
SAKE
Secure Authenticated Key Establishment in Sensor Networks

Muhammad Yasir, Mureed Hussain
SZAB Institute of Science and Technology, Islamabad, Pakistan

Kahina Kabri, Dominique Seret
Department of Mathematics et Informatics, University of Paris5, France

Keywords: SAKE, Authentication, MANETs security, Sensor networks.

Abstract: Master key schemes are a viable solution to establish pairwise shared secret keys in wireless sensor
networks. In these schemes, a master key is preconfigured into each sensor node which is then used by each
node to generate pairwise shared secret keys. In the literature so far, it is essential for each sensor node to
keep master key in its memory during the entire phase of key setup. As soon as key setup completes, each
node erases the master key from its memory. Although key setup phase of a node lasts for a small interval of
time, it is not impossible for an adversary to compromise a node during this time. In this situation, the
presence of master key can be disastrous. So the challenge is to protect a sensor network from compromise
of master key during its key setup phase. We propose Secure Authenticated Key Establishment (SAKE)
protocol that meets the above challenge by introducing an idea that master key need not to be kept by a
sensor node for the entire key setup phase thereby shortening the master key compromise window. With the
help of our proposed scheme, other attacks during key setup phase can also be avoided.

1 INTRODUCTION

Wireless Sensor Networks are self-organizing
networks of locally communicating sensor nodes
having limited computation, memory, and energy
resources. Due to the deployment of sensor nodes in
large numbers, the nodes are made inexpensive;
thereby not tamper-resistant and an adversary is
quite capable of compromising some of them.
Above all, the sensor nodes with limited resources
are not capable of using public key cryptography
because it is computationally intensive. All of these
inherent unique characteristics make implementation
of security in wireless sensor networks far more
challenging than in traditional computer networks.
Key establishment lays the foundation for
implementing security in a sensor network, in which
a sensor node establishes secure links with its
neighbours when it is deployed in a sensor network.
In fact it establishes the keys necessary to provide
confidentiality, integrity and authentication services.
Due to the resource limitations of sensor nodes, key
establishment protocols for sensor networks are

based on symmetric key algorithms. Key
establishment for wireless sensor networks must be
lightweight, secure and efficient.

Camtepe et al. (S. A. Camtepe and B. Yener,
2005) described following specific security
requirements of wireless sensor networks along with
availability, authentication, integrity, confidentiality,
and non-reputation.
• Survivability: capability of providing minimum

level of service in the presence of power loss,
failures or attacks.

• Degradation of security services: capability of
changing security level with the change in
resource availability.
Pre-deployed keying is the most suitable

solution for bootstrapping secret keys in sensor
networks. In pre-deployed keying, sensor nodes are
loaded with keys before their deployment. Several
solutions based on pre-deployed keying are
proposed. Master key schemes ((J. Deng et al.), (S.
Zhu et al., 2003), (S.Seys), (B. Lai et al., 2002), (A.
Perrig et al., 2001), (B. Dutertre et al., 2004)), are
also based on pre-deployed keying in which each

154
Yasir M., Hussain M., Kabri K. and Seret D. (2008).
SAKE - Secure Authenticated Key Establishment in Sensor Networks.
In Proceedings of the International Conference on Security and Cryptography, pages 154-160
DOI: 10.5220/0001930301540160
Copyright c© SciTePress

sensor node is preconfigured with the same master
key and that master key is then used by each node to
generate pairwise keys for sharing with each of its
neighbors. After the key setup phase, each node
removes the master key from its memory. Key
establishment techniques are evaluated on the basis
of following metrics (S. A. Camtepe and B. Yener,
2005):
• Scalability: Key establishment technique should

be flexible against significant increase in the
size of the network even after deployment.

• Efficiency: Key establishment technique must
be efficient in terms of storage (required
memory to store security credentials),
processing (amount of processor cycles required
to establish a key) and communication (number
of messages exchanged during key generation
process).

