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Abstract: In this paper, we propose an extension of the algorithm proposed by Bajard, Imbert and Negre in (Bajar et al.,
2006), refered as BIN algorithm. We use binomial residue representation of field elements instead of the
Lagrange representation of (Bajar et al., 2006). Specifically, every elemehis in represented by a set
of residue modulo fixed binomials. We propose two versions of our algorithm, one in general form with a
sub-quadratic complexity equal @(k'-®) operations ifp. The second one is optimized with the use of FFT.
In this case the cost 9(klog(k)) operations ir¥. For fieldsGF (p¥) suitable for elliptic curve cryptography
our algorithm roughly improves the time delay of (Bajar et al., 2006) by 45%.

1 INTRODUCTION software implementation.
In this paper, we will use an extended form of La-
grange representation used in (Bajar et al., 2006), the

Efficient implementation of finite field arithmetic is 7. ’ X . )
) o binomial residue representation, for field representa-
an important pre-requisite for cryptography and cod- .

ing theory (Lidl and Niederreiter, 1994). Specifically tlonUsing a strategy similar to BIN algorithm through
this is the case for elliptic ciive crygisgraphyECEy, our binomial residue representation, we can reduce
proposed independenty@iby Koblite" (RGINE, 198W) the number of addition balanced by’ the cost of in-
and Miller (Miller, 1986). In ECC, the most used and

also the most costly field operations is the multiplica- creasing a few number of multiplicaiions iR,
tion y P P Specifically, in our algorithm multiplications and ad-

ditions are only in sub-quadratic number. This en-

During the past few years, more and more people g,res that our algorithm is faster in software imple-
believe that elliptic curve defined ovéry is better mentation.

thanl« andFp in efficiency point of view in software The rest of this paper is organized as follows. In
environment. Many works (Bailey and Paar, 1998; gection 2, we briefly recall the Lagrange representa-
Lim and Hwang, 2000) have shown thig is a suit-  jon and then give the definition of binomial residue

able choice for computer software implementation.  representation. In Section 3, we present the binomial
In 2006, Bajard, Imbert and Negre (Bajar et al., residue multiplication algorithm in a general and opti-
2006) proposed an efficient multiplication algorithm mijzed form. In Section 4 we evaluate the complexity
for IF x using Lagrange representation (we will refer of our approach and compare it with other methods
to it as the BIN algorithm). The BIN algorithm only  for field multiplication. We then briefly conclude and

needsO(k) multiplications inFp. This algorithm is  give some further perspectives of this work.
very efficient in hardware, but in software, it is not so

efficient. Indeed it also nee@®k?logk) additions in
Fp. Whenp has size of 32 bits which is an interesting
case in software environment, multiplicationlip is
only twice slower than addition in software platform.
SoO(k?logk) additions cause too much time delay in
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2 BINOMIAL RESIDUE
REPRESENTATION

A finite field F x can be seen as the set of polynomi-
als inFp[x] with degree less thak Arithmetic opera-
tion in e i.e., addition, multiplication or inversion,
consists to perform it modulo an irreducible polyno-
mial P € Fp[x] of degreek. The most used operations
in cryptographic protocol are addition and multiplica-
tion. The addition is just a simple addition of poly-
nomial inF,[x]. To multiply two elements\(x) and
B(x) moduloP, it requires to first compute the prod-
uctC = A x B and then to reduc€ moduloP. This
operation is in general more costly than an addition,
and thus it should be performed efficiently.

Optimal extension fieldA strategy to simplify the
reduction process consists to chods@as sparse as
possible. For example in OEF (Bailey and Paar, 1998)
they takeP with binomial form. In this case the reduc-
tion moduloP consists simply to add the upper part to
the lower part otC.

Lagrange representation approach (Bajar
et al., 2006). Another interesting approach for
modular multiplication is the Montgomery algo-
rithm (cf. (Montgomery, 1985) for the integer
version). Given two polynomialsA and B of
degree less thaik, Montgomery algorithm com-
putesA x B x @1 modP where ® is a constant
polynomial often chosen aB = xX.

Algorithm 1: Montgomery Multiplication (Mont-
gomery, 1985)

Require: Two polynomials A(x),B(x) such that
degA,degB < k
Other data : an irreducible degr&epolynomial
P, and®(x),®’(x) such that deg,degd’ > k and
P,®, @ are pairwise prime.

