
SCFS: TOWARDS DESIGN AND IMPLEMENTATION OF A SECURE
DISTRIBUTED FILESYSTEM

Juan Vera-del-Campo, Juan Hernández-Serrano and Josep Pegueroles
Politechnic University of Catalonia, Jordi Girona 1-3, Barcelona, Spain

Keywords: Peer-to-peer, Distributed Filesystem, Security, CFS.

Abstract: Our digital world creates lots of data than users desire to preserve from malfunctioning, local disasters or
human errors. Current nodes in the internet has enough intelligence and processing power to allow the deploy-
ment of distributed services on common nodes. This is the case of peer-to-peer networks and services. There
are several proposals in literature to deploy a distributed filesystem over the internet. This paper presents and
analyses the security of a prototype based on Cooperative File System.

1 INTRODUCTION

Data is for many people one of the most valuable pos-
sesions. Very often, personal data is stored in hard
disks or removable devices that are both fragile and
localised. Furthermore, there are many situations that
lead to loss of data in this kind of media, such as hu-
man or computer errors, fire or water damage acci-
dents or stealing of hardware. Data is even a more
important resource for enterprises, that are willing to
pay for expensive and complex mechanisms to ensure
its availability.

Distributed file system spread data in many nodes
of the internet in order to protect it against local mal-
functioning hardware. Today most nodes in the in-
ternet are driven by common people and they have
not special roles in the network. There is plenty of
bandwidth and digital intelligence that is wasted in
personal computers around the world. Peer-to-peer
networks use the latent power and bandwidth of com-
mon nodes in the internet to provide decentralised,
distributed services that seem very convenient to pro-
vide reliability to a distributed filesystem without as-
suming the cost of high-end internet servers.

But distribution of data has a main drawback re-
garding security. Many people will object if their data
is stored in the computer of a complete stranger, since
he will be able to access, for example, to their sen-
sitive bank accounting information. Even collecting
the name of the files that a user has in his personal
namespace is a violation of his privacy. A system that
focuses on providing reliable storage of personal data

and backups must face security as one of the main ob-
jectives of design.

In this paper we propose a secure architecture for
the storage of personal data in distributed peer-to-
peer networks. The main objective of the proposal
is to provide a reliable service that clients will use
to backup their valuable and sensitive personal data,
without fear of data losing or undesired spying.

The structure of this paper is as follows. Section 2
studies several distributed file systems that focus on
security and their weaknesses. Section 3 analyses
CFS, presents the main scenario of application and
explores the requirements of the service. Section 4
presents our proposals to secure CFS. Section 4.8
analyses the security of our prototype implementa-
tion. Finally, the paper ends with the conclusions and
references of our work.

2 RELATED WORK

There are many proposals on distributed file system
in literature. From NFS to AFS, many widely de-
ployed distributed file systems rely on several more
replicated servers. But this approach is neither scal-
able nor cheap, and servers are a honeypot for attack-
ers, even if distributed. To solve these problems, dis-
tributed filesystem over peer-to-peer appeared in lit-
erature. In this section we will summarise some of
the properties of distributed and decentralised filesys-
tems that has a strong focus on security. Readers can
consult a general analysis of distributed filesystems

169
Vera-del-Campo J., Hernández-Serrano J. and Pegueroles J. (2008).
SCFS: TOWARDS DESIGN AND IMPLEMENTATION OF A SECURE DISTRIBUTED FILESYSTEM.
In Proceedings of the International Conference on Security and Cryptography, pages 169-176
DOI: 10.5220/0001923901690176
Copyright c© SciTePress

in (Hasan et al., 2005).
MojoNation (MOJ, 2000) was a robust, decen-

tralised file storage. Nodes were organised in a peer-
to-peer network with ring shape. Files were broken
down in blocks that were replicated and stored in the
network using a unique identifier per file. The com-
pany that deployed MojoNation commercialised cash
units, called mojos, as its bussines model. Mojos were
used to prevent abuse and flooding. MojoNation died
because original designers didn’t consider the high
rate of joins and leaves of common nodes.

Free Haven (Dingledine et al., 2001) uses a non-
structured peer-to-peer network and routes searching
messages by flooding the network. Files are bro-
ken down in N blocks using an information disper-
sal algorithm (Rabin, 1989) Clients create a pair of
public-private keys for each file. Each block is in-
dexed with the same key, hash(PKsub), and traded
with a closed list of neighbours taking into account
reputation. When asking for a key, clients wait for
k < N parts and reconstruct the whole file. Nodes
trade blocks with other nodes to improve anonymity
and persistence of data.

FreeNet (Clarke et al., 2000) was designed to
store common data and to allow its later access by
means of an associated key, preventing the censor-
ship and offering anonymity to the user who publishes
the document and to the one that downloads it. To
achieve these goals, the Freenet network creates a not-
hierarchical and not-structured organisation of nodes
that anonymously transmit and cache messages and
documents among them.