• Resilience: Resilience against node capture and
security credentials compromise stored in a
node or exchanged over wireless radio links.

2 RELATED WORK

Perrig et al. (A. Perrig et al., 2001) proposed
Security Protocols for Sensor Networks namely
SPINS. It consists of two protocols, SNEP and

TESLA. SNEP provides confidentiality, two-party
data authentication, integrity, and freshness.

TESLA supports authenticated broadcast. Figure 1
shows the key establishment protocol for SPINS (B.
Lai et al., 2002), It shows that when a node A wants
to establish a pairwise shared key SKAB with node B
with the help of a trusted third party server S, which
acts as authentication and key distribution server.

Key establishment protocol works as:

1. Node A sends a request message to node B.
2. Upon receiving this message, Node B sends

a message to the S
3. Key server S authenticates and generates

the pairwise key and sends the key back to
node A

4. Key server then sends pairwise key to node
B.

Figure 1: Key establishment in SPINS (A. Perrig et al.,
2001).

The drawback of SPINS is the use of a central
key server S. As a sensor network comprises a large
number of nodes, the use of central key server
restricts the scalability of the sensor networks.

Seys et al. (S.Seys) proposed SNAKE, a protocol
for key establishment based on an ad-hoc scheme. In
contrast to SPINS, in this scheme, no key server is
involved in key establishment. Figure 2 describes
the protocol.

 1. request|NA

3. IDA|NB|MACK [IDA|NB]

Figure 2: SNAKE (S.Seys).

Key establishment in SNAKE is done in the
following way.
1. Node A sends a request and a nonce to node B
2. Node B returns T (the identity and nonce of

node A, B’s own identity and nonce),
concatenated with a Message Authentication
Code (MAC) of T to A.

3. Upon receiving this message, node A proves its
authenticity and sends the message back to node
B.

 After this process, node A and node B generate
pairwise shared key as: KAB = MACK [NA|NB]

 Lai et al. (B. Lai et al., 2002), proposed
BROSK in which each node broadcasts the key
negotiation message to establish the pairwise shared
key with its neighbors. To establish session keys
with its neighbors, a sensor node A broadcasts the
following message:

A *: IDA|NA|MACK (IDA|NA)

2. T=(IDB|IDA|NA|NB) | MACK
A B

SAKE - Secure Authenticated Key Establishment in Sensor Networks

155

K is the same master key preconfigured in all the
nodes prior to deployment. Upon receiving A’s
broadcast, a node B can construct the pairwise
shared key KAB by generating the Message
Authentication Code (MAC) with the help of two
nonces as:

KAB= MACK (NA|NB)

Similarly node A also receives the broadcast
message from node B and constructs the key KAB in
the similar manner.

Zhu et al. (S. Zhu, 2003) proposed Localized
Encryption and Authentication Protocols (LEAP)
based on master key scheme. In LEAP, an initial key
kI is preconfigured into each node. Each node u
derives its master key as:

ku = f(kI, u), where f is a secure one-way
function. A node u establishes pairwise keys by
broadcasting its identity as:

u *: u

After broadcasting node u waits for its
neighbor’s response. A node v sends the response
as:

v u: v, MAC(kv, u|v)

Upon receiving the response, Node u derives kv
as: kv =f (kI, v) and authenticates the response using
the derived key. The pairwise key for nodes u and v
is f(ku,v), for u > v, and f(kv, u) otherwise. Each node
erases the key kI from its memory after the key setup
phase but retain its own master or individual key.

 The initial key kI in LEAP is the single point
of failure. If an adversary is somehow ever able to
obtain kI before it is erased, she will be able to
compute all previously setup pairwise keys in the
network as well as calculate all future session keys
that may be established. In addition, the adversary
can also inject any number of malicious nodes into
the network.