Ensure: R=AxBx ® ! modP.
Step1.Q — AxBx P! modo
Step 2.R+— (AxB—QxP)x ® 1 mod®d’

In their paper, Bajaraet al. proposed a version
of Montgomery algorithm which use a Lagrange rep-
resentation of the elements. Specifically they repre-
sent a polynomial\(x) by its evaluation at Rvalues
aj,0f e Fpfori=1,....k

ALag = (A(01),., A(ak), A(7), ... A(dtk))

As shown in (Bajar et al., 2006), the use of
such representation is interesting to implement Mont-
gomery algorithm whe® = [1<_; (x — aj) and®’ =
MK 1 (x—a!). Indeed, due to Chinese remainder theo-
rem, the multiplication modul® (or @) in Lagrange
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representation is a simple coefficient by coefficient
multiplication. In other words it requirdsindepen-
dent multiplications ir¥ .

2.1 Binomial Residue Representation

In this subsection we present an extension of La-
grange representation of (Bajar et al., 2006). We
use this representation to perform Montgomery mul-
tiplication using the same strategy as in (Bajar et al.,
2006).

Let ®(x) = L1 @(x) where @ are pairwise
prime. Recall that Chinese remainder theorem (Ba-
jar et al., 2006; Halbutogullari and C. K. Kog, 2000)
asserts that the following application is a ring isomor-
phism.

FplX/(®)
U

Fp[X]/(@r) > -+ x Fp[X]/(¢n)
(U modgy,---,U modg,).

1)
The CRT asserts also that if we know the residue:
U mod@ we can get back to by computing

—
—

U= (ML Uid; g ®i) modd

oy M- ®
| g @' moda
The operatof- | represents the reduction modigio

If we consideng with binomial form of fixed de-
greed, then we know that they are pairwise prime.

Lemma 1. Two binomialgp(x) = x4 +a,¢ (x) = x4 +
a’ with a,a’ € Fy, are relatively prime if and only if
a#a

Proof. Itis well known that for anyp(x), @ (x)

gCCK(p(X),qf(X)) = gCC{(p(X), ([{(X) - (p(X))
But in the situation of the Lemma, we hay&x) —
@(x) = a’ —a. This implies

gCCK(p(X),qf(X)) = gCC{(p(X),([{(X) - (p(X)) =1

if and only if o’ # a.

(2)

where{

O

So if we take® = [, @ (x) whereg are distinct
binomials of degred, then equation (1) holds. This
means that we can represent a polynotdiaf degree
less thamd by its n residues modul@.

Definition 1 (Binomial Residue Representatioriet
@(x) =x4 —ay, -, (x) = x4 — ap be n relatively
prime binomials of degree d. Let d Fp[x] with
degU < n-d. The residue representatiorskh of U
relatively to® = (L, @ is defined as the n remain-
ders modulap;, @, ... and@,

Ugre = (U1, -+ ,Un) where Y(x) = U (x) mod@ (x)
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The arithmetic modulab is advantageous in BR
representation since the arithmetic split imande-
pendent arithmetic units which perform arithmetic
operations (addition and multiplication)ip[X]/ (@).
Based on this feature, we construct an efficient Mont-
gomery Multiplication in the following section.

MONTGOMERY
MULTIPLICATION USING
BINOMIAL RESIDUE
REPRESENTATION

Let @i(X), -+ ,@n(x) and @ (X),...,q(x) be 2 dis-
tinct binomials of degred > 0 and let

O =TML1@ (), P X) =L dX).

Using this type of polynomial fod and @’ in
Montgomery Algorithm 1 we can perform Step 1 and
Step 2 in BR representation. The major drawback of
this approach is that it requires two BR representa-
tion systems : one relatively ® and the other ta@’'.
Consequently we must include two conversion opera-
tion to converQ from BR® to BR®' and the other to
convertR from BR®' to BR®. We will explained in
subsection 3.1 how to perform these conversions.

In the sequel we note theBR®' representation of
®1 modd’, and we noteé® the inverse o mod-
ulo @ (such polynomials exists sinee, @' andP are
pairwise prime ).

