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Abstract: Master key schemes are a viable solution to establish pairwise shared secret keys in wireless sensor 
networks. In these schemes, a master key is preconfigured into each sensor node which is then used by each 
node to generate pairwise shared secret keys. In the literature so far, it is essential for each sensor node to 
keep master key in its memory during the entire phase of key setup. As soon as key setup completes, each 
node erases the master key from its memory. Although key setup phase of a node lasts for a small interval of 
time, it is not impossible for an adversary to compromise a node during this time. In this situation, the 
presence of master key can be disastrous. So the challenge is to protect a sensor network from compromise 
of master key during its key setup phase. We propose Secure Authenticated Key Establishment (SAKE) 
protocol that meets the above challenge by introducing an idea that master key need not to be kept by a 
sensor node for the entire key setup phase thereby shortening the master key compromise window. With the 
help of our proposed scheme, other attacks during key setup phase can also be avoided.  

1 INTRODUCTION 

Wireless Sensor Networks are self-organizing 
networks of locally communicating sensor nodes 
having limited computation, memory, and energy 
resources. Due to the deployment of sensor nodes in 
large numbers, the nodes are made inexpensive; 
thereby not tamper-resistant and an adversary is 
quite capable of compromising some of them. 
Above all, the sensor nodes with limited resources 
are not capable of using public key cryptography 
because it is computationally intensive. All of these 
inherent unique characteristics make implementation 
of security in wireless sensor networks far more 
challenging than in traditional computer networks. 
Key establishment lays the foundation for 
implementing security in a sensor network, in which 
a sensor node establishes secure links with its 
neighbours when it is deployed in a sensor network. 
In fact it establishes the keys necessary to provide 
confidentiality, integrity and authentication services. 
Due to the resource limitations of sensor nodes, key 
establishment protocols for sensor networks are 

based on symmetric key algorithms. Key 
establishment for wireless sensor networks must be 
lightweight, secure and efficient. 

Camtepe et al. (S. A. Camtepe and B. Yener, 
2005) described following specific security 
requirements of wireless sensor networks along with 
availability, authentication, integrity, confidentiality, 
and non-reputation. 
• Survivability: capability of providing minimum 

level of service in the presence of power loss, 
failures or attacks. 

• Degradation of security services: capability of 
changing security level with the change in 
resource availability. 
Pre-deployed keying is the most suitable 

solution for bootstrapping secret keys in sensor 
networks.  In pre-deployed keying, sensor nodes are 
loaded with keys before their deployment. Several 
solutions based on pre-deployed keying are 
proposed. Master key schemes ((J. Deng et al.), (S. 
Zhu et al., 2003), (S.Seys), (B. Lai et al., 2002), (A. 
Perrig et al., 2001), (B. Dutertre et al., 2004)), are 
also based on pre-deployed keying in which each 
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sensor node is preconfigured with the same master 
key and that master key is then used by each node to 
generate pairwise keys for sharing with each of its 
neighbors. After the key setup phase, each node 
removes the master key from its memory. Key 
establishment techniques are evaluated on the basis 
of following metrics (S. A. Camtepe and B. Yener, 
2005): 
• Scalability: Key establishment technique should 

be flexible against significant increase in the 
size of the network even after deployment. 

• Efficiency: Key establishment technique must 
be efficient in terms of storage (required 
memory to store security credentials), 
processing (amount of processor cycles required 
to establish a key) and communication (number 
of messages exchanged during key generation 
process). 

• Resilience: Resilience against node capture and 
security credentials compromise stored in a 
node or exchanged over wireless radio links. 

2 RELATED WORK 

Perrig et al. (A. Perrig et al., 2001) proposed 
Security Protocols for Sensor Networks namely 
SPINS. It consists of two protocols, SNEP and 

TESLA. SNEP provides confidentiality, two-party 
data authentication, integrity, and freshness. 

TESLA supports authenticated broadcast. Figure 1 
shows the key establishment protocol for SPINS (B. 
Lai et al., 2002), It shows that when a node A wants 
to establish a pairwise shared key SKAB with node B 
with the help of a trusted third party server S, which 
acts as authentication and key distribution server.  

