, five volunteers were 
submitted to tests in a previous research that 
evaluated the contribution of the muscles biceps and 
triceps during voluntary flexion and extension elbow 
movements (Bittar and Castro, 2008). 

Figure 1 illustrates the device used in the 
experiment, developed to minimize the interferences 
in the movement performed by the volunteer and 
guarantee the angular position of the arm, making 
easier the control over the acquired data. 

Figure1: Horizontal myographic signals acquisition. 

Each volunteer was submitted to 3 types of tests 
repeated 3 times in the vertical and horizontal plans. 
In this work, we only consider the tests in the 
horizontal plan, according to the following 
description: 

- Test 1 (BT1): The first test consists of moving 
the arm in a 10° shift on every 3 seconds going to 
90° and returning to the extension position by the 
same way. This test generated a subset of data, here 
called BT1, which have been labeled as 3 different 
groups of signals: 0° to 10°, 40° to 50° and 80° to 
90°; 

- Test 2 (BT2): In the second test, the volunteer 
repeated the movement from 0° to 90°, but this time 
without pauses, in a continuous way and in the space 
of ten seconds. This test generated the BT2 subset of 
data, which have been labeled accordingly to the 
following 3 groups of signals: 0° to 10°, 40° to 50° 
and 80° to 90°; 

- Test 3 (BT3): In the third test, the movement 
should be done moving the arm from the initial point 
in a 10° shift and returning to the origin and 

repeating again from the origin to 20° and back, so 
forth until achieving 90°. This test generated the 
BT3 subset data, which have been labeled 
accordingly to the following 3 groups of signals: 0° 
to 10°, 0° to 50° and 0 to 90°. 

The myoelectric signals were tabulated to 
simplify the data set manipulation. A data set BTG 
(BT1+BT2+BT3) was created considering the 
simultaneous analysis of biceps and triceps signals 
to characterize the arm angular position.  Figure 2 
shows a representation of the BTG group, obtained 
from the combined signals of triceps and biceps 
muscles in movements from 0° to 10°, 40° to 50° 
and 80° to 90° (BT1+BT2) and 0° to 10°, 0° to 50° 
and 0° to 90° (BT3), through a dispersion graph. It 
can be seen that due to the high dimensionality of 
the data and noise presence on the acquired signals, 
the characterization of the patterns of interest is a 
challenging multivariate data analysis task. 

Figure 2: BTG biceps (left) and triceps (right) signals. 

2.2 Methods 

In statistical pattern recognition, a myographic 
signal with n variables or parameters can be treated 
as a point in an n-dimensional space called the 
original space.  The coordinates of this point 
represent the values of each variable of the signal 
and form a high dimensional vector 

[ ]n
T xxxx ,,, 21 …= , where n>>1. Since n-

dimensional myographic signals are highly 
redundant, we can project such multivariate data 
onto a lower dimensional space without significant 
loss of information.  In this section, we describe the 
multivariate statistical techniques used in this work 
to analyze and characterize the acquired set of 
signals through low dimensional linear 
transformations. 
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2.2.1 Principal Components Analysis (PCA) 

PCA is a feature extraction procedure concerned 
with explaining the covariance structure of a set of 
variables through a small number of linear combina-
tions of these variables.  It is a well-known statistical 
technique that has been used in several pattern 
recognition problems, especially for dimensionality 
reduction. A comprehensive description of this 
multivariate statistical analysis method can be found 
in (Fukunaga, 1990). 

Let an N x n  training set matrix X  be 
composed of N  input signals with n  variables.  
This means that each column of matrix X  
represents the values of a particular variable 
observed all over the N  signals. Let this data matrix 
X  have covariance matrix S  with respectively Φ  

and Λ  eigenvector and eigenvalue matrices, that is, 

Λ=SPPT . (1) 

It is a proven result that the set of m  ( nm ≤ ) 
eigenvectors of S , which corresponds to the m  
largest eigenvalues, minimizes the mean square 
reconstruction error over all choices of m  
orthonormal basis vectors (Fukunaga, 1990).  Such a 
set of eigenvectors that defines a new uncorrelated 
coordinate system for the training set matrix X  is 
known as the principal components. 