Algorithm 2: BR multiplication

Require: Agre,Agrer andBgre, Bgrey the BR rep-
resentation oA(x) andB(x). of degree< k.
Other data : an irreducible degré&epolynomial
P, and®(x),®’(x) such that deg,degd’ > k and
P, @, ' are pairwise prime.

Ensure: Qgreo, Qgrer Where Q = A x B x P71
mod®
Step 1.Qpre < Asro X Bero X PI/3R<D
Step 2.Qpry + Converro.are (Qero)
Step 3. Rgrey <« (ABR(D’ X Berer — Qrey X
PBRm’) x I
Step 4.Rgry < Converrey—.sro(Rere)

Remark 1. We notice that Algorithm 2 requirezn
binomials with degree d. But, due to Lemma 1 there
are at most p distinct binomials of degree dRp[x].

So we must have p 2n.

3.1 Conversion Operation

In this subsection, we focus on the conversion opera-
tion in Step 2 and Step 4 in Algorithm 2. There are
several methods for completing the transformation.

The first method is mentioned in (Bajar et al.,
2006), it consists to apply Newton interpolation. It
first compute(x)and then compute the remainders
of Q(x) modulog fori=1,...,n. This method re-
quires roughI)O(%nzd) operations irfF .

This second method consists to apply an interpo-
lation similar to the original Lagrange interpolation.
This method is also mentioned in (Bajar et al., 2006)
but they showed that it is more complicated than New-
ton interpolation. Here we will show that this method
is well suited to our Binomial Residue representation.

Let Q be a polynomial of degree less thiawhere
k is the degree o the polynomial which defines the
field Fx. Let Qgro = (Q1,...,Qn) be its binomial
representation relatively @. Using equation (2) we
can get back to the polynomial form &

= <2Qi|®i1|(ﬂ¢i> mod ®,

n

where

O = ®;.
j=1,)#i
To get theBRY' representation o we have to com-
pute the remainder modulp, for j =1,...,n, of the
previous expression @. In the following lemma we
give the resulting expression of these residues.

Lemma 2. Let® andd’ be as follow

n n
= rL(Xd —aj)and®’ = rL(Xd —a)),
i= =
with aj,af € Fp all distinct. Let Qro = (Qu,...,Qn)
the BR representation relatively ®, then the BR rep-
resentation of Q relatively t@' can be computed as

W11 W2 W1n Q1
tp1 G2 W2n Q2
Qere = : : : : (3
Wn1 Wn2 Wnyn Qn
where
nooaj—a
W,j=

f:l:LAi aj —ay

Proof. Let us go back the the following equation

n
Q iZOQi|q>i-1|(ﬁq>i mod ®.

Q)
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Figure 1: DFT form of equation (3).

We first show that in our context, no final reduction
modulo® is needed in this previous expression®f
Indeed, we show that the polynomisds |, for i =
1,...,nare constant polynomials, and this will prove
that the polynomiafx) has a degree at mast — 1.

Let us prove that®d; %|, is a constant. We have

|| < - (xda-)> mod (xd —a;)
! lel_,Léi J

Bur, sincexd = a; mod(x? —a;), we can replaca’
by a; we get|®i|q = []_; j (i —aj) and also

1
M=y (@i — o)

This proves thafd; 1|4 is a constant polynomial and
that the following equation holds

D Y =

Q_:ﬁoowmrﬂwi.

Now we compute thBR®’ representation d by
computing the remainder of the later expressio®of
modulog for j =1,...,n. We have

Q= 3 QI o - @

whereQ) is thej-th polynomial inQgrey. To simplify
this expression (4) we use the binomial form of the
polynomialsy andg.

We first remark that

QU g1y = [Q a0l ], ©)
J

But we know that
1

M=y (@i — o)
and we can obtain using a similar method that

D Y =

n

|Di|lg = (a —ay).
" Zzll_,/l;éi :
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If we replace these expressions |dii‘l|(n and
| @il in (5) we finaly get

n GI'*C(Z

n
Q=Y Quw jwherew = .
PR = 11 a—a

O

The main advantage of the conversion expression
of equation (3), is that the matriQ has its coeffi-
cients inFp. Consequently, if we perform the change
of representation using (3) with a direct computation
of the matrix vector product, the conversion has a cost
of n?d multiplications anch(n — 1)d additions inF p.

