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Abstract: Speech dynamics may not well be addressed by the conventional speech processing. We analyse here a new
quantization paradigm for vowel coding. It is based on simple Allen temporal interval algebra applied on
subband voicing levels, yielding to a compressed speech representation of only 21 integers for a speech win-
dow up to 32 ms long. Experiments show that we take advantage of the ranking of the average values of the
voicing interval accross the various subbands. Theses new features are evaluated for vowel recognition (1
hour, 6 vowels) on a referenced multispeaker radio broadcast news used during evaluation campaign ESTER.
We work on the subset of the most frequent french vowels. We get 62% class error rate adding the ranking
information to the Allen’s relations, instead of 70% using Allen relations alone, and 57% the set of the raw 48
floats. We then discuss on the advantage of using more subbands, and we finaly propose a strategy to tackle
the combinatorial complexity of Allen relations.

1 INTRODUCTION

Most of acoustic speech analysis systems are based
on short-term spectral features : Mel Frequency Cep-
strum Coefficients (MFCC), PLP, etc... The purpose
of this paper is to present and discuss a novel vowel
representation. We propose here to use med-term
Time Frequency (TF) speech dynamics. It has been
established that phonological perception is a subband
(SB) process (Fletcher, 1922). That has inspired vari-
ous algorithms for robust speech recognition (Glotin,
2001), also linked to the TF voicing level (Glotin
et al., 2001; Glotin, 2001). Nevertheless, the SB
TF dynamics may be more investigated, compared
to usual delta and delta-delta coefficients. Thus we
propose in this paper a quantization of TF dynam-
ics following some preliminary works (Divenyi et al.,
2006; Glotin, 2006). We base our approach on voic-
ing dynamics, composing binary intervals, assuming
that they may provide a qualitative framework to gen-
erate parsimonious phoneme features using the time
events representation proposed by Allen J.F.(Allen,
1981)1.

In (Fraihat et al., 2008) we made preliminary ex-

1Note that ALLEN J.B worked on SB speech analysis, but
ALLEN J.F on generic time representation, while our model is
based on both.

periments yielding to 70% of vowel classification.
Here we present a method that significantly enhance
the model, adding the subband ranking, and we dis-
cuss on further works. Experiments are conducted
on the most french frequent vowels of one hour of
the ESTER broadcast news database2(Galliano et al.,
2005).

In the first section of this paper we recall the Allen
temporal Algebra, and the properties of TF voicing in-
dex. Then section 3 shows how we binarize and gen-
erate our speech parsimonious representation. After
a presentation of the vowel coding, we propose dif-
ferent features sets and we show their class error rate
results. We then discuss on the strategy that should be
conducted for developing robust TFQ features.

2 ALLEN TEMPORAL ALGEBRA

A temporal algebra has been defined in (Allen, 1981;
Glotin, 2006), where 14 atomic relations (including
the ’no-relation’ one) are depicted between two time
intervals. These Allen’s time relations are defined by
one interval sliding another. If one set to 1 the a al-
gebraic distanced between the two nearest intervals,

2ESTER: Evaluation campaign of continuous speech broadcast
news rich transcription
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and increment it as the intervals move away, we define
an integer for each relation. Thus the “b” symbol is
coded into “1”, “m” into “2”, . . . for the 14 relations
that are : before, meets, overlaps, stars, during, fin-
ishes, equals, and their symmetric (see (Fraihat et al.,
2008) for details). The ’no-relation’ happens between
two empty intervals. We propose to use these time
representation for coding speech events into a small
discrete integer set. In order to define the intervals we
use the voicing levels as depicted in the next section.

In order to get the subband voicing activity inter-
vals, we estimate the TF voicing activity interval us-
ing the voicing measure R (Glotin, 2001) that is well
correlated with SNR and equivalent to theharmonic-
ity index (HNR). R is calculated by autocorrelogram
of the demodulated signal. In the case of Gaussian
noise, the correlogram of a noisy frame is less modu-
lated than a clean one. We first compute the demodu-
lated signal after half wave rectification, followed by
pass-band filtering in the pitch domain. Then we au-
tocorrelate each frame of LVW (Local Voicing Win-
dow) ms long and we calculateR = R1/R0, whereR1
is the local maximum in time delay segment corre-
sponding to the fundamental frequency ([90 350]Hz),
and R0 is the window energy. We showed (Glotin,
2001) that R is strongly correlated with SNR in the
5..20dB range as illustrated in fig. 1. The SB are
defined as in ALLEN J.B. analysis (Allen, 1994;
Glotin, 2001) : [216 778;707 1631;1262 2709;2121
3800;3400 5400;5000 8000] Hz.
We set for vowel recognition LVW=32ms, with a shift
of 4ms.

3 BINARIZATION AND
REPRESENTATION

In order to generate principal separated time intervals
for Allen relations, we threshold the voicing levels :
for each band and each window of Local Binary Win-
dow (LBW 32ms shift and 64 ms length), we binarize
to 1 the T% frame highest quantil, the other to 0.

In order to remove noisy relation, we remove in-
terval that is connected to any window range. Finally
we keep window containing at least 4 connected in-
tervals. We then derive their Allen temporal relations
(see fig. 1). The vowel labels for the training task
are given from forced realignment on standard HMM-
MMG model (Galliano et al., 2005).

As we have 6 SB, we have 15 temporal relations
(one for each couple), ordered from low to high fre-
quency. In our example (fig. 1), from I’1 to I’5, we
get the parameter vector [di di di oi oi d d d d s oi
d oi f d], where i is the inverse relation. Then these

Figure 1: From voicing levels to the Allen’s interval rela-
tions: (a) voicing signal (b) the voicing level by subband (c)
the binarized voicing levels by subband using mean thresh-
old (From (Glotin, 2001)).