Key establishment protocol works as:  
 
1. Node A sends a request message to node B.  
2. Upon receiving this message, Node B sends 

a      message to the S 
3. Key server S authenticates and generates 

the pairwise key and sends the key back to 
node A  

4. Key server then sends pairwise key to node 
B.   

 

 
Figure 1: Key establishment in SPINS (A. Perrig et al., 
2001). 

The drawback of SPINS is the use of a central 
key server S. As a sensor network comprises a large 
number of nodes, the use of central key server 
restricts the scalability of the sensor networks. 

Seys et al. (S.Seys) proposed SNAKE, a protocol 
for key establishment based on an ad-hoc scheme. In 
contrast to SPINS, in this scheme, no key server is 
involved in key establishment. Figure 2 describes 
the protocol. 

 
                                    1.  request|NA  
 
 

 
       
                   

 
 
 

3. IDA|NB|MACK [IDA|NB] 

Figure 2: SNAKE (S.Seys). 

Key establishment in SNAKE is done in the 
following way. 
1. Node A sends a request and a nonce to node B 
2. Node B returns T (the identity and nonce of 

node A, B’s own identity and nonce), 
concatenated with a Message Authentication 
Code (MAC) of T to A.  

3. Upon receiving this message, node A proves its 
authenticity and sends the message back to node 
B. 

 After this process, node A and node B generate 
pairwise shared key as: KAB = MACK [NA|NB] 

     Lai et al. (B. Lai et al., 2002),  proposed 
BROSK in which each node broadcasts the key 
negotiation message to establish the pairwise shared 
key with its neighbors. To establish session keys 
with its neighbors, a sensor node A broadcasts the 
following message: 

A                 *: IDA|NA|MACK (IDA|NA) 

2. T=(IDB|IDA|NA|NB) | MACK 
A B
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K is the same master key preconfigured in all the 
nodes prior to deployment. Upon receiving A’s 
broadcast, a node B can construct the pairwise 
shared key KAB by generating the Message 
Authentication Code (MAC) with the help of two 
nonces as:  

KAB= MACK (NA|NB) 

Similarly node A also receives the broadcast 
message from node B and constructs the key KAB in 
the similar manner.  

Zhu et al. (S. Zhu, 2003) proposed Localized 
Encryption and Authentication Protocols (LEAP) 
based on master key scheme. In LEAP, an initial key 
kI is preconfigured into each node. Each node u 
derives its master key as:  

ku = f(kI, u), where f is a secure one-way 
function. A node u establishes pairwise keys by 
broadcasting its identity as:  

u                     *:       u 

After broadcasting node u waits for its 
neighbor’s response.  A node v sends the response 
as: 

v          u: v, MAC(kv, u|v) 

Upon receiving the response, Node u derives kv 
as: kv =f (kI, v) and authenticates the response using 
the derived key. The pairwise key for nodes u and v 
is f(ku,v), for u > v, and f(kv, u) otherwise. Each node 
erases the key kI from its memory after the key setup 
phase but retain its own master or individual key.  

     The initial key kI in LEAP is the single point 
of failure. If an adversary is somehow ever able to 
obtain kI before it is erased, she will be able to 
compute all previously setup pairwise keys in the 
network as well as calculate all future session keys 
that may be established. In addition, the adversary 
can also inject any number of malicious nodes into 
the network. 

Deng et al. (J. Deng et al.), described Opaque 
Transitory Master Key Scheme (OTMK), a pairwise 
key establishment scheme in which a master key M 
is preconfigured into each sensor node. To establish 
session keys, each node u broadcasts a request 
message as: 

u             *:     JOIN|EM (IDu|nonce) 

IDu is the identity of u. Upon receiving this 
broadcast, a node v generates a random number kv,u 
and responds u as: 

v             u :  REPLY|EM(IDv|nonce+1|kv,u) 

After receiving this message node u performs 
verification of nonce and designates node v as its 
verified neighbor.  The pairwise key is either kv,u 

generated by v or ku,v generated by u. ku,v is used as 
shared key if IDu<IDv else kv,u is used as shared key. 