Deng et al. (J. Deng et al.), described Opaque
Transitory Master Key Scheme (OTMK), a pairwise
key establishment scheme in which a master key M
is preconfigured into each sensor node. To establish
session keys, each node u broadcasts a request
message as:

u *: JOIN|EM (IDu|nonce)

IDu is the identity of u. Upon receiving this
broadcast, a node v generates a random number kv,u
and responds u as:

v u : REPLY|EM(IDv|nonce+1|kv,u)

After receiving this message node u performs
verification of nonce and designates node v as its
verified neighbor. The pairwise key is either kv,u

generated by v or ku,v generated by u. ku,v is used as
shared key if IDu<IDv else kv,u is used as shared key.

To enable new nodes to join, Deng et al. (J.
Deng et al.), proposed another scheme in which a
node v generates a new key kv= MAC (M, IDv) and a
number of verifiers containing two random numbers
ri and yi where yi = f (M, ri). A node v stores many
verifiers and erases the master key M. When a new
node u arrives, node v sends one of its random
numbers ri as a challenge to node u. Node u
computes zi=f (M, ri) and sends it to node v. Now
node v compares zi with yi and if both are equal then
it verifies node u. After that the pairwise key is
established between u and v. A critical question is
how many verifiers are to be contained by a node. A
sensor node with a limited memory resource cannot
store too many verifiers for authentication of newly
joining nodes.

Dutertre et al. (B. Dutertre et al., 2004),
depicted that many timing mechanisms can be used
to reduce the probability of message collisions and
proposed a protocol in which a secret group
authentication key bk1 and a key bk2, to generate
session key is preconfigured into all nodes. To
establish pairwise keys a node A broadcasts a hello
message as:

A *: HELLO|A|NA|MACbk1 (HELLO, A, NA)

Upon receiving, a node B checks the validity of
A and responds to A as:

ACK|A|B|NB|MACbk1 (ACK, A, B, NB, NA)

This acknowledgement proves to A that B knows
bk1 and has received NA. After that A and B establish
keys as KAB=Gbk2 (NA, NB). G is a keyed one-way
hash function.

Perrig et al. (R. Anderson et al., 2004) paid
attention to key distribution in commodity sensor
networks where they did not assume a global
passive adversary and proposed Key Infection: a
plaintext key exchange protocol, in which every
sensor node sends plaintext to establish pair-wise
keys with each of its neighbor nodes. In this scheme
it was assumed that during the network deployment
phase, the attacker can monitor only a fixed
percentage a of communication channels. This
assumption was in contrast to the previous work on
key distribution for sensor networks, in which a
strong threat model was assumed: it was assumed
that the adversary is present both before and
 after the deployment of nodes, and can monitor
all communications in the network at all times. It is
assumed also that it is possible for an adversary to
maliciously reprogram a small number of sensor

SECRYPT 2008 - International Conference on Security and Cryptography

156

nodes. If this key setup time completes in short time,
an adversary has very little time to eavesdrop on key
setup. Compromising a node does not offer the
adversary any added advantage in deducing these
keys. Key Infection establishes key as: every sensor
node simply decides a key and broadcasts it in
plaintext to its neighbors. For example a node i, after
deployment, broadcasts a key ki. Due to short-range
nature of transmission, possibly half a dozen other
nodes within range of i, notice each other’s presence
and start self-organization. Another node j after
hearing i’s signal, produces a pair wise key kj and
sends it, along with its name, to i:{ j, kji} ki.
Minimum power essential for the link is used to
transmit the packet. The key kji is used between i
and j. Perrig et al. argued that only 2.4% of links
will be compromised if there is one hostile sensor
node for every 100 white nodes, and there are four
neighbors in the range of each node. Plaintext key
exchange protocol does not provide protection for
confidentiality, integrity, and node authentication.
Another drawback of this approach is that an
adversary can inject malicious nodes into the
network, since there is no authentication mechanism
to verify whether a sensor node is a valid member.

