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Abstract: In this paper, we propose an extension of the algorithm proposed by Bajard, Imbert and Negre in (Bajar et al.,
2006), refered as BIN algorithm. We use binomial residue representation of field elements instead of the
Lagrange representation of (Bajar et al., 2006). Specifically, every elements inFpk is represented by a set
of residue modulo fixed binomials. We propose two versions of our algorithm, one in general form with a
sub-quadratic complexity equal toO(k1.5) operations inFp. The second one is optimized with the use of FFT.
In this case the cost isO(k log(k)) operations inFp. For fieldsGF(pk) suitable for elliptic curve cryptography
our algorithm roughly improves the time delay of (Bajar et al., 2006) by 45%.

1 INTRODUCTION

Efficient implementation of finite field arithmetic is
an important pre-requisite for cryptography and cod-
ing theory (Lidl and Niederreiter, 1994). Specifically
this is the case for elliptic curve cryptography (ECC),
proposed independently by Koblitz (Koblitz, 1987)
and Miller (Miller, 1986). In ECC, the most used and
also the most costly field operations is the multiplica-
tion.

During the past few years, more and more people
believe that elliptic curve defined overFpk is better
thanF2k andFp in efficiency point of view in software
environment. Many works (Bailey and Paar, 1998;
Lim and Hwang, 2000) have shown thatFpk is a suit-
able choice for computer software implementation.

In 2006, Bajard, Imbert and Negre (Bajar et al.,
2006) proposed an efficient multiplication algorithm
for Fpk using Lagrange representation (we will refer
to it as the BIN algorithm). The BIN algorithm only
needsO(k) multiplications inFp. This algorithm is
very efficient in hardware, but in software, it is not so
efficient. Indeed it also needsO(k2 logk) additions in
Fp. Whenp has size of 32 bits which is an interesting
case in software environment, multiplication inFp is
only twice slower than addition in software platform.
SoO(k2 logk) additions cause too much time delay in

software implementation.
In this paper, we will use an extended form of La-

grange representation used in (Bajar et al., 2006), the
binomial residue representation, for field representa-
tion.

Using a strategy similar to BIN algorithm through
our binomial residue representation, we can reduce
the number of addition balanced by the cost of in-
creasing a few number of multiplications inFp.
Specifically, in our algorithm multiplications and ad-
ditions are only in sub-quadratic number. This en-
sures that our algorithm is faster in software imple-
mentation.

The rest of this paper is organized as follows. In
Section 2, we briefly recall the Lagrange representa-
tion and then give the definition of binomial residue
representation. In Section 3, we present the binomial
residue multiplication algorithm in a general and opti-
mized form. In Section 4 we evaluate the complexity
of our approach and compare it with other methods
for field multiplication. We then briefly conclude and
give some further perspectives of this work.
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2 BINOMIAL RESIDUE
REPRESENTATION

A finite field Fpk can be seen as the set of polynomi-
als inFp[x] with degree less thank. Arithmetic opera-
tion in Fpk, i.e., addition, multiplication or inversion,
consists to perform it modulo an irreducible polyno-
mial P∈ Fp[x] of degreek. The most used operations
in cryptographic protocol are addition and multiplica-
tion. The addition is just a simple addition of poly-
nomial in Fp[x]. To multiply two elementsA(x) and
B(x) moduloP, it requires to first compute the prod-
uct C = A×B and then to reduceC moduloP. This
operation is in general more costly than an addition,
and thus it should be performed efficiently.

Optimal extension field.A strategy to simplify the
reduction process consists to chooseP as sparse as
possible. For example in OEF (Bailey and Paar, 1998)
they takeP with binomial form. In this case the reduc-
tion moduloP consists simply to add the upper part to
the lower part ofC.