To enable new nodes to join, Deng et al. (J. 
Deng et al.), proposed another scheme in which a 
node v generates a new key kv= MAC (M, IDv) and a 
number of verifiers containing two random numbers 
ri and yi where yi = f (M, ri). A node v stores many 
verifiers and erases the master key M. When a new 
node u arrives, node v sends one of its random 
numbers ri as a challenge to node u. Node u 
computes zi=f (M, ri ) and sends it to node v. Now 
node v compares zi with yi and if both are equal then 
it verifies node u. After that the pairwise key is 
established between u and v. A critical question is 
how many verifiers are to be contained by a node. A 
sensor node with a limited memory resource cannot 
store too many verifiers for authentication of newly 
joining nodes.   

Dutertre et al. (B. Dutertre et al., 2004),  
depicted that many timing mechanisms can be used 
to reduce the probability of message collisions and 
proposed a protocol in which a secret group 
authentication key bk1 and a key bk2, to generate 
session key is preconfigured into all nodes. To 
establish pairwise keys a node A broadcasts a hello 
message as: 

A         *: HELLO|A|NA|MACbk1 (HELLO, A, NA) 

Upon receiving, a node B checks the validity of 
A and responds to A as: 

ACK|A|B|NB|MACbk1 (ACK, A, B, NB, NA) 

This acknowledgement proves to A that B knows 
bk1 and has received NA. After that A and B establish 
keys as KAB=Gbk2 (NA, NB). G is a keyed one-way 
hash function.  

Perrig et al. (R. Anderson et al., 2004) paid 
attention to key distribution in commodity sensor 
networks where they did not assume a global 
passive adversary and proposed Key Infection: a 
plaintext key exchange protocol, in which every 
sensor node sends plaintext to establish pair-wise 
keys with each of its neighbor nodes. In this scheme 
it was assumed that during the network deployment 
phase, the attacker can monitor only a fixed 
percentage a of communication channels. This 
assumption was in contrast to the previous work on 
key distribution for sensor networks, in which a 
strong threat model was assumed: it was assumed 
that the  adversary is present both before and 
 after the deployment of nodes, and can monitor 
all communications in the network at all times. It is 
assumed also that it is possible for an adversary to 
maliciously reprogram a small number of sensor 
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nodes. If this key setup time completes in short time, 
an adversary has very little time to eavesdrop on key 
setup. Compromising a node does not offer the 
adversary any added advantage in deducing these 
keys. Key Infection establishes key as: every sensor 
node simply decides a key and broadcasts it in 
plaintext to its neighbors. For example a node i, after 
deployment, broadcasts a key ki. Due to short-range 
nature of transmission, possibly half a dozen other 
nodes within range of i, notice each other’s presence 
and start self-organization. Another node j after 
hearing i’s signal, produces a pair wise key kj and 
sends it, along with its name, to i:{ j, kji} ki. 
Minimum power essential for the link is used to 
transmit the packet. The key kji is used between i 
and j. Perrig et al. argued that only 2.4% of links 
will be compromised if there is one hostile sensor 
node for every 100 white nodes, and there are four 
neighbors in the range of each node. Plaintext key 
exchange protocol does not provide protection for 
confidentiality, integrity, and node authentication. 
Another drawback of this approach is that an 
adversary can inject malicious nodes into the 
network, since there is no authentication mechanism 
to verify whether a sensor node is a valid member. 

In key pre-distribution schemes, secret keys or 
secret information is distributed to every sensor node 
prior to deployment into the sensing area. Gligor et 
al. (L. Eschenaur and V. Gligor, 2002) proposed the 
probabilistic key pre-deployed scheme, which is 
regarded as basic scheme. In this scheme, key setup 
completes in three phases: key pre-distribution, 
shared-key discovery, and path-key establishment 
respectively.  