In key pre-distribution schemes, secret keys or
secret information is distributed to every sensor node
prior to deployment into the sensing area. Gligor et
al. (L. Eschenaur and V. Gligor, 2002) proposed the
probabilistic key pre-deployed scheme, which is
regarded as basic scheme. In this scheme, key setup
completes in three phases: key pre-distribution,
shared-key discovery, and path-key establishment
respectively.

Figure 4 shows the key pre-distribution phase in
which each sensor node holds k distinct keys,
randomly chosen from a big key pool having size P
where P>> k. This set of k keys carried by each node
is called key ring. An identifier is attached with each
key. Shared key discovery phase starts with the
deployment of nodes in which each node discovers
its neighbors to share common keys in its radio
range. Links are established between the nodes at the
end of shared-key discovery phase. Path-key
establishment phase is the last phase in which pairs
of nodes are connected that want to establish a
secure link but they are not sharing a common key.
These pairs of nodes can be reachable by two or
more hops. Perrig et al. (H. Chan et al., 2003)
modified Gligor’s scheme for proficient handling of
bootstrapping problem. This scheme is more
resilient against node capture. In this scheme,
instead of using one common key for key
establishment, q common keys are required for key

setup with a hash function. Figure 5 demonstrates
this scheme (B. Lai, 2002).

It is possible that many nodes in the sensor
network can share that same key. If one of these
nodes is compromised, all other nodes sharing the
same key will also be compromised. Du et al. (W.
Du et al., 2004) has proposed a model, in which the
sensor nodes are deployed in groups, so in each
group the nodes have high probability to be near to
each other. So the basic idea is to let the nodes
deployed near to each other select keys from sub-
key pools that share more keys. In the scheme,
because each node carries fewer keys, the memory
efficiency and resilience are both improved.

3 SAKE: SECURE
AUTHENTICATED KEY
ESTABLISHMENT

In key establishment techniques based on master key
schemes, master key is a single point of failure.
Deng et al. (J. Deng et al.), demonstrated that time
to deploy a sensor network is very important. The
key setup phase may need to be extended until all
nodes are activated, or arrive at their destination. In
such cases, the master key would live for several
minutes. If an adversary knows the memory area
precisely from which to draw the keys, then the node
compromise time is in the tens of seconds. So it is
quite possible for an adversary to physically capture
a node and compromise the master key during its
key setup phase. The challenge in this scenario is to
protect the network from its single point of failure.
This challenge can be met if key establishment
process would be made less dependent on master
key. This can be done if the individual key of each
sensor node would be made an active participant in
key establishment process along with the master
key. This load balancing approach will protect the
master key from becoming a single point of failure.
Moreover, in a situation when master key is
compromised, it is required that a typical key
establishment technique would not enable an
adversary to compute all pairwise keys with the help
of master key.

We propose Secure Authentication Key
Establishment (SAKE) protocol, which is based on
master key scheme. SAKE supports the
establishment of pairwise shared keys between the
nodes of a sensor network. SAKE is dissimilar from
other master key schemes as it makes key
establishment less dependent on master key. Firstly,

SAKE - Secure Authenticated Key Establishment in Sensor Networks

157

it is not essential for sensor nodes running SAKE to
keep the master key in the memory for the entire key
setup phase. In fact a node running SAKE erases the
master key very early during its key establishment
process. This reduces the chance of master key
compromise if an adversary physically captures a
node during its key setup phase. It also makes the
insertion of malicious nodes in the network nearly
impossible. Secondly, in case of master key
compromise, an adversary cannot compute all
pairwise keys in the network with the help of master
key in contrast to LEAP protocol proposed by Zhu
et al. (S. Zhu, 2003) in which an attacker can
calculate all previously setup pairwise keys as well
as is able to compute all pairwise keys that may be
established in future.