Lagrange representation approach (Bajar
et al., 2006). Another interesting approach for
modular multiplication is the Montgomery algo-
rithm (cf. (Montgomery, 1985) for the integer
version). Given two polynomialsA and B of
degree less thank, Montgomery algorithm com-
putesA× B×Φ−1 modP where Φ is a constant
polynomial often chosen asΦ = xk.

Algorithm 1 : Montgomery Multiplication (Mont-
gomery, 1985)

Require: Two polynomials A(x),B(x) such that
degA,degB < k
Other data : an irreducible degreek polynomial
P, andΦ(x),Φ′(x) such that degΦ,degΦ′ ≥ k and
P,Φ,Φ′ are pairwise prime.

Ensure: R= A×B×Φ−1 modP.
Step 1.Q← A×B×P−1 modΦ
Step 2.R← (A×B−Q×P)×Φ−1 modΦ′

In their paper, Bajardet al. proposed a version
of Montgomery algorithm which use a Lagrange rep-
resentation of the elements. Specifically they repre-
sent a polynomialA(x) by its evaluation at 2k values
αi ,α′i ∈ Fp for i = 1, . . . ,k

ALag = (A(α1), . . . ,A(αk),A(α′1), . . . ,A(α′k))

As shown in (Bajar et al., 2006), the use of
such representation is interesting to implement Mont-
gomery algorithm whenΦ = ∏k

i=1(x−αi) andΦ′ =
∏k

i=1(x−α′i). Indeed, due to Chinese remainder theo-
rem, the multiplication moduloΦ (or Φ′) in Lagrange

representation is a simple coefficient by coefficient
multiplication. In other words it requiresk indepen-
dent multiplications inFp.

2.1 Binomial Residue Representation

In this subsection we present an extension of La-
grange representation of (Bajar et al., 2006). We
use this representation to perform Montgomery mul-
tiplication using the same strategy as in (Bajar et al.,
2006).

Let Φ(x) = ∏n
i=1 φi(x) where φi are pairwise

prime. Recall that Chinese remainder theorem (Ba-
jar et al., 2006; Halbutoǧullari and Ç. K. Koç, 2000)
asserts that the following application is a ring isomor-
phism.

Fp[x]/(Φ)
∼
→ Fp[x]/(φ1)×·· ·×Fp[x]/(φn)

U 7→ (U modφ1, · · · ,U modφn).
(1)

The CRT asserts also that if we know the residueUi =
U modφi we can get back toU by computing

U =
(

∏n
i=1 |UiΦ−1

i |φi Φi
)

modΦ

where

{
Φi = ∏n

j=1, j 6=i φi

|Φ−1
i |φi = Φ−1

i modφi

(2)

The operator| · |φi represents the reduction moduloφi .
If we considerφi with binomial form of fixed de-

greed, then we know that they are pairwise prime.

Lemma 1. Two binomialsφ(x) = xd +α,φ′(x) = xd +
α′ with α,α′ ∈ Fp are relatively prime if and only if
α 6= α′.

Proof. It is well known that for anyφ(x),φ′(x)
gcd(φ(x),φ′(x)) = gcd(φ(x),φ′(x)−φ(x)).

But in the situation of the Lemma, we haveφ′(x)−
φ(x) = α′−α. This implies

gcd(φ(x),φ′(x)) = gcd(φ(x),φ′(x)−φ(x)) = 1

if and only if α′ 6= α.

So if we takeΦ = ∏n
i=1 φi(x) whereφi are distinct

binomials of degreed, then equation (1) holds. This
means that we can represent a polynomialU of degree
less thannd by itsn residues moduloφi .

Definition 1 (Binomial Residue Representation). Let
φ1(x) = xd−α1, · · · ,φn(x) = xd−αn be n relatively
prime binomials of degree d. Let U∈ Fp[x] with
degU < n ·d. The residue representation UBRΦ of U
relatively toΦ = ∏n

i=1φi is defined as the n remain-
ders moduloφ1,φ2, . . . andφn

UBRΦ = (U1, · · · ,Un) where Ui(x) = U(x) modφi(x)
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The arithmetic moduloΦ is advantageous in BR
representation since the arithmetic split inton inde-
pendent arithmetic units which perform arithmetic
operations (addition and multiplication) inFp[x]/(φi).
Based on this feature, we construct an efficient Mont-
gomery Multiplication in the following section.