TFQ features estimated in each LBW window, feed a
neural network (any classifier could be used), that we
trained for automatic vowel decoding.

Moreover, in order to confirm that voicing levels
and intervals definitions are informative, we build a
6 integer feature, called RANK, ranking the subband
of each window using the relative R level of each in-
terval. This information may be correlated to the for-
mant position, that we lose in simple ALLEN rela-
tions.

Thus the functions of binarization and extraction
should also integrate the hierarchy of SB frequency in
ALLEN+RANK concatenated features.

4 DATABASE

Our experiments are made over all the speak-
ers on the six most frequent French vowels:
/Aa/,/Ai/,/An/,/Ei/,/Eu/,/Ii/. SB are defined like in pre-
vious section. We set the shift of each voicing window
LVW to 4ms , and the LVW length to 32ms. We vary
the T% parameter in[0.4 0.5 0.6 0.7]. The training
windows are labelled with the label which covers at
most the window. The features from 1h of continuous
speech are used to train an MLP, and we test on other
20 minutes, best results with number of hidden units
are given in tab.1.
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Table 1: Results of the class error rates of the experiments. The error rate of the random classifier is 83%. T is the proportion
of 1 in the window in each SB after binarisation. The Relative Gain is the relative reduction of error rate against the voicing
experience. #dim : dimension number of the MLP input. CP: compression ratio of the Parameters. Nhu: Hidden units
numbers of the MLP.

Type of T # Type # CP Nhu ClassError Relative
Features dim bytes Train Test Gain

(%) (%) (%)
Voicing - 48 float 384 1 128 49,8 57,2 -
Binairy 0.5 48 bool 48 8 512 75,3 67,5 -18
Allen 0.4 15 int 60 6,4 128 10,1 72,2 -20,7
Allen 0.5 id id id id 512 14,7 70,5 -23,2
Allen 0.6 id id id id 128 10,2 72 -25,8
Allen 0.7 id id id id 128 12,3 70 -23,3

Rank 0.5 6 int 24 16 32 67,4 69 -20,6
Allen+Rank 0.5 15+6 id 84 4,6 512 9,7 62,4 -9,1
Allen+Rank 0.6 id id id id 128 11,7 65,1 -13,8
Allen+Rank 0.7 id id id id 128 4,3 67,7 -18,3
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Figure 2: Example of float R voicing values
and Binary data of three different sample of
vowel /Aa/. The vectors of these examples are:
vec1=[d,io,io,no,io,io,io,no,io,if,no,is,no,no,io],
vec2=[io,io,io,no,no,s,id,no,no,id,no,no,id,no,no,no],
vec3=[s,s,d,d,no,s,io,io,d,d,no,is,no,no].

Binary DATA

ba
nd

s

1 2 3 4 5 6 7 8 9

6

5

4

3

2

1

Binary DATA

ba
nd

s

1 2 3 4 5 6 7 8 9

6

5

4

3

2

1

Figure 3: Example of voicing and binary data of two differ-
entsamples of vowel /Ii/.

5 RESULTS AND DISCUSSION

We notice in the figure 2 that there is a shape similar-
ity between patterns 1 and 2, and differences between

2 and 3. This may be due to different speakers that
may negatively influence phoneme recognition (Frai-
hat et al., 2008). Further studies will have to be con-
ducted on this issue.

The concatenation of subband ranks (RANK) and
ALLEN features well improve the score : we have at
best 70% Class Error Rate (ER) at best with ALLEN
features alones, and 62% with ALLEN+RANK fea-
tures (see table 1). Moreover it is interesting to note
that RANK features alone, with 6 integers give 69%
ER, similar to the complementary ALLEN features.
This tends to show that the interval construction algo-
rithm we propose extract representative information
for vowel coding.

These vowel recognition results, with a feature
compression of 4,6 are interesting (=62% ER), com-
pared to the 57% ER given by the raw voicing data
(we note that the direct binarization of the voicing
data is worst) and compared to the 83% ER given by
random classifier (see footnote3).

Moreover interval soft coding may enhance clas-
sification as revealed by the results of raw vs binary
voicing levels. We then could use mean and variance
interval length to enhance our classification. In fu-
ture works will also use more detailed subband repre-
sentation, like the 36 Mel Filter Cepstral Coefficient.
This multiplication of the number of the intervals may
explose the ALLEN representation size. A simple
way to tackle this combinatorial effect is to generate
local ALLEN relations on some frequency domains,
and to train local classifier for each domain. Then a

3The error rate of the random classifier equals 1−∑c
k=1(Pk)

2 =

1− ∑c
k=1

(

card(Ck)
∑c

k=1 card(C)

)2
, where c is the number of classes,

card(Ck) is the number of elements of the classCk in the train set.
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global classifier can merge the whole information, as
depicted in fig 4. This strategy could allow the appli-
cation of method to usual MFCC delta, delta-delta for
example.

Figure 4: Schema of a further system. One may divide the
features into three parts and for each part generate three
Allen relations sets from six overlapped subbands, yield-
ing to 3*15 relations that feed a MLP, finally one merge the
three MLPs.

Further experiments will also be conducted on
consonants, considering for example a zeros inter-
val (ie. between two vowels) or by considering null
binarized intervals (i.e. less or unvoiced intervals).
A simple classic silence detector (e.g. based on en-
ergy thresholding) will avoid confusion between con-
sonant and silence events. Moreover di-phones Con-
sonant Vowel (CV), and triphones sequences (CVC)
modeling could be done with simple extension of the
same framework, and are expected to contribute to en-
hance ASR robustness.
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