Therefore, although n  variables are required to 
reproduce the total variability (or information) of the 
sample X , much of this variability can be 
accounted for by a smaller number m  of principal 
components. That is, the m  principal components 
can then replace the initial n  variables and the 
original data set, consisting of N  measurements on 
n  variables, is reduced to a data set consisting of N  
measurements on m  principal components. Figure 3 
shows the representation of the BTG data set 
focusing on the analysis of the biceps and triceps 
signals on the first two principal components (m=2). 

However, since PCA explains the covariance 
structure of all the data its most expressive 
components, that is, the first principal components 
with the largest eigenvalues, do not necessarily 
represent important discriminant directions to 
separate groups of patterns. 

2.2.2 Maximum Uncertainty LDA (MLDA) 

A common practice to identify the important linear 
directions for separating groups of patterns is to use 
Fisher's Linear Discriminant Analysis (LDA) rather 
than PCA. The  primary  purpose of  LDA is to sepa- 

Figure 3: BTG biceps and triceps signals on the first two 
principal components. 

rate samples of distinct groups by maximizing their 
between-class separability while minimizing their 
within-class variability. 

Let the between-class scatter matrix bS  be 
defined as 

∑
=

−−=
g

i

T
iiib xxxxNS

1

))((  (2) 

and the within-class scatter matrix wS  be defined as 
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where jix ,  is the m-dimensional pattern j  from 
class iπ , iN  is the number of training patterns from 
class iπ , and g  is the total number of classes or 
groups.  The vector ix  and matrix iS  are 
respectively the unbiased sample mean and sample 
covariance matrix of class iπ  (Fukunaga, 1990).  
The grand mean vector x  is given by 
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where N  is the total number of samples, that is, 
gNNNN +++= "21  . 

The main objective of LDA is to find a 
projection matrix ldaP  that maximizes the ratio of the 
determinant of the between-class scatter matrix to 
the determinant of the within-class scatter matrix 
(Fisher’s criterion), that is, 
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maxarg= . (5) 

However, the performance of the standard LDA 
can be seriously degraded if there is only a limited 
number of total training observations N  compared 
to the dimension of the feature space m .  Since the 
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within-class scatter matrix wS  is a function of 
)( gN −  or less linearly independent vectors, its 

rank is )( gN −  or less.  Therefore, wS  is a singular 
matrix if N  is less than )( gm + , or, analogously, 
might be unstable if N  is not at least five to ten 
times )( gm +  (Jain and Chandrasekaran, 1982). 

To avoid the aforementioned critical issues of 
the standard LDA in the limited sample and high 
dimensional problem investigated here, we have 
calculated ldaP by using a maximum uncertainty 
LDA-based approach (MLDA) that considers the 
issue of stabilising the wS  estimate with a multiple 
of the identity matrix (Thomaz et al., 2004; Thomaz 
and Gillies, 2005). 

The maximum uncertainty LDA is constructed 
by replacing wS  with its regularization version in 
the Fisher’s criterion formula described in equation 
(5). A comprehensive description of this multivariate 
statistical analysis method can be found in (Thomaz 
and Gillies, 2005). 

3 RESULTS 

Figure 4 shows the PCA+MLDA transformation of 
biceps and triceps signals treated together in tests 1, 
2 and 3. 

The two-stage PCA+MLDA multivariate linear 
transformation reduces the dimensionality of the 
original data and extracts the most discriminant 
information from the patterns of interest.  We have 
retained all the PCA eigenvectors with non-zero 
eigenvalues, that is, 1−= Nm , to reproduce the 
total variability of the samples with no loss of 
information. 

BTG group was then analyzed, intending to 
investigate the possibility of characterizing the 
groups of movements based only on the executed 
angular position instead of the muscle and the 
related movement.  Thus, by naming the classes with 
the corresponding angular position and group labels 
and considering three main groups as follows: 

 (M1) all the movements aiming 10º, 
 (M2) all the movements aiming 50º, 
 (M3) all the movements aiming 90º, 

Figure 5 shows that even when analyzing the 
different data set groups BT1, BT2 and BT3 on the 
same 2D scatter plot it is still possible to see the 3 
classes of data, which represent the final joint 
position of the arm. 

 

 
Figure 4: BT1 (top), BT2 (middle) and BT3 (bottom) 
signals on the two PCA+MLDA most discriminant 
components. 