3 MONTGOMERY
MULTIPLICATION USING
BINOMIAL RESIDUE
REPRESENTATION

Let φ1(x), · · · ,φn(x) and φ′1(x), . . . ,φ
′
n(x) be 2n dis-

tinct binomials of degreed > 0 and let

Φ(x) = ∏n
i=1 φi(x), Φ′(x) = ∏n

i=1 φ′i(x).

Using this type of polynomial forΦ and Φ′ in
Montgomery Algorithm 1 we can perform Step 1 and
Step 2 in BR representation. The major drawback of
this approach is that it requires two BR representa-
tion systems : one relatively toΦ and the other toΦ′.
Consequently we must include two conversion opera-
tion to convertQ from BRΦ to BRΦ′ and the other to
convertR from BRΦ′ to BRΦ. We will explained in
subsection 3.1 how to perform these conversions.

In the sequel we noteΓ theBRΦ′ representation of
Φ−1 modΦ′, and we noteP′ the inverse ofP mod-
ulo Φ (such polynomials exists sinceΦ,Φ′ andP are
pairwise prime ).

Algorithm 2 : BR multiplication

Require: ABRΦ,ABRΦ′ andBBRΦ,BBRΦ′ the BR rep-
resentation ofA(x) andB(x). of degree< k.
Other data : an irreducible degreek polynomial
P, andΦ(x),Φ′(x) such that degΦ,degΦ′ ≥ k and
P,Φ,Φ′ are pairwise prime.

Ensure: QBRΦ,QBRΦ′ where Q = A × B × P−1

modΦ
Step 1.QBRΦ← ABRΦ×BBRΦ×P′BRΦ
Step 2.QBRΦ′ ←ConvertBRΦ→BRΦ′(QBRΦ)
Step 3. RBRΦ′ ← (ABRΦ′ × BBRΦ′ − QBRΦ′ ×
PBRΦ′)×Γ
Step 4.RBRΦ′ ←ConvertBRΦ′→BRΦ(RBRΦ′)

Remark 1. We notice that Algorithm 2 requires2n
binomials with degree d. But, due to Lemma 1 there
are at most p distinct binomials of degree d inFp[x].
So we must have p≥ 2n.

3.1 Conversion Operation

In this subsection, we focus on the conversion opera-
tion in Step 2 and Step 4 in Algorithm 2. There are
several methods for completing the transformation.

The first method is mentioned in (Bajar et al.,
2006), it consists to apply Newton interpolation. It
first computesQ(x)and then compute the remainders
of Q(x) moduloφ′i for i = 1, . . . ,n. This method re-
quires roughlyO(3

2n2d) operations inFp.
This second method consists to apply an interpo-

lation similar to the original Lagrange interpolation.
This method is also mentioned in (Bajar et al., 2006)
but they showed that it is more complicated than New-
ton interpolation. Here we will show that this method
is well suited to our Binomial Residue representation.

Let Q be a polynomial of degree less thank where
k is the degree ofP the polynomial which defines the
field Fpk. Let QBRΦ = (Q1, . . . ,Qn) be its binomial
representation relatively toΦ. Using equation (2) we
can get back to the polynomial form ofQ

Q =

(
n

∑
i=1

Qi |Φ−1
i |φi Φi

)

modΦ,

where

Φi =
n

∏
j=1, j 6=i

φ j .