3.1 Assumptions

It is assumed that the sensor nodes are static and a
sensor node does not know its immediate neighbors
in advance. Tmin is a certain amount of time an
adversary requires to compromise a node. Tkey is the
total key setup time of a sensor node and it may be
less or greater than Tmin. This is in contrast to other
master key schemes ((J. Deng), (S. Zhu, 2003)),
where Tkey is assumed to be always less than Tmin.
Tkey is divided into two time intervals namely Tstart
and Testab. Tstart is the smaller portion of Tkey that at
maximum is less than half of Tkey so it is smaller
than Testab. It is assumed that being a very small
portion of total key setup time; Tstart is always less
than Tmin. In other words it is believed that a node
that requires Tkey time to complete its key setup
process cannot be compromised in its Tstart phase.

Following notations have been used in the
presentation of the protocol
• a and b are communicating sensor nodes.
• Ekm (M) means encrypting message M with

master key km.
• Eks (M) means encrypting message M with

subordinate key ks.
• x|y means concatenation of message x with y.

Since communication is taking place between a
typical sensor node and its immediate neighbors, our
scheme establishes pairwise keys that are shared by
a node and its immediate neighbors.

In this scheme, each sensor node is
preconfigured with a master key km and subordinate
key ks. Moreover each sensor node has also its
unique individual key. A node keeps the master key
km during its Tstart phase only. A node erases km
when Tstart expires but retains ks for entire key setup
phase.

3.2 Functional Architecture

Key setup process of a sensor node starts when a
node is deployed. Initially the node a is in its Tstart
phase in which it performs following tasks.
• Encrypts its individual key ka with both km and

ks.
 y1= Ekm (a|ka)
 y2= Eks (a|ka)

• Broadcasts a HELLO message to discover its
immediate neighbors.

 a *: HELLO|a|na| Ekm (a|na|ka) (1)

a is the identity of node a. na is the nonce or
random number and ka is the unique individual key
of a. Tstart interval is made so small that a node a
can perform the above tasks only. As soon as Tstart
expires, node a erases km but keeps y1, y2 and ks.
From (1) it is clear that km is used for authentication
purpose because while receiving this broadcast,
another node b is assured of the identity of node a.
Now following conditions can occur.

3.2.1 Node b is in Tstart Phase

Use 15-point type for the title, aligned to the center,
linespace exactly at 17-point with a bold font style
and all letters capitalized.

If node b is in its Tstart phase, it keeps both km
and ks. Besides its own HELLO broadcast, if it
receives HELLO message from node a during Tstart,
it can decrypt (1) with km and gets ka. After getting
ka, it can generate pairwise key as

ka,b= f(ka,b) if a>b else
ka,b = f(kb,a) if a<b and sends a response to a

 b a: REPLY|b|Eka(a|b|kb|na+1) (2)

f is a secure one-way function. Upon receiving
this reply, a decrypts with its individual key ka and
validates the identity of b. After that it generates
pairwise key with b as b has generated above. It does
not matter that whether node a is in its Tstart phase or
in Testab phase, because it is not dependent on any
master key to decrypt and process (2). Testab is the
second time interval of Tkey which lasts till the
expiration of Tkey. Node a only needs its individual
key ka to generate pairwise keys.

3.2.2 Node b is in Testb Phase

If node b is not in Tstart phase, it will be in Testab
phase where it has erased km. Node b will remain in
Testab phase until Tkey expires. We know that most of
the requests will be processed after Tstart, because
Tstart is so small that a node hardly broadcasts its on

SECRYPT 2008 - International Conference on Security and Cryptography

158

HELLO request. Now node b is not in position to
decrypt (1). Node b computes pair wise key as ka,b=
f(kb,a) only if a<b, and replies to node a as

 b a: REQUEST|b|a|na+1|y1|y2 (3)

Node b cannot compute ka,b= f(ka,b) if a>b,
because it cannot decrypt (1), so in this case it
simply sends (3) to a. Upon receiving this message,
if node a is still in Tstart phase (although the chances
are very rare), since it keeps km and ks, it decrypts y1
with km to verify the identity and to get individual
key of node b and ignores y2. But if node a is also in
Testab phase, y1 is useless for it. It decrypts y2 with
the help of ks to get b’s identity and its individual
key. So it has not only verified the identity of b but
also generated key ka,b. Node a verifies the identity
of b and generates pairwise key ka,b= f(kb,a) if a<b
and does not send any notification message to b,
otherwise generates ka,b = f(ka,b) if a>b and sends
following notification message to b as

a b: REPLY|a|b|Ekb(a|b|ka,b) (4)

Node b decrypts this message and gets the
pairwise key. An interesting situation arises if node
a has received HELLO broadcast from b during its
Tstart phase and generated pairwise key ka,b. But a’s
HELLO broadcast was received by b in b’s Testab.
Now b generated ka,b and responded with (3). When
a receives this message, it checks the identity of b
and discards immediately because it has already
established the pairwise key.

When Tkey expires, each node erases ks and

individual keys of its immediate neighbors with
which it has established pairwise keys, but it retains
y1 and y2 because they are used by a node to
establish pairwise keys with newly coming nodes
that come after the expiration of Tkey. Depending
upon the policy, if internal network processing (data
aggregation and passive participation) is required, a
node can be programmed to keep the individual keys
of its immediate neighbors collected during key
setup.

3.2.3 Adding New Nodes

If a new node u arrives, it will broadcast HELLO
message as:

u *: HELLO|u|nu| Ekm(u|nu|ku)

Suppose a node b, which was deployed earlier
and has completed its key setup process, receives
this broadcast. Node b cannot decrypt the broadcast

since it has erased km. Node b computes pair wise
key as ku,b= f(kb,u)and replies to node u as

b u: REQUEST|b|u|nu+1|y1|y2

Upo n receiving REQUEST message, if node u is in Tstart
phase, it can decrypt y1 to verify the identity of b as
well as to get kb. Now node u computes the pairwise
key as ku,b= f(kb,u). If node u is in Testab phase, it
can do all the above tasks with the help of y2.
Because the HELLO message cannot be
authenticated by node b, resource consumption
attacks can be launched. Solutions to these attacks
have been suggested by (S. Zhu, 2003) which can
successfully be adopted. Authentication process of
newly coming nodes in SAKE is very simple and
consumes less memory because a certain node has to
store only y1 and y2 than the scheme proposed by
Deng et al. (J. Deng), in which a number of verifiers
are stored in memory for the same purpose.

3.3 Security Analysis of SAKE

The prime objective of SAKE is to protect a sensor
network from master key compromise during key
setup phase hence making the insertion of malicious
node difficult. During the first time interval (Tstart) of
key setup phase, a typical node broadcasts the
HELLO message encrypted with the master key km
to identify its neighbors. Tstart being a very small
time interval of total key setup time ends after this
broadcast and each node erases km from its memory
though the key setup phase is not completed yet.
According to our assumption, it is impossible for an
adversary to compromise a node during Tstart.
Therefore an adversary has a very less time and
chance to get km and it is clear that a sensor node
must require km to be authenticated and to establish
pairwise keys. In Testab, which is the second and the
larger time interval of key setup phase, if an
adversary however compromises a node, she will get
the subordinate key ks only. Subordinate key ks alone
is useless for her, since the malicious nodes dropped
by her need to have km for authentication as well as
to establish pairwise keys with the legitimate nodes.