GnuNet (Tatara et al., 2005) has the objective of
building a broadcast routing algorithm based on spe-
cific nodes currencies of nodes. Each node valuates
its neighbours based on their behaviour and the num-
ber of messages that route or ask to route. Messages
from less valued nodes receive less priority in the out-
put queue. Each node routes its messages based on its
own interests, but the economics of the network sup-
ports strong collaboration.

Over this routing algorithm a file sharing proto-
col was developed (Grothoff et al., 2006). Files are
divided in blocks Bi that are individually encrypted
using Hi = hash(Bi) as key, and identified by Hii =
hash(Hi) in the network. Nodes trade these blocks
with neighbours, and get other blocks in exchange.
Users searching for files send the hash of the keyword
to get the data blocks.

Shark (Annapureddy et al., 2005) divides files in
blocks and uses a DHT to store the address of nodes
with of them (proxies). When a node downloads a
chunks, it publishes itself as holder of a replica. Only
nodes that are controlled by the same user will be

proxies of personal data, so clients need at least one
of their nodes to be connected to retrieve data. Clients
must prove knowledge of the contents of a chunk to
read/write, and then anonymity is not achieved.

Cooperative File System (CFS (Dabek et al.,
2001)) is a file system over a distributed hash table.
Since this filesystem is the core of our proposal, it
will be explained in detail in the next section.

3 SCENARIO OF APPLICATION

The scenario of our study is as follows. Individu-
als want to use the internet as a backup of their per-
sonal files, or even as a nearly unlimited disk space
for little devices. Distribution of their personal data is
not their main objective, but preservation of their own
and unique data and accessibility from any device that
they may own. In addition, they are really interested
in keeping their data private and out of the reach of
both casual and commercial eyes.

The features of structured Peer-to-peer networks
are very convenient to achieve reliability and acces-
sibility of personal data to thousands of users at the
same time. Among the networks that were studied
in section 2, CFS is the only structured Peer-to-peer
network. Authors of CFS didn’t consider security in
their original design, and this paper describes the con-
struction of a secure structure over CFS. We call this
system Secure Cooperative File System (SCFS).

3.1 Cooperative File System

Our proposal aims to add security to the Cooperative
File System (CFS (Dabek et al., 2001)), that is a file
system over a Distributed Hash Table (DHT). Figure 1
shows the architecture of this algorithm.

A DHT is a structured peer-to-peer network where
nodes pick up a random identifier IDi. Each one
finds and links at least to the node that has the very
next IDn > IDi in increasing order. The node IDi
is in charge of storing data that is identified with an
ID ∈ (IDi, IDn). The process goes on until that the
last node links to the first one and the whole network
creates a ring structure. In order to put or get the in-
formation identified with ID, a node sends clockwise
a message in the ring to the node in charge of ID, that
answers. To improve the routing in the ring, nodes
have far links to other nodes of their choice. Current
implementation of DHTs include Kademlia (May-
mounkov and Mazières, 2002) or Chord (Stoica et al.,
2001), and the main difference between them is the
specific algorithm for far links.

SECRYPT 2008 - International Conference on Security and Cryptography

170

CFS was implemented over Chord. It gets a file F
with a filename f , divides the file in blocks, stores the
blocks Bi and calculates Hi and ID f .

F = {B1∪B2∪B3...∪Bn} (1)
Hi = hash(Bi) (2)
Fh = {H1,H2,H3, ...,Hi} (3)

ID f = hash(f) (4)

Then CFS saves each block Bi in the DHT identi-
fied as Hi and stores the list of Hi in a special block
under ID f . Files in CFS are persistent and the system
warrants that every file will be retrieved, regardless of
its popularity.

Figure 1: Cooperative File System.

3.2 Security Requirements

Distribution of personal data in peer-to-peer networks
has many drawbacks from the point of view of secu-
rity. Many people do not want that strangers were
able to access to their private data, and even they will
object if it is possible to get the knowledge of the ex-
istence of some files. Intruders may look for common
file names as “accounting”, “strategic plan” or “pass-
words” in the whole network for any legitimate user.
In addition, in some countries having a single MP3
file or some kind of adult content may be severally
prosecuted.