To get theBRΦ′ representation ofQ we have to com-
pute the remainder moduloφ′j , for j = 1, . . . ,n, of the
previous expression ofQ. In the following lemma we
give the resulting expression of these residues.
Lemma 2. LetΦ andΦ′ be as follow

Φ =
n

∏
i=0

(xd−αi) andΦ′ =
n

∏
i=0

(xd−α′i),

with αi ,α′i ∈ Fp all distinct. Let QBRΦ = (Q1, . . . ,Qn)
the BR representation relatively toΦ, then the BR rep-
resentation of Q relatively toΦ′ can be computed as

QBRΦ′ =







ω1,1 ω1,2 · · · ω1,n
ω2,1 ω2,2 · · · ω2,n

...
...

. . .
...

ωn,1 ωn,2 · · · ωn,n













Q1
Q2
...

Qn







(3)

where

ωi, j =
n

∏
ℓ=1,ℓ6=i

α′j −αℓ

αi −αℓ

Proof. Let us go back the the following equation

Q =









n

∑
i=0

Qi |Φ−1
i |φi Φi

︸ ︷︷ ︸

(⋆)









modΦ.
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Ω =
1
2r ·










1 1 · · · 1
1 β2 · · · β2n−2

1 β4 · · · β4n−4

...
...

. . .
...

1 β2n−2 · · · β(2n−2)(2n−2)










︸ ︷︷ ︸

(⋆)

·








1 0 · · · 0
0 β · · · 0
...

...
.. .

...
0 0 · · · βn−1







·










1 1 · · · 1
1 β2 · · · β2n−2

1 β4 · · · β4n−4

...
...

. . .
...

1 β2n−2 · · · β(2n−2)(2n−2)










︸ ︷︷ ︸

(⋆)

Figure 1: DFT form of equation (3).

We first show that in our context, no final reduction
moduloΦ is needed in this previous expression ofQ.
Indeed, we show that the polynomials|Φ−1

i |φi for i =
1, . . . ,n are constant polynomials, and this will prove
that the polynomial(⋆) has a degree at mostnd−1.

Let us prove that|Φ−1
i |φi is a constant. We have

|Φi |φi =

(
n

∏
j=1, j 6=i

(xd−α j)

)

mod(xd−αi)

Bur, sincexd = αi mod(xd−αi), we can replacexd

by αi we get|Φi |φi = ∏n
j=1, j 6=i(αi−α j) and also

|Φ−1
i |φi =

1

∏n
j=1, j 6=i(αi−α j)

.

This proves that|Φ−1
i |φi is a constant polynomial and

that the following equation holds

Q =
n

∑
i=0

Qi |Φ−1
i |φi Φi .

Now we compute theBRΦ′ representation ofQ by
computing the remainder of the later expression ofQ
moduloφ′j for j = 1, . . . ,n. We have

Q′j =
n

∑
i=0

∣
∣Qi |Φ−1

i |φi Φi
∣
∣
φ′j

. (4)

whereQ′j is the j-th polynomial inQBRΦ′ . To simplify
this expression (4) we use the binomial form of the
polynomialsφi andφ′j .

We first remark that
∣
∣Qi |Φ−1

i |φi Φi
∣
∣
φ′j

=
∣
∣
∣Qi |Φ−1

i |φi |Φi |φ′j

∣
∣
∣
φ′j

(5)

But we know that

|Φ−1
i |φi =

1

∏n
j=1, j 6=i(αi−α j)

.

and we can obtain using a similar method that

|Φi |φ′j =
n

∏
ℓ=1,ℓ 6=i

(α′j −αℓ).

If we replace these expressions of|Φ−1
i |φi and

|Φi |φ′j in (5) we finaly get

Q′j =
n

∑
i=0

Qiωi, j where ωi, j =
n

∏
ℓ=1,ℓ 6=i

α′j −αℓ

αi−αℓ

The main advantage of the conversion expression
of equation (3), is that the matrixΩ has its coeffi-
cients inFp. Consequently, if we perform the change
of representation using (3) with a direct computation
of the matrix vector product, the conversion has a cost
of n2d multiplications andn(n−1)d additions inFp.