Figure 4 shows the key pre-distribution phase in 
which each sensor node holds k distinct keys, 
randomly chosen from a big key pool having size P 
where P>> k. This set of k keys carried by each node 
is called key ring. An identifier is attached with each 
key. Shared key discovery phase starts with the 
deployment of nodes in which each node discovers 
its neighbors to share common keys in its radio 
range. Links are established between the nodes at the 
end of shared-key discovery phase. Path-key 
establishment phase is the last phase in which pairs 
of nodes are connected that want to establish a 
secure link but they are not sharing a common key. 
These pairs of nodes can be reachable by two or 
more hops. Perrig et al. (H. Chan et al., 2003) 
modified Gligor’s scheme for proficient handling of 
bootstrapping problem. This scheme is more 
resilient against node capture. In this scheme, 
instead of using one common key for key 
establishment, q common keys are required for key 

setup with a hash function. Figure 5 demonstrates 
this scheme (B. Lai, 2002). 

It is possible that many nodes in the sensor 
network can share that same key. If one of these 
nodes is compromised, all other nodes sharing the 
same key will also be compromised. Du et al. (W. 
Du et al., 2004) has proposed a model, in which the 
sensor nodes are deployed in groups, so in each 
group the nodes have high probability to be near to 
each other. So the basic idea is to let the nodes 
deployed near to each other select keys from sub-
key pools that share more keys. In the scheme, 
because each node carries fewer keys, the memory 
efficiency and resilience are both improved. 

3 SAKE: SECURE 
AUTHENTICATED KEY 
ESTABLISHMENT 

In key establishment techniques based on master key 
schemes, master key is a single point of failure. 
Deng et al. (J. Deng et al.), demonstrated that time 
to deploy a sensor network is very important. The 
key setup phase may need to be extended until all 
nodes are activated, or arrive at their destination. In 
such cases, the master key would live for several 
minutes. If an adversary knows the memory area 
precisely from which to draw the keys, then the node 
compromise time is in the tens of seconds. So it is 
quite possible for an adversary to physically capture 
a node and compromise the master key during its 
key setup phase. The challenge in this scenario is to 
protect the network from its single point of failure. 
This challenge can be met if key establishment 
process would be made less dependent on master 
key. This can be done if the individual key of each 
sensor node would be made an active participant in 
key establishment process along with the master 
key.  This load balancing approach will protect the 
master key from becoming a single point of failure. 
Moreover, in a situation when master key is 
compromised, it is required that a typical key 
establishment technique would not enable an 
adversary to compute all pairwise keys with the help 
of master key. 

We propose Secure Authentication Key 
Establishment (SAKE) protocol, which is based on 
master key scheme. SAKE supports the 
establishment of pairwise shared keys between the 
nodes of a sensor network. SAKE is dissimilar from 
other master key schemes as it makes key 
establishment less dependent on master key. Firstly, 
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it is not essential for sensor nodes running SAKE to 
keep the master key in the memory for the entire key 
setup phase. In fact a node running SAKE erases the 
master key very early during its key establishment 
process. This reduces the chance of master key 
compromise if an adversary physically captures a 
node during its key setup phase. It also makes the 
insertion of malicious nodes in the network nearly 
impossible. Secondly, in case of master key 
compromise, an adversary cannot compute all 
pairwise keys in the network with the help of master 
key in contrast to LEAP protocol proposed by Zhu 
et al. (S. Zhu, 2003) in which an attacker can 
calculate all previously setup pairwise keys as well 
as is able to compute all pairwise keys that may be 
established in future. 

3.1 Assumptions 

It is assumed that the sensor nodes are static and a 
sensor node does not know its immediate neighbors 
in advance. Tmin is a certain amount of time an 
adversary requires to compromise a node. Tkey is the 
total key setup time of a sensor node and it may be 
less or greater than Tmin. This is in contrast to other 
master key schemes ((J. Deng), (S. Zhu, 2003)), 
where Tkey is assumed to be always less than Tmin. 
Tkey is divided into two time intervals namely Tstart 
and Testab. Tstart is the smaller portion of Tkey that at 
maximum is less than half of Tkey so it is smaller 
than Testab. It is assumed that being a very small 
portion of total key setup time; Tstart is always less 
than Tmin.  In other words it is believed that a node 
that requires Tkey time to complete its key setup 
process cannot be compromised in its Tstart phase. 

Following notations have been used in the 
presentation of the protocol 
• a and b are communicating sensor nodes. 
• Ekm (M) means encrypting message M with 

master key km. 
• Eks (M) means encrypting message M with 

subordinate key ks. 
• x|y means concatenation of message x with y. 

Since communication is taking place between a 
typical sensor node and its immediate neighbors, our 
scheme establishes pairwise keys that are shared by 
a node and its immediate neighbors.  

In this scheme, each sensor node is 
preconfigured with a master key km and subordinate 
key ks. Moreover each sensor node has also its 
unique individual key. A node keeps the master key 
km during its Tstart phase only.   A node erases km 
when Tstart expires but retains ks for entire key setup 
phase.   

3.2 Functional Architecture 

Key setup process of a sensor node starts when a 
node is deployed. Initially the node a is in its Tstart 
phase in which it performs following tasks. 
• Encrypts its individual key ka with both km and 

ks. 
              y1= Ekm (a|ka) 
              y2= Eks (a|ka) 

• Broadcasts a HELLO message to discover its 
immediate neighbors. 

      a              *: HELLO|a|na| Ekm (a|na|ka)   (1) 

a is the identity of node a. na is the nonce or 
random number and ka is the unique individual key 
of a. Tstart  interval is made so  small that a node a  
can  perform the above tasks only. As soon as Tstart 
expires, node a erases km but keeps y1, y2 and ks. 
From (1) it is clear that km is used for authentication 
purpose because while receiving this broadcast, 
another node b is assured of the identity of node a. 
Now following conditions can occur. 

3.2.1 Node b is in Tstart Phase 

Use 15-point type for the title, aligned to the center, 
linespace exactly at 17-point with a bold font style 
and all letters capitalized. 

If node b is in its Tstart phase, it keeps both km 
and ks. Besides its own HELLO broadcast, if it 
receives HELLO message from node a during Tstart, 
it can decrypt (1) with km and gets ka. After getting 
ka, it can generate pairwise key as  

ka,b= f(ka,b) if a>b else 
ka,b = f(kb,a ) if a<b and sends a response to a 

    b             a: REPLY|b|Eka(a|b|kb|na+1)        (2) 

f is a secure one-way function. Upon receiving 
this reply, a decrypts with its individual key ka and 
validates the identity of b. After that it generates 
pairwise key with b as b has generated above. It does 
not matter that whether node a is in its Tstart phase or 
in Testab phase, because it is not dependent on any 
master key to decrypt and process (2). Testab is the 
second time interval of Tkey which lasts till the 
expiration of Tkey. Node a only needs its individual 
key ka to generate pairwise keys. 

3.2.2 Node b is in Testb Phase 

If node b is not in Tstart phase, it will be in Testab 
phase where it has erased km. Node b will remain in 
Testab phase until Tkey expires. We know that most of 
the requests will be processed after Tstart, because 
Tstart is so small that a node hardly broadcasts its on 
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HELLO request. Now node b is not in position to 
decrypt (1). Node b computes pair wise key as ka,b= 
f(kb,a ) only if a<b, and replies to node a as  

       b              a: REQUEST|b|a|na+1|y1|y2      (3) 

Node b cannot compute ka,b= f(ka,b ) if a>b, 
because it cannot decrypt (1), so in this case it 
simply sends (3) to a. Upon receiving this message, 
if node a is still in Tstart phase (although the chances 
are very rare), since it keeps km and ks, it decrypts y1 
with km to verify the identity and to get individual 
key of node b and ignores y2. But if node a is also in 
Testab phase, y1 is useless for it. It decrypts y2 with 
the help of ks to get b’s identity and its individual 
key. So it has not only verified the identity of b but 
also generated key ka,b. Node a verifies the identity 
of b and generates pairwise key ka,b= f(kb,a ) if a<b 
and does not send any notification message to b, 
otherwise generates ka,b = f(ka,b) if a>b and sends 
following notification message to b as  

a               b: REPLY|a|b|Ekb(a|b|ka,b)       (4) 

Node b decrypts this message and gets the 
pairwise key. An interesting situation arises if node 
a has received HELLO broadcast from b during its 
Tstart phase and generated pairwise key ka,b. But a’s 
HELLO broadcast was received by b in b’s Testab. 
Now b generated ka,b and responded with (3). When 
a receives this message, it checks the identity of b 
and discards immediately because it has already 
established the pairwise key. 