 E eventually the pairwise key is established when each
node receiving the HELLO broadcast from each
initiating node, sends REPLY message encrypted
with the individual key of the initiating node rather
than with the master key. This feature makes
possible the establishment of pairwise key between
the initiating and responding node even after the
expiration of key setup phase of the initiating node
when it has erased km. Initiating node will decrypt
the REPLY message with its individual key which is

SAKE - Secure Authenticated Key Establishment in Sensor Networks

159

stored in it permanently. In other schemes ((J. Deng
et al.), (S. Zhu, 2003), (S.Seys), (B. Lai, 2002), (A.
Perrig et al., 2001), (B. Dutertre et al., 2004)), since
master key is kept and required for entire key setup
phase, a skilled adversary gets more time to
compromise a node and to get the master key.
Moreover the compromise of master key in LEAP
(S. Zhu, 2003) allows adversary to determine all
pairwise keys in the network. It is not possible in
SAKE because master key km is only used for node
authentication and cannot be used to compute all
pairwise keys in the network.

4 CONCLUSIONS

We have proposed Secure Authenticated Key
Establishment (SAKE) protocol that establishes
pairwise keys shared between neighboring nodes of
a wireless sensor network. SAKE is an efficient
protocol in terms of memory, processing and
communication. It makes a sensor network more
resilient to master key compromise and makes the
insertion of malicious nodes extremely difficult. We
plan to implement and validate this security protocol
in a simulator in near future.

REFERENCES

R. Anderson, H. Chan, and A. Perrig, “Key infection:
Smart trust for smart dust,” In 12th IEEE International
Conference on Network Protocols, Berlin, Germany,
2004.

J. Deng, C Hartung, R. Han, and S. Mishra, “A Practical
Study of Transitory Master Key Establishment for
Wireless Sensor Networks,” University of Colorado at
Boulder, Boulder, CO, 80309-0430.

S. Zhu, S. Setia, and S. Jajodia, “Leap: Efficien security
mechanisms for large-scale distributed sensor
networks,” In 10th ACM Conference on Computer and
Communication Security, Washington D.C, USA,
2003

L. Eschenaur and V. Gligor, “A key-management scheme
for distributed sensor networks,” In Proceedings of the
9th ACM Conference on Computer and
Communication Security, pp. 41-47, 2002.

S. Sarsan and V.G. Adadda, “Analysis and Evaluation of
Key Management Schemes in Wireless Sensor
Networks,” 2004.

H. Chan, A. Perrig, and D. Song, “Random Key
Predistribution Schemes for Sensor Networks,” In
IEEE Symposium on Research in Security and
Privacy, 2003.

Du W, Deng J, Han Y S, Chen S, and Varshney P K, “A
key management scheme for wireless sensor networks

using deployment knowledge,” In Proceedings of
IEEE INFOCOM′04, IEEE Press, Hong Kong, 2004.

S.Seys, “Key Establishment and Authentication Suite to
Counter DoS Attacks in Distributed Sensor Networks”
unpublished manuscript, COSIC.

Lai, B., Kim, S., and Verbauwhede, I, “Scalable session
key construction protocol for wireless sensor
networks,” In IEEE Workshop on Large Scale
RealTime and Embedded Systems (LARTES), 2002.

S. Basagni, K. Herrin, E. Rosti, D. Bruschi, “Secure
Pebblenets,” In Proc. of MobiHoc 2001.

D. Carman, P. Kruus and B. Matt, “Constraints and
approaches for distributed sensor network security,”
NAI Labs Technical Report No. 00010 , 2000.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar,
“SPINS: Security Protocols for Sensor Networks,” In
Proc. Of Seventh Annual ACM International
Conference on Mobile Computing and Networks
(Mobicom 2001), Rome Italy, 2001.

Dutertre, B., Cheung, S., and Levy, J, “Lightweight key
management in wireless sensor networks by
leveraging initial trust,” Tech. Rep. SRI-SDL-04-02,
System Design Laboratory, 2004.

S. A. Camtepe and B. Yener, “Key Distribution
Mechanisms for Wireless Sensor Networks: a
Survey,” Rensselaer Polytechnic Institute, 2005.

SECRYPT 2008 - International Conference on Security and Cryptography

160