3.2 Optimization

In some special cases, we can perform the conversions
more efficiently. This is possible with the strategy
used by Negre (Negre, 2006) to improve Bajardet al.
approach. Negre showed that under some conditions
onαi andα′j andp the matrix vector product in equa-
tion (3) can be done through two FFT evaluation.

Specifically, assume thatn= 2r and that 2r+1|(p−
1) then there exists a primitive 2r+1-th root of unity
β ∈ Fp. The 2r+1 elementsβi for i = 0, . . . ,2r+1−1
are distinct elements. We takeΦ andΦ′ as

Φ =
n−1

∏
i=0

(xd−β2i) andΦ′ =
n

∏
i=0

(xd−β2i+1)

In this situation the matrixΩ = [ωi, j ]i, j=1,...,n ex-
pressed in Lemma 2 can be written as in Figure 1 (cf.
Negre (Negre, 2006) for detailed explanation).

The matrix (⋆) is 2r × 2r matrix of Discrete
Fourier Transform , so we can compute the corre-
sponding matrix vector product with FFT algorithm.

Consequently a conversion between two BR rep-
resentations require two FFT computation and the
same is true for the reverse transformation. We de-
duce that a conversion as a cost of 2nlog2(n)d addi-
tions andnlog2(n)d+nd multiplications inFp.
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4 COMPLEXITY AND
COMPARISON

In this section we evaluate the complexity of Algo-
rithm 2. The complexity is given by the number of
addition, multiplication and multiplication by a con-
stant ofFp elements. We denote byM the cost of one
multiplication, byA the cost of an addition andCM
the cost of one multiplication by a constant inFp.

4.1 Classical Approach

This approach consists to perform Algorithm 2 using
no optimization given by FFT approach. This is the
case for example when no 2r+1 root of unity lie in
Fp. We evaluate in Table 1 the cost of each step of
Algorithm 2 separately.

• In Step 1 and Step 3, we have to perform respec-
tively 2n multiplications of polynomial of degree
d modulo binomials (for Step 3,Γ lie in F

n
p).

These multiplications are done using school book
method and direct reduction modulo the binomi-
als φi and φ′j . Each of these multiplications in

F[x]/(φi) has a cost ofd2M + d(d− 1)A+ (d−
1)CM.

• Step 2 and Step 4, is done through a matrix vector
product as expressed in Lemma 2.
We indicate the cost of each case in Table 1.

Table 1: Complexity of BR Montgomery Multiplication.

Step M A CM
1 2nd2 2nd(d−1) 2n(d−1)
2 - n(n−1)d n2d
3 2nd2 2nd(d−1)+nd 2n(d−1)+nd
4 - n(n−1)d n2d

Total 4nd2 4nd2 +2n2d−5nd 2n2d+5nd−4n

By adding the complexity of each step and obtain
the total complexity of Algorithm 2.

4.2 Optimized BR Multiplication

We suppose now that there exists an integerr such
that 2r+1|(p−1) and we taken = 2r ≥ d. Then, we
can use the FFT optimized version of Algorithm 2 .

• For Step 1 and Step 3, we have to perform op-
eration moduloφi or φ′j . Since 2r+1 ≥ 2d, we can
perform the multiplication moduloφi andφ′j using
FFT method (cf. (von zur Gathen and Gerhard,
1999)). Each of them require 2d multiplications,
(4d log(d) + d) additions and(2d log(d) + 2d)
constant multiplications inFp.

• Step 2 and Step 4 are computed as explained
in subsection 3.2. Their cost are thus equal to
2nlog2(n)d additions andnlog2(n)d + nd con-
stant multiplications inFp.

The resulting complexity is given in Table 2.

Table 2: Complexity of Optimized BR Multiplication.

Step M A CM
1 4nd 2nd(4log2(d)+1) 4nd(log2(d)+1)
2 - 2ndlog2(n) nd(log2(n)+1)
3 4nd 2nd(4log2(d)+1) 4nd(log2(d)+1)

+nd +nd
4 - 2ndlog2(n) nd(log2(n)+1)

Tot. 8nd 4ndlog2(d
4n)+5nd 2ndlog2(d

4n)
+11nd

4.3 Comparison

For practical fieldsFpk), care must be taken for the
selection of algorithm parametersn andd. The prod-
uct of n andd should be close tok (if nd≫ k, our
algorithm have high complexity).

To simplify, let us assume thatnd = k. The best
choice forn andk to get the best complexity is when
n = 2d. In this situation we get the Complexities of
Table 3. We gave also in this table the complexity of
the approaches presented in (Bajar et al., 2006) and
(Negre, 2006).

Table 3: Comparison.

M A CM
This paper 4k1.5 6k1.5−5k 2k1.5 +5k

BIN 2k O(k2 log(k)) (4k−1)
This paper 8k 10k log2(k)−k 5k log2(k)+8k

Negre 4k 4k log2(k)+k 2k log2(k)+2k

Comparison of general approaches.Compare to
the BIN algorithm, our algorithm requires more mul-
tiplications but less additions, both multiplications
and additions are in sub-quadratic number. For soft-
ware implementation withp of size less than a word
computer, BIN algorithm is less appropriate to this
case than BR multiplication.

Indeed, we denoteTM the time delay of one multi-
plication inFp and we denoteTA the time delay of one
addition inFp. We will assume thatTM is about two
times the value ofTA, as this is the case in software
environment whenp has the size of a computer word.
The total time delay of Algorithm 2 for software im-
plementation is(18k1.5 + 5k)TA. On the other hand
the multiplication algorithm of (Bajar et al., 2006) ac-
tually has a time delay(3k2 logk+3k2+12k)TA.
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Table 4: Explicit comparison.

p k n×d algorithm 1 BIN(Bajar et al., 2006) accelerate
#TA #TA

59 29 10×3 2950 7292 59%
67 29 10×3 2950 7292 59%
73 29 10×3 2950 7292 59%
127 23 8×3 2072 4024 48%
257 23 8×3 2072 4024 48%
503 19 8×2 1620 2692 39%
521 19 8×2 1620 2692 39%
8191 13 7×2 933 1227 23%

131071 11 6×2 732 873 16%

In Table 4 we give several fields with crypto-
graphic size and the corresponding time delay re-
quired for BIN multiplier and BR multiplier.

Comparison of FFT approaches.For FFT ap-
proach we see that our algorithm is slower by a factor
between 2 and 4. In the case 2r > k, Negre’s Algo-
rithm should be preferred to BR-FFT multiplication.
But when there are not enough roots of unity, Negre’s
approach cannot be used, in this case we get benefit
of our algorithm.

5 CONCLUSIONS

In this paper, we have proposed a multiplication algo-
rithm for field Fpk. This algorithm extends the pre-
vious work done in (Bajar et al., 2006). We study
different strategies to implement our algorithm (gen-
eral approach with Lagrange conversion and opti-
mized approach with Fast Fourier Transform). We
get two multipliers : one with sub-quadratic complex-
ity O(k1.5) which works in general and the other with
complexityO(k log2(k)) which works only in special
situations.

In software platform our general method seems to
be better than original BIN (Bajar et al., 2006) al-
gorithm. Compared to the BIN algorithm for sev-
eral fields of cryptographic size our algorithm should
accelerated the multiplication by an average ratio of
30%.

REFERENCES

Bailey, D. V. and Paar, C. (1998). Optimal extension field
for fast arithmetic in public key algorithm. InAd-
vances in Cryptology-CRYPTO’98, volume 1462 of
LNCS, pages 472–485. Springer-Verlag.

Bajar, J. C., Imbert, L., and Negre, C. (2006). Arithmetic
operation in finite fields of medium prime characteris-
tic using the Lagrange representation.
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