 
When Tkey expires, each node erases ks and 

individual keys of its immediate neighbors with 
which it has established pairwise keys, but it retains 
y1 and y2 because they are used by a node to 
establish pairwise keys with newly coming nodes 
that come after the expiration of Tkey. Depending 
upon the policy, if internal network processing (data 
aggregation and passive participation) is required, a 
node can be programmed to keep the individual keys 
of its immediate neighbors collected during key 
setup. 

3.2.3 Adding New Nodes 

If a new node u arrives, it will broadcast HELLO 
message as: 

u           *: HELLO|u|nu| Ekm(u|nu|ku) 

Suppose a node b, which was deployed earlier 
and has completed its key setup process, receives 
this broadcast. Node b cannot decrypt the broadcast 

since it has erased km. Node b computes pair wise 
key as ku,b= f(kb,u )and replies to node u as  

b              u: REQUEST|b|u|nu+1|y1|y2 

Upo n receiving REQUEST message, if node u is in Tstart 
phase, it can decrypt y1 to verify the identity of b as 
well as to get kb. Now node u computes the pairwise 
key as ku,b= f(kb,u ). If node u is in Testab phase, it 
can do all the above tasks with the help of y2.  
Because the HELLO message cannot be 
authenticated by node b, resource consumption 
attacks can be launched. Solutions to these attacks 
have been suggested by (S. Zhu, 2003) which can 
successfully be adopted. Authentication process of 
newly coming nodes in SAKE is very simple and 
consumes less memory because a certain node has to 
store only y1 and y2 than the scheme proposed by 
Deng et al. (J. Deng), in which a number of verifiers 
are stored in memory for the same purpose. 

3.3 Security Analysis of SAKE 

The prime objective of SAKE is to protect a sensor 
network from master key compromise during key 
setup phase hence making the insertion of malicious 
node difficult. During the first time interval (Tstart) of 
key setup phase, a typical node broadcasts the 
HELLO message encrypted with the   master key km 
to identify its neighbors. Tstart being a very small 
time interval of total key setup time ends after this 
broadcast and each node erases km from its memory 
though the key setup phase is not completed yet. 
According to our assumption, it is impossible for an 
adversary to compromise a node during Tstart. 
Therefore an adversary has a very less time and 
chance to get km and it is clear that a sensor node 
must require km to be authenticated and to establish 
pairwise keys. In Testab, which is the second and the 
larger time interval of key setup phase, if an 
adversary however compromises a node, she will get 
the subordinate key ks only. Subordinate key ks alone 
is useless for her, since the malicious nodes dropped 
by her need to have km for authentication as well as 
to establish pairwise keys with the legitimate nodes.   

     E eventually the pairwise key is established when each 
node receiving the HELLO broadcast from each 
initiating node, sends REPLY message encrypted 
with the individual key of the initiating node rather 
than with the master key.  This feature makes 
possible the establishment of pairwise key between 
the initiating and responding node even after the 
expiration of key setup phase of the initiating node 
when it has erased km. Initiating node will decrypt 
the REPLY message with its individual key which is 
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stored in it permanently. In other schemes ((J. Deng 
et al.), (S. Zhu, 2003), (S.Seys), (B. Lai, 2002), (A. 
Perrig et al., 2001), (B. Dutertre et al., 2004)), since 
master key is kept and required for entire key setup 
phase, a skilled adversary gets more time to 
compromise a node and to get the master key. 
Moreover the compromise of master key in LEAP 
(S. Zhu, 2003) allows adversary to determine all 
pairwise keys in the network. It is not possible in 
SAKE because master key km is only used for node 
authentication and cannot be used to compute all 
pairwise keys in the network. 

4 CONCLUSIONS 

We have proposed Secure Authenticated Key 
Establishment (SAKE) protocol that establishes 
pairwise keys shared between neighboring nodes of 
a wireless sensor network. SAKE is an efficient 
protocol in terms of memory, processing and 
communication. It makes a sensor network more 
resilient to master key compromise and makes the 
insertion of malicious nodes extremely difficult. We 
plan to implement and validate this security protocol 
in a simulator in near future. 
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