The security requirements of SCFS are:
Confidentiality. Data should not be readable for oth-
ers apart from the user than uploaded it. In a dis-
tributed filesystem every node stores personal data
from any user, and the filesystem must supply mecha-
nisms to warrant that node administrators cannot read
data from other users. On the other hand, if nodes can-
not read the content that they store they can positively
deny its knowledge and protect themselves from legal
prosecution for storing and distributing illicit content.
Privacy. Malicious users may collect data about
habits or interests of users. Even if an attacker is
not able to access to actual data, the name of the files

of the user namespace may be relevant. Commercial
research and dictatorial governments may get profit
from capturing the names of files accessed by users.
The filesystem must provide methods to prevent such
eavesdropping.
Integrity. Since data is stored in uncontrolled nodes,
it is not possible to prevent the modification of data.
The filesystem must provide mechanisms to detect
modification and restore original data, if possible.
Persistence. The filesystem must prevent data los-
ing. Files can be lost by means of malicious nodes
that remove pieces of data, users that write data in the
same place, both intentionally and unintentionally, or
network or node failures. Storage systems focus on
persistence instead than on publishing of data.
Availability. Users are in the move and own many
devices with different network capabilities, memory
and processing power. In spite of this, they want to
access to a consistent disk space from every device
regardless of its capabilities. The system should pro-
vide mechanisms to allow data to be available from
any of the devices of the users, regardless how and
where they are connected.

In the next section we propose several mecha-
nisms on top of CFS to cover these design objectives.

4 SECURE COOPERATIVE FILE
SYSTEM

Distributed file systems over structured peer-to-peer
networks provide the requirements that the scenario
under study needs. CFS is the first choice to develop
a distributed file system for personal files, but it does
not provide the necessary security services. In this
section we propose many mechanisms to add to the
standard CFS system in order to cover the security
objectives studied in section 3.2.

This section will explain in depth each of the
steps. A graphical outline of the whole process is
shown in figure 2.

Figure 2: Description of the process.

SCFS: TOWARDS DESIGN AND IMPLEMENTATION OF A SECURE DISTRIBUTED FILESYSTEM

171

4.1 Assumptions and Definitions

Table 1 includes the definition of the main concepts
of SCFS. Readers will find a relation of symbols in
table 2.

Table 1: Definitions used in this paper.

User A human client of the system.
Node Each one of the devices that a client uses to

join to the network.
File An ordered array of data
Directory An unordered set of files and directories
Filename A human readable identifier for a file or di-

rectory. It is not unique in the system, since
two different users can store different files
under the same filename

Root Di-
rectory

The filename of the directory that holds ev-
ery file and directory of the user. Altough
not mandatory, we assume that users will
have a root directory for all his documents
and files.

Block Each one of the pieces than the IDA creates
from a file

Metadata
Blocks

Special blocks of data that have enough in-
formation to restore the complete file

iNode The first block of metadata that holds a list
of the rest of metadata blocks

In order to gather all this information in a single
point, configuration file exists. A configuration file
may be associated to a file, a directory and its con-
tents or every single document of the user. Configura-
tion file store the identifier of the root directory of the
user, if needed, and the set of keys K required to get
the associated object or set of objects. These config-
uration files are stored locally to the user in each one
of the nodes and kept private.

For example, Bob and Alice join to a SCFS net-
work. They both desire to store a file that has “rev-
enues.xls” as filename. Bob has UIDbob = bob as
his identifier, and Alice UIDalice = alice. Bob has
c f s : //bob/root/ as the root directory, and Alice has
c f s : //alice/root/. In order to access to the personal
root directory of Bob, he will need his global key Kd .
Since their user identifiers and Kd are different, their
namespaces will be different as well, as the next sec-
tion shows.

4.2 Securing the Whole File

The first step to secure a file is encrypting its con-
tents. Each file is encrypted with a symmetric algo-
rithm with K f . Since there are additional steps that
enhance the security of the system and an attacker
cannot get the whole file from one or several blocks,
an encrypter as strong and slow as AES is not really

needed. Weaker but quicker algorithms such as RC4
are desirable for little devices. Encrypting a file en-
sures that casual attackers won’t be able to sniff its
contents.

After the encryption process, a shuffling and re-
dundancy creator algorithm takes place. SCFS uses
an information dispersion algorithm (IDA) described
in (Rabin, 1989). This step has a double objective.
The first one is preventing that consecutive bytes in
the original file were consecutive in the stored blocks.
This shuffling prevents some kind of statistical at-
tacks against files with a known structure or common
header, such as PDF files. Since users can choose
the kernel space of vectors for the IDA algorithm, the
spreading of data in the final blocks is deterministic
only for the original author. Key Ks is used to gen-
erate the vector space that the IDA algorithms need.
The second objective of the algorithm is creating re-
dundancy of data. In order to enhance the availability
of the service, the algorithm takes the original file and
created m blocks in such a way that it will need k < m
blocks to restore the original file. During the read-
ing process that redundant information may be used
to check the integrity of data and correct errors. In
this sense, the system is protected against malicious
nodes that randomly changes data that they store,
overloaded nodes than cannot manage all their par-
allel connections and local network failures. The di-
mension of Bi is chosen in such a way that it matches
the size of a block in the DHT.