 
Figure 5: BTG biceps and triceps signals on the first two 
PCA+MLDA most discriminant components. 
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To quantify the PCA+MLDA linear separation 
between the groups visually inspected in Figure 4, 
we have used the Bhattacharyya distance (Fukunaga, 
1990).  The Bhattacharyya distance between two 
groups of patterns can be defined as 

 
 

(6) 
 
 

where the notation “|.|” denotes the determinant of a 
matrix.  As described previously, the vector ix  and 
matrix iS  are respectively the unbiased sample 
mean and covariance matrix of class iπ  (i = 1,2,3). 
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Figure 6: Quantification of the BTG biceps and triceps 
signals separation on the PCA+MLDA linear 
transformation using the Bhattacharyya distance. 

Figure 6 illustrates the Bhattacharyya distance 
calculated pairwisely between classes M1, M2 and 
M3.  For each group BT1 (top), BT2 (middle) and 
BT3 (bottom), there is a measure of the total 
Bhattacharyya distance (d), the Bhattacharyya 
distance considering only its component related to 
the mean differences (md), and the one related to 
covariance differences (cd) only. 

4 DISCUSSION 

Initially, the acquired data was plotted in a 
dispersion graph, as previously illustrated in Figure 
2. As it can be seen, it was not possible to extract 
any useful discriminant information from these 
graphs because there was a lot of redundancy on it, 
due to noise and the nature of the data itself. This 
picture becomes more confused as the number of 
samples increases. 
To simplify and make possible this analysis, it was 
used a two-stage linear transformation to reduce the 
data set dimensionality and extract discriminant 
information between the patterns of interest. First, 
PCA was used making much easier the 
understanding of the data group representation by 
using a bi-dimensional space to represent the groups 
of data on the first two principal components. 
Afterwards, MLDA was used to improve the results 
through the data discriminant analysis.  Then, we 
analyzed the biceps and triceps muscles to 
investigate whether the signals could be roughly 
separated. The signals provided by both muscles 
could be linearly separated, as shown in Figure 3, 
motivating the use of a combination of these signals 
to discriminate the sets to determine the angular 
joint arm position. 

Figure 4 shows a clear separation of the studied 
groups 0º-10º, 40º-50º and 80º-90º, which had been 
very difficult to detect before using such two-stage 
linear transformation.  As it can be seen, there is a 
little spot concentration in some points of the BT3 
multivariate data analysis.  This happens because, in 
this case, the movement performed by the volunteers 
started always at the same point, that is, 0º-10º, 0º-
50º and 0º-90º, and such experiment can make 
harder to differentiate one movement from the other.  
By applying all groups BT1, BT2 and BT3 in a new 
bigger group BTG, whose aiming was to condense 
the data and verify their class-separability, it was 
still possible to determine the concentration regions 
of the studied classes.  However, there has been still 
a slight overlap on these regions, as it was observed 
on the separated groups BT1, BT2 and BT3. 
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The Bhattacharyya distance was then calculated 
to quantify the data group separation visually 
inspected.  The results on Figure 6 show that the 
separation between groups M1 and M3 are bigger, 
while the overlap is more evident between groups 
M1- M2 and M2-M3.  Therefore, as the movements 
involved are more distant or different from each 
other, more the set of signals become separated in its 
own group or intra-class.  This result was expected 
but the experiment, especially with BTG group, has 
showed the possibility of discriminating different 
sets of data from different tests and obtaining a 
reasonably understandable set of data, where classes 
and groups could be linearly separated. 

5 CONCLUSIONS 

Our experimental results have suggested that 
analyzing a given myoelectrical set of signals by 
descriptive statistical tools is a hard task due to a 
high data dimensionality and noise presence. 
Acquiring myoelectrical signals with superficial 
electrodes means to deal with a highly noisy 
susceptible set of data due to electrical variances of 
the skin and electrodes displacements during muscle 
movements.  The use of linear transformation can 
make the multivariate data set analysis easier. 

Considering the arm horizontal movement and 
the acquired set of data used in this research, a 
discriminant linear analysis showed that it is 
possible not only to characterize the angular joint 
position, but also to infer that different movements 
recruit similar amounts of energy to be executed. 

Our experimental results confirm that using 
multivariate statistical analysis, myoelectric signal 
recognition can be significantly improved after 
linear transformations, which are practical and 
feasible methods to analyze such multivariate high 
dimension and small sample size data for further 
classification. 
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