3.2 Optimization

In some special cases, we can performthe conversions

more efficiently. This is possible with the strategy

used by Negre (Negre, 2006) to improve Bajatl.

approach. Negre showed that under some conditions

ona; anda’j andp the matrix vector product in equa-

tion (3) can be done through two FFT evaluation.
Specifically, assume that= 2" and that 21| (p—

1) then there exists a primitive 2!-th root of unity

B € Fp. The 2+1 elementg fori=0,..., 21 -1

are distinct elements. We takeand®’ as

n

EL(Xd )

n—1
o= rL(xd —B?)andd’ =
1= I

In this situation the matriX2 = [wj j]i j—1....
pressed in Lemma 2 can be written as in Figure 1 (cf.
Negre (Negre, 2006) for detailed explanation).

The matrix (x) is 2" x 2 matrix of Discrete
Fourier Transform , so we can compute the corre-
sponding matrix vector product with FFT algorithm.

Consequently a conversion between two BR rep-
resentations require two FFT computation and the
same is true for the reverse transformation. We de-
duce that a conversion as a cost aldy,(n)d addi-
tions andnlog,(n)d + nd multiplications inF .
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4 COMPLEXITY AND e Step 2 and Step 4 are computed as explained
COMPARISON in subsection 3.2. Their cost are thus equal to
2nlog,(n)d additions andnlog,(n)d + nd con-
In this section we evaluate the complexity of Algo- stant multiplications irffp.
rithm 2. The complexity is given by the number of The resulting complexity is given in Table 2.
addition, multiplication and multiplication by a con-
stant ofFp, elements. We denote By the cost of one Table 2: Complexity of Optimized BR Multiplication.
multiplication, by A the cost of an addition andM
the cost of one multiplication by a constanthig. Step| M A CM
) 1 | 4nd| 2nd(4logy(d)+1) | 4nd(log,(d)+1)
4.1 Classical Approach 2 - 2ndlog,(n) nd(log,(n) + 1)
3 | 4nd | 2nd(4log,(d)+1) | 4nd(log,(d)+1)
This approach consists to perform Algorithm 2 using +nd +nd
no optimization given by FFT approach. This is the T4t 8r-1d 4nd|2nd|3%§](n) g “;rg:jolgz(”)djnl)
case for example when nd*2 root of unity lie in oL 0gz(d"n) + +Offr$d )

Fp. We evaluate in Table 1 the cost of each step of
Algorithm 2 separately.

e In Step 1 and Step 3, we have to perform respec- 4.3 Comparison
tively 2n multiplications of polynomial of degree
d modulo binomials (for Step 3 lie in F?;)- For practical fieIdsink), care must be taken for the
These multiplications are done using school book selection of algorithm parametersandd. The prod-
method and direct reduction modulo the binomi- uct of n andd should be close t& (if nd > k, our
als@ andg,. Each of these multiplications in  algorithm have high complexity).
F[X/(®) has a cost ot?M +d(d — 1)A+ (d — To simplify, let us assume thatd = k. The best
1)CM. chomg f(IJrn ﬁndk to get the best c;]omglexn?/ is whenf
. ; n= 2d. In this situation we get the Complexities o
e Step 2 and Step 4, is done through a matrix vector Table 3. We gave also in this table the complexity of

pro@ucIt as expressed in Lemma 2j the approaches presented in (Bajar et al., 2006) and
We indicate the cost of each case in Table 1. (Negre, 2006).

Table 1: Complexity of BR Montgomery Multiplication. i
Table 3: Comparison.

Step M A CM
1 | 2nd? 2nd(d —1) 2n(d—1) _ I\ﬂ5 15A &M
2 - n(n—1)d r2d This paper| 4k 6k2' =D kL5 1 5K
3 |2nd® 2nd(d-1)+nd  2n(d—1)+nd BIN 2k O(k?log(k)) (4k—1)
4 - n(n—1)d r2d This paper| 8k  10klog,(k) —k 5klog,(K) + 8k
Total | 4nd® 4nd®+2n?d—5nd  2n?d +5nd—4n Negre 4k 4klog,(K) +k  2klog,(K) + 2k

4 . i Comparison of general approache€ompare to
By adding the complexity of each step and obtain yhe giN algorithm, our algorithm requires more mul-
the total complexity of Algorithm 2. tiplications but less additions, both multiplications
and additions are in sub-quadratic number. For soft-
ware implementation witlp of size less than a word
computer, BIN algorithm is less appropriate to this
case than BR multiplication.

4.2 Optimized BR Multiplication

We suppose now that there exists an integstch

that Z+*|(p—1) and we taker = 2" > d. Then, we Indeed, we denot@y the time delay of one multi-
can use the FFT optimized version of Algorithm 2 . plication inF, and we denotd the time delay of one
e For Step 1 and Step 3, we have to perform op- addition inIFp. We will assume thaTy is about two

eration modulap or ¢. Since 2** > 2d, we can  times the value off, as this is the case in software
perform the multiplication modulg andg; using environment whep has the size of a computer word.
FFT method (cf. (von zur Gathen andJ Gerhard, The total time delay of Algorithm 2 for software im-
1999)). Each of them requirad2multiplications, plementation is18k>° 4 5k)Ta. On the other hand
(4dlog(d) + d) additions and(2dlog(d) + 2d) the multiplication algorithm of (Bajar et al., 2006) ac-
constant multiplications iff'p. tually has a time delag3k?logk + 3k? + 12k)Ta.
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Table 4: Explicit comparison.

p k nxd algorithm1 BIN(Bajaretal., 2006) accelerate
#Ta #Ta

59 29 10x3 2950 7292 59%
67 29 10x3 2950 7292 59%
73 29 10x3 2950 7292 59%
127 23 8«3 2072 4024 48%
257 23 8x3 2072 4024 48%
503 19 8x2 1620 2692 39%
521 19 8x2 1620 2692 39%
8191 13 2 933 1227 23%
131071 11 62 732 873 16%

In Table 4 we give several fields with crypto- Bajar, J. C., Imbert, L., and Negre, C. (2006). Arithmetic
graphic size and the corresponding time delay re- operation in finite fields of medium prime characteris-
quired for BIN multiplier and BR multiplier. tic using the Lagrange representation.

Comparison of FFT approachesFor FFT ap- Halbutogullari, A. and C. K. Ko¢ (2000). Parallel multi-
proach we see that our algorithm is slower by a factor pliers using polynomial residue arithmetiQesigns,
between 2 and 4. In the cask:2 k, Negre’s Algo- _COdeS and Cryptc.)gr.aphyoages o173
rithm should be preferred to BR-FFT multiplication. Koblitz, N. (1987). Elliptic curve cryptosystemsvathe-
But when there are not enough roots of unity, Negre’s maticgi#i ComputatiqpiS(177):203-209.

approach cannot be used, in this case we get benefit-idl, R. and Niederreiter, H. (1994)Introduction to Fi-
of our algorithm. nite Fields and Their ApplicationsCambridge Univ.

Press.

Lim, C. H. and Hwang, H. S. (2000). Fast implementa-
tion of elliptic curve arithmetic in GR{"). Public Key

5 CONCLUSIONS Cryptography 1751:405-421.

Miller, V. (1986). Uses of elliptic curve in cryptography.
In Advances in Cryptology, Proc. CRYPTOQj8ages

In this paper, we have proposed a multiplication algo- 417—428.

”.thm for f:flg F ke This .algomhlm extengs the pr%_ Montgomery, P. L. (1985). Modular multiplication with-

vious work done in (Bajar et al., 2006). We study out trial division. Mathematics of Computatiopages

different strategies to implement our algorithm (gen- 519-521.

er_al approach W'th Lagrange Fonversen and opti- Negre, C. (2006). Finite field multiplication in lagrange

mized approach with Fast Fourier Transform). We representation using fast fourier transform. Iter-

get two multipliers : one with sub-quadratic complex- national Conference on Security and Cryptography,

ity O(k!®) which works in general and the other with SECRYPT 2006

complexityO(klog, (k)) which works only in special  von zur Gathen, J. and Gerhard, J. (1998)odern com-

situations. puter algebra Cambridge University Press, New
In software platform our general method seems to York, NY, USA.

be better than original BIN (Bajar et al., 2006) al-
gorithm. Compared to the BIN algorithm for sev-
eral fields of cryptographic size our algorithm should
accelerated the multiplication by an average ratio of
30%.
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