S = {F}K f (5)

B = {S}IDA = {B1,B2, . . . ,Bi} (6)
dim(F) = dim(S) < dim(∪B) (7)

Clearly, this algorithm consumes both time, band-
width and disk space in remote nodes since the di-
mension of the final data in B is greater than the di-
mension of the original file F . Users can choose the
amount of redundancy to apply to each file, or even if
this algorithm runs or not at all over their files. Au-
thors expect that clients will use most of the time the
default redundancy of 30%.

The encryption and shuffling steps take place lo-
cally in a node and the set B is not yet published in
the ring.

4.3 Securing File Blocks

After the previous step each block Bi has the same
size than the DHT blocks. Since the data in each Bi
was encrypted and shuffled, it makes little sense to
any casual attacker that sniffs the blocks.

SECRYPT 2008 - International Conference on Security and Cryptography

172

Table 2: Symbols used in this paper.

UID The identifier of each user. UID is the same
for every node that a user controls.

F The original file of the user
ID f The final identifier of a file
S The encrypted file of the user
Bi Each one of the blocks of a file
B The set of blocks of the file
H The set of identifiers of blocks
Kd The key used to secure the filename
K f The key used to encrypt the file
K f f The key used to encrypt the metadata
Ks The key used to generate a vector space for

the IDA algorithm
Kss The key used to create block identifiers
K The set of keys. It can be generated from a

master key associated to a single file.

The CFS stores and retrieves blocks of data as-
sociated to a identifier. We propose three different
methods to identify each one of the blocks. All of
them have their advantages and disadvantages.
Random Identifiers. The local node picks up a ran-
dom identifier for each block. The identifier has the
same size than identifiers in DHT. This is the more se-
cure method since the random identifier has not infor-
mation about the block, its contents or its publisher.
On the other hand, the set of ordered random iden-
tifiers of the file blocks must be stored by the user
locally.

H = {randomi} | dim(H) = dim(B) (8)

A file of 20MB that is stored in blocks of 2048B
need about 160KB to store the random identifiers.
Since SCFS uses special blocks to store file identi-
fiers, this approach needs at least 80 blocks just to
store the file structure.
Pseudorandom Identifiers. Identifiers for each
block are created with a pseudorandom algorithm us-
ing Kss as seed of the algorithm.

H = {Kss} (9)

In this case the user only have to store a key of
128 bits for every file in the system, no matter of its
length. Kss must be kept private, since there is no need
to make the job of an attacker easier publicising the
list of blocks.
Hash of the Block, both basic and secure hash. With
the same considerations as random identifiers in re-
spect to size, hashes have the advantage that they
could be used to ensure integrity of data or event
prevent unauthorised overwriting, as will be stated
in next sections. These two advantages are enough

to make advisable to calculate the hash code of each
block and store it in the metadata file.

H = {hashKss(B1), . . . ,hashKss(Bi)} (10)

4.4 Metadata

In this moment the user’s node has a local buffer
with the blocks of the file B, a set H to identify each
block and a configuration file, as stayed in section
4.1. Metadata is then managed in the same way that
a file object. It is padded, encrypted with K f f and di-
vided in blocks using IDA. Many of the special data
is stored in a special block that we call iNode, in the
same sense that iNodes in the traditional filesystems.
iNodes store the identification of the set K, the whole
contents of H and the identifiers of the rest of meta-
data blocks.

In SCFS metadata blocks are published as regu-
lar blocks. Since they have the same length and en-
tropy as any other block, they cannot be distinguished
from regular blocks. Identifiers are assigned in the
same way as block identifiers. The iNode is identified
in a special way, described in the next section. The
first block is referred with a special identifier. Meta-
data blocks are then randomly introduced in the local
buffer. In this way an eavesdropper cannot discrimi-
nate between file blocks and metadata blocks.

4.4.1 Securing File Identifications

Every file in SCFS is related to a URI in a injecting
relation. This means that an URI identify a file and
any file is identified just with one URI. Furthermore,
it should not be possible to find out the URI from any
number of parts or blocks of the file.

Users store in SCFS their private data with an ar-
bitrary name, and the file system must provide with a
separate namespace of files for each one of the users.
In this sense, a human readable filename must be the
main interface of the user to the system. The com-
plexity and security involved in mapping that string
to a DHT identifier must be hidden to the user.

If an attacker is able to identify the iNode, with
convenient cryptanalysis he may be able to retrieve
the complete metadata and then the complete file. In
this sense, securing the identification of the first meta-
data block is crucial for the security of the system.

There is a private namespace for each user in
SCFS. Private namespaces have an associated secret
key Kd . The filename is hashed and then encrypted
using this key. The hashing step maximises the en-
tropy of the encrypted string. The encryption step
warrants that the userspace is unique and secured,

SCFS: TOWARDS DESIGN AND IMPLEMENTATION OF A SECURE DISTