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Abstract: In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algo-
rithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to
investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can
help in the artifact rejection and noise reduction, improving the discriminative property of features in high fre-
quency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum
number of selected components is investigated, in order to help decision processes for future works.

1 INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent form
of neuropathology leading to dementia; it affects ap-
proximately 25 million people worldwide and is ex-
pected to have a fast recrudescence in the near future
(Ferri et al., 2006). Numerous clinical methods that
are now available to detect this disease include brain
imaging (Alexander, 2002), (Deweer et al., 1995), ge-
netic studies (Tanzi and Bertram, 2001), and other
physiological markers (Andreasen et al., 2001). How-
ever, these methods cannot be employed for the mass
screening of a large population. A combination of
psychological tests, such as Mini-mental score eval-
uation (MMSE), with electrophysiological analysis
(e.g. electroencephalogramor EEG), would be a more
efficient and inexpensive screening approach for de-
tecting elderly subjects affected by AD.

The purpose of this study is to make quantita-
tive comparisons of different independent component
analysis (ICA) algorithms and to investigate their po-
tential efficiency for preprocessing (such as noise re-
duction and feature extraction) the EEG data. The ob-
jective is to improve the discrimination between AD
patients and age-matched control subjects.

2 EXPERIMENTAL DATA

In the course of a clinical study, mutlichan-
nel EEG measurements (Deltamed EEG machine)
were recorded from 37 elderly patients affected by
Alzheimer’s disease with a clinical follow-up treat-
ment (labeled AD set) as well as from 39 age-matched
controls (labeled Control set). The electrodes were lo-
cated on 19 sites according to the 10-20 international
system. Reference electrodes were placed between
Fz and Cz, and between Cz and Pz. The sampling
frequency was 256 Hz, with bandpass filter 0.17-100
Hz. When possible, three periods of 5 seconds were
selected in a ”rest eyes-closed” condition for each
patient—only 4 subjects from the Alzheimer group
did not allow us to extract three 5-second sessions and
therefore were discarded in the current study. Hence,
two groups of three 5-second signals were obtained
for each of the 39 Controls, and 33 AD. The three in-
dependent sessions were chosen so as to minimize the
presence of artifacts.
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3 INDEPENDENT COMPONENT
ANALYSIS AND BLIND
SOURCE SEPARATION

3.1 Data Model

The experimental data are assumed to be generated by
a probabilistic generative model that is described by
two equations as follows:

xt = µ+ Bzt + εt , (1)

zt = Ast, (2)

wheret denotes the time index. Equation (1) is es-
sentially a factor analysis (FA) model, wherez ∈ R

n

are the hidden variables called “factor”; them×n ma-
trix B is called the “loading matrix”;xt ∈ R

m denote
the observed multi-channel signals measured in the
electrodes;µ∈ R

m denotes the constant mean vector
that is often assumed to zero; andεt ∈ R

m denotes the
additive uncorrelated noise that corrupts the measure-
ments. The equation (2) describes a linear mixture
model that is related to the blind source separation
(BSS) problem of our interest that will be discussed
later, wheres ∈ R

N denote the independent source
signals originated from the brain;A denotes a lin-
ear mixing matrix that models the mixing process and
the stationary propagation or scattering effect within
a short timescale; and the mixed signals consist of the
hidden factorz obtained in (1). Here, we assume a
square mixing/demixing setting, in whichm> n = N.

3.2 Procedure

At the first stage, we apply principal factor analysis
or principal component analysis (PCA) to perform di-
mensionality reduction. This is done by whitening the
hidden factorzt givenxt , assuming that noiseεt is un-
correlated.

Specifically, given observed samples{xt}
T
t=1, we

can calculate the sample covariance matrix (assuming
zero mean) and conduct its eigenvalue decomposition
(EVD) as follows

Ĉx =
1
T

T

∑
t=1

xtxT
t = UΛUT , (3)

whereU is them×m orthogonal matrix that consists
of eigenvectors as its column vectors,Λ is a diagonal
matrix that consists of the diagonal entries as eigen-
values. LetUn denote anm× n matrix that consists
of the firstn dominant eigenvectors, then we can esti-
mate the noise covariance by

Σ̂ = Ĉx−UnΛnUT
n , (4)

and the loading matrix by

B̂ = UnΛ1/2
n . (5)

Finally, thewhitenedfactor variablez is produced by
a linear transformation

zt = Qxt , (6)

whereQ = (B̂T Σ̂−1B̂)−1B̂T Σ̂−1.
At the second stage, an ICA algorithm is imple-

mented to perform BSS. Specifically, givenzt , we in-
tend to find an optimal demixing matrixW, operated
on the whitened signal byyt = Wzt , such that the
components inyt are mutually uncorrelated or inde-
pendent. The estimated output signalyt are assumed
to be the source signals of interest up certain scaling
and permutation ambiguity.

Upon PCA and ICA stages, we can apply a
deflation procedure to identify the individual orig-
inal source in the sensor space by backward pro-
jection. Specifically, given the output signalyt =
[y1(t),y2(t), . . . ,yn(t)]T , we can also reconstruct the
incompletehidden factor by projecting theith compo-
nent ofyt , denoted byyi(t), backward onto the sub-
space

ẑt = W−1[0, . . . ,0,yi(t),0, . . . ,0]T ≡
[

W−1]

iyi(t), (7)

where
[

W−1
]

i denotes theith column vector of
the matrixW−1. Furthermore, we can reconstruct the
specific source of interest in the observed data space
(i.e., the scalp signals contributed merely to theith
source)

x̂t = Q†ẑt = Q†W−1[0, . . . ,0,yi(t),0, . . . ,0]T

= (WQ)†[0, . . . ,0,yi(t),0, . . . ,0]T , (8)

where Q† denotes the pseudoinverse of matrixQ.
Hence, by projectinĝxt to the original channels’ posi-
tions, we essentiallyidentifythe source(s) of interest.

In addition, if we are only interested in denois-
ing or getting rid of a specific component, we can
set that specific output signal (sayyi ) to zero while
keeping other components intact, and apply the same
above-described back projection procedure to recover
the original scene. In our experiments, by ranking
the output components, we always select the one that
has the least absolute kurtosis value (i.e., the one
close to Gaussian by assuming zero kurtosis statis-
tic for Gaussian signal, positive kurtosis statistic for
super-Gaussian signal, and negative kurtosis for sub-
Gaussian signal).
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3.3 Selection of CANDIDATE
ALGORITHMS

For comparison, we have selected eight representative
ICA algorithms.1

The selection criteria for these algorithms are
based on several factors: (i) computationally effi-
ciency; (ii) robustness; (iii) fewer degree of freedom
(such as the choices of learning rate parameter, non-
linearity, or number of iterations); (iv) preference to
batch method.

Specifically, the following eight ICA/BSS algo-
rithms are among some of the most popular BSS
methods in the literature. A brief description and con-
figuration setup of each method is given below:

1. AMUSE (Algorithm for Multiple Unknown Sig-
nals Extraction)(Tong et al., 1991): A second-
order batch BSS algorithm based on a two-stage
eigenvalue decomposition.

2. SOBI (Second-Order Blind Identification) (Be-
louchrani et al., 1997): A second-order batch BSS
algorithm based on joint diagonalization of time-
delayed signal covariance matrices. In our exper-
iments, the number of time-delay covariance ma-
trices is set to be 30.

3. JADE (Joint Approximate Diagonalization of
Eigen-matrices) (Cardoso and Souloumiac,
1993): A high-order statistics (HOS)-based
ICA algorithm based on joint diagonalization
of second- and fourth-order cross-cummulants.
As a batch method, JADE algorithm requires no
parameter tuning; however, it is computationally
expensive and memory-storage demanding (with
an order ofO (n4)).

4. Pearson-ICA (Karvanen et al., 2000): An itera-
tive ICA algorithm based on Pearson system; the
maximum number of iterations is set to be default
value, 1000.

5. FastICA (Hyvarinen and Oja, 1997): A fixed-
point ICA method for sequential source extrac-
tion, the fixed point is sought by maximizing the
“negentropy” of each mixture. We used default
parameter setup withtanh nonlinearity and max-
imum number of iterations as 1000.

6. Thin-ICA : (Cruces-Alvarez et al., 2004): A batch
ICA algorithm for simultaneous blind signal ex-
traction based on thin QR and SVD factorizations.

1The selection of the ICA algorithms here is by no
means exhaustive and it mainly reflects our preference cri-
teria. For instance, some iterative ICA algorithms like Info-
max or natural gradient were not chosen here because they
typically have slow convergence speed.

7. CCA-BSS (Canonical Correlation Analysis-based
BSS) (Borga and Knutsson, 2001): A second-
order BSS algorithm based on canonical correla-
tion of temporal observations.

8. TFD-BSS (Time-Frequency Distribution Joint
Diagonalization-based BSS) (Févotte and Don-
carli, 2004): This method takes account of infor-
mation in time and frequency and the source sep-
aration criterion is conducted in time-frequency
domain based on joint diagonalization of the spa-
tial time-frequency distribution.

The detailed description of algorithms are beyond
the scope here; for relevant references, see (Cichocki
and Amari, 2002). All of algorithms are implemented
in MATLAB, some of them are available for down-
load from the original contributors or in the ICALAB
package (Cichocki et al., WWW).

For each algorithm, we have varied the number of
independent components extracted (namely,n), from
3 to 10, and searched for the optimum within this
range. It was found that almost all algorithms con-
verge within our experimental setup, except for the
FastICA algorithm which sometimes failed to con-
verge; in which cases FastICA was excluded from the
comparisons.

4 PERFORMANCE EVALUATION

4.1 Coherency

Coherency is an informative measure that character-
izes how the phases of two time series (in our cases,
two electrodes’ recordings) are coupled to each other,
hence it was often used for measuring interactions of
two signals. Coherency or coherence is also closely
related to the terms “phase locking” and “phase syn-
chrony” that were proposed in the literature. Interest-
ingly, Coherence is often viewed as an important mea-
sure for distinguishing AD and MCI in EEG analysis
of clinical practice (Koenig et al., 2005), (Babiloni
et al., 2006).

In consistent with the terminology in Nolte et al.
(2004), given two electrodes’ recordingsxi(t) and
x j(t), let Xi(ω) andXj(ω) denote their corresponding
Fourier transforms; then thecoherencybetweenxi(t)
andx j(t) is defined as thenormalizedcross-spectrum

Ci j (ω) =
Si j (ω)

√

Sii (ω)Sj j (ω)
, (9)

where Si j (ω) =
〈

Xi(ω)X∗
j (ω)

〉

denotes the cross-
spectrum, and

〈

·
〉

represents the expectation average.
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Averaged alpha−range (8−12 Hz) coherence of AD patients
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Averaged alpha−range (8−12 Hz) coherence of control subjects
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Figure 1: The mean alpha-range (8-12 Hz) coherence with
raw EEG recordings (Left) averaged over all 33 AD pa-
tients, and (Right) averaged over all 39 control subjects.

And coherenceis defined as the absolute value (or
the magnitude) of the coherency, namely, Cohi j (ω) =
|Ci j (ω)|.

In measuring the total coherence across the 19
electrodes, we are interested in comparing the “aver-
aged coherence” of the original raw EEG recordings
and that of the ICA-processed signals (by discarding
one Gaussian-like component with the least absolute
kurtosis statistic). The values of mutual coherence be-
tween electrodes are stored in a 19-by-19 symmetric
matrix, with diagonal values being unity.

Specifically, we pay special attention to the alpha-
range (8-12 Hz) coherence. The reasons for choosing
the alpha-range are twofold: (i) The alpha wave is less
noisy and therefore more reliable in the EEG record-
ings (because the subjects were all in rest conditions);
(ii) The alpha-coherence is believed to a useful mea-
sure in characterizing AD subjects (Babiloni et al.,
2006). Figure 2 illustrates the averaged alpha-range
coherence (displayed in a 19-by-19 matrix) among
all 33 AD patients using the raw EEG recordings.
As seen in the figure, typically, neighboring channels
have relatively high coherence values.

4.2 Spatial Sharpness Measure for ICA
Sources

After ICA source extraction, components are obtained
which are hoped to be representative of independent
brain activities. However, all mathematical methods
rely on mathematical assumptions and criteria which
are not necessarily realistic in a real-world setting.
Therefore we are also interested in investigating the
biological plausibility of the ICA components.

One way to assess the plausibility of ICA com-
ponents is to observe their spatial distribution—since
brain activity arises from a specific area and then
spreads over a larger region in the brain. During a
given short time interval, it is likely that brain activ-
ity shall be located in delimited areas. After apply-
ing ICA and back-projecting the components, each
three situations can be observed for each source dur-
ing short time windows:

1. The source is spatially delineated in a localized
and peaky area.

2. The contributing electrodes are spread all over the
scalp without peaks.

3. The source is a combination of more than one
peak in several separated locations.

The first situation is the only one that could be plau-
sibly attributed to brain activity – note that sources
representative of known EEG artifacts are also often
spatially delineated, with a very sharp location (De-
lorme et al., 2001) – so that ICA algorithms extracting
spatially sharp sources will provide good information
both for brain signal analysis, and for artifact rejec-
tion. The second situation is the worst scenario: such
a source is very unlikely to be attributed to brain ac-
tivity, and would not be easily construed. The third
situation is also unlikely to be representative of brain
activity, and probably accounts for several indepen-
dent activities which were not accurately separated by
the ICA algorithm.

Naturally, we would need a measure that charac-
terizes the “peakiness” of a distribution in a 2D repre-
sentation of the scalp. Ideally, this measure shall keep
the 2D structural information (note that 2D peak and
2D scrambled peak are not the same distributions),
therefore the standard kurtosis measure for 1D signal
is not suitable. Furthermore, this measure should re-
ject the cases where the 2D distribution has multiple
peaks.

To measure the spatial sharpness (or sparseness)
of the extracted independent components, we conduct
the following two-step procedure.

1. Gaussian smoothing

2. Calculating the kurtosis statistic of the Gaussian
smoothed matrix

In the first step, after removing the source that has
the least absolute kurtosis value (representing close-
to-Gaussian noise), we extract the 2D topological in-
formation of each source. To this end we apply a bi-
dimensional Gaussian smoothing procedure (Gonza-
lez and Woods, 1992). In our case, with a small num-
ber of electrodes, we represent the spatial information
of each source with a matrix of spatial source distribu-
tion D, anℓ1× ℓ2 matrix (in our case, it is a 5×5 ma-
trix reflecting the electrode layout, unused border po-
sitions are set to zero to obtain a square matrix). For
each source, we convolve the matrixD with a Gaus-
sian kernelG. G is a 2D isotropic Gaussian distri-
bution discretized over a square matrix whose dimen-
sion isd, with d = max(ℓ1, ℓ2), and whose standard
deviationσ = (d−1)/2 such that 2σ encompasses the
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Figure 2: Illustrations of the kurtosis measure to Gaussian
smoothed matrixes.

whole matrixD:

G(x,y) =
1

2πσ2e
x2+y2

2σ2 (10)

The smoothed matrixO is obtained by convolving
the Gaussian kernelG and the spatial distribution of
the sourceD:

O(x,y) =
d

∑
i=1

d

∑
j=1

G(k, l)D(x− i,y− j) (11)

This matrix has interesting properties for our purpose:
for “flattened”D, the smoothed matrixO remains flat.
For peakyD, the smoothed matrix remains peaky;
see Figure 2 for an illustration. For multiple peaks,
the smoothed matrix’s peaks are flattened. Therefore,
matrix O roughly represents the spatial distribution
information we are interested in extracting.

After the spatial information has been extracted by
smoothing, the sparseness is computed in the second
step using the conventional kurtosis measure. At this
step the 2D spatial distribution does not matter any-
more, therefore the kurtosis measure becomes well
suited. Finally we obtain a single spatial sharpness
measure for each sources, denoted byκs (sparseness
of the smoothed matrix), using the kurtosis excess
(Kenney and Keeping, 1962) for the matrixOs (which
represents the smoothed back-projected matrix from
the sources):

κs =
µ4(Os)

µ2(Os)
−3, (12)

whereµ4(Os) andµ2(Os) are the second and fourth
order moments of the elements ofOs.

The absolute value of the measureκs is close to
zero for “flat distributed” elements in the matrixD
(see second row illustration in Figure 2). On the
other hand, the measureκs is highest when there is
only one peak, and the measure value decreases when

more peaks appear. After calculating this measure for
each source (except for the rejected one), the averaged
absolute value is used as an indicator of the spatial
sharpness for all the sources

κ =
1
N

N

∑
s=1

|κs|. (13)

This value will be also averaged within a moving tem-
poral window across the complete duration of the data
(explained later in experimental section).

5 EXPERIMENTAL RESULTS

5.1 Comparison on Coherence Change

We back projected the ICA components (by discard-
ing only one component with the least absolute kur-
tosis statistic) to the original 19 electrodes. By com-
paring the original coherence matrix, we can calculate
the relative positive increase of alpha-range coherence
as well as the relative decrease of alpha-range coher-
ence; they are summed over and then averaged over
the total number of subjects and the counted number
of electrodes (each with increased or decreased coher-
ence value) based on 5 seconds of EEG recordings.
In total, for each ICA algorithm with one specific
number ofn (i.e., the number of independent compo-
nents), we calculate two statistics (mean±STD), one
pair for the averaged coherence increase, and another
pair for the averaged coherence decrease. The same
procedure is applied to each independent session of
EEG recordings. The mean statistics of averaged co-
herence increase and averaged coherence decrease are
shown in Figure 3. As seen in the figure, for all ICA
algorithms, the relative (averaged) coherence increase
values drop down as the number of independent com-
ponents increase, whereas the relative (averaged) co-
herence decrease values remain approximately con-
stant regardless of the number of independent com-
ponents. However, the overall positive coherence in-
crease is much greater than the overall negative co-
herence decrease, thereby resulting a net increase of
coherence for all channels. This phenomenon is an-
ticipated because the employed PCA/ICA procedure
essentially discard the noise components and keep the
other components intact; on the other hand, the effect
of noise reduction (and therefore coherence increase)
is more pronounced when the reduced dimensionality
is significant (i.e., with a small number of independent
components). It is also noted that although Figure 3
only illustrates the result of the EEG recordings in one
session, similar phenomena were also found in other
two sessions.
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Figure 3: Top panel: performance comparison of averaged
alpha-range coherence increase (mean statistics). Bottom
panel: performance comparison of averaged alpha-range
coherence decrease (mean statistics). The comparison was
made between 7 ICA algorithms (excluding FastICA) on
AD subjects.

Using averaged positive coherence increase value
as an indicator of efficiency, by comparing different
ICA/BSS algorithms, it was found that the JADE al-
gorithm is the best, followed by two second-order
statistic based ICA algorithms: SOBI and CCA-BSS.
Interestingly, all of these three algorithms exploit in-
formation of temporal correlation, and two second-
order ICA/BSS algorithms are very computationally
efficient (compared to others except for AMUSE). By
summing together the averaged relative coherence in-
crease and the averaged relative coherence decrease,
we obtain the result shown on Figure 4. In this case,
JADE algorithm remains the best in achieving the
highest net increased coherence, followed by SOBI
and thin-ICA. As seen in the figure, in order to obtain
net positive alpha-range coherence change, an opti-
mum number of independent components is around
5 or 6. Interestingly, this number is consistent with
other earlier investigations using the same EEG data
set (Solé-Casals et al., 2008) (Cichocki et al., 2005)
(Vialatte et al., 2005).

Likewise, for the control subjects, we can conduct
the same analysis; the performance comparison of av-
erage net alpha-range coherence between seven ICA
algorithms is shown in Figure 5. It seems that the
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Figure 4: Performance comparison of averaged net alpha-
range coherence change between 7 ICA algorithms (exclud-
ing fastICA) on AD subjects.
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Figure 5: Performance comparison of averaged net alpha-
range coherence change between 7 ICA algorithms (exclud-
ing fastICA) on control subjects.

ICA component threshold for attaining positive co-
herence is slightly increased to around 7 or 8. This
also implies that the EEG recordings of the AD sub-
jects are less coherent than those of the control sub-
jects because there are more source components in the
recorded signals.

5.2 Comparison on the Spatial
Sharpness Measure

When the spatial sharpness measure is applied to
ICA components, the time evolution of the compo-
nent has to be taken into account: it is not unlikely
that a brain activity may flow from one brain area
to another area. We used overlapping shifted time-
windows ofw=500 msec over the totalT=5 seconds,
and measured the spatial power distribution of the
back-propagatedsource on the scalp at each time step.
At each step, a sharpness measure valueκ is obtained
for each source, the final result will be given by the
average sharpnessκ:

κ =
T−w

∑
t=1

κ(t,w)

T −w
(14)
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Figure 6: Relation between the number of components ex-
tracted and the average sharpnessκm of the sources. Stars
represents average for all algorithms, error bars represents
the standard deviation for all algorithms.

whereκ(t,w) is the smoothed kurtosis for the source
from timet to timet +w.

In order to obtain a fair comparison, we select the
AD patients (33 subjects) as the experimental data
since it was found that these recordings have gener-
ally poorer signal-to-noise ratio (SNR) than the con-
trol subjects. For each patient, three sessions of 5 sec-
onds are used. For each session, the median value of
33 sharpness measure values for each patient is re-
trieved. This median value yields the representative
value of sharpness for a given session. Since we are
interested in a generally well-suited algorithm, and
the goal is to search for the most consistent results,
the final indicator will be given by the averageκN of
each session:

κN =
κN1 + κN2 + κN3

3
, N ∈ [3,10] (15)

whereN denotes the number of selected components,
andκN1,κN2,κN3 denote the valueκN for sessions 1,
2, and 3, respectively. The valueκN is computed for
each algorithm, and for all possible numbers (3∼10)
of components.

Figure 6 displays the overall result obtained from
this indicator. The straight line is obtained by a lin-
ear least square regression, showing a linear increase
(PearsonR2 = 0.74, p < 0.05). Therefore, the more
sources are extracted, the more spatially sharp solu-
tion is obtained. Standard deviation ofκm over the
ICA algorithms is best for 5 to 7 components: within
this range all ICA algorithms produce similar results,
which indicates that the underlined true number of
sources is likely to be close to this range.

When taken independently, each algorithm does
not show the same performance. Figure 7 represents
the distributions ofκm for all algorithms. The overall
increasing reported in Figure 6 is visible, as well as
the consistency over components 5 to 7.

According to this measure, the overall winner is
ThinICA and the overall worst algorithm is TFBSS.
When analyzing the most stable period (5 to 7 compo-
nents),the best algorithms, in decreasing order of ef-
ficiency, would be CCABSS, ThinICA, AMUSE and
JADE.
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Figure 7: Spatial sharpnesskm of the sources, depending
on the chosen algorithm. Sharpness is reported using the
overall median kurtosis measure presented above. Except
for ThinICA, for 3 components the results are poor; in gen-
eral, the best algorithm depends on the selected number of
components.

6 CONCLUSIONS

In this paper, we have proposed several measures or
criteria to compare several popular ICA algorithms
in an investigation of feature extraction of EEG sig-
nals for the purpose of discriminating Alzheimer’s
disease. As a powerful signal processing tool used
in the preprocessing step, ICA was found useful in
artifact rejection, improving SNR, and noise reduc-
tion, all of which are important for feature selection
at the later stage. We also investigate the neurophys-
iological plausibility of the ICA outputs in terms of
the sharpness measure.

It was found that, in general, ICA algorithms
are particularly useful for feature extraction in high
frequency bands, especially in high alpha and beta
ranges; in contrast, in low-frequency bands, little gain
has been obtained compared to the baselines. This
fact is more or less anticipated, because EEG signals
are usually contaminated by noise at high-frequency
bands, but are more resistant to noise at low frequency
bands. Moreover, the optimum number of selected
components seem to depend on the selected algo-
rithms, but the overall observations seem to indicate
the number should be in the range from 4 to 7. In
terms of the overall average performance, it seem that
the JADE, SOBI, thinICA, and CCABSS algorithms
give more consistent and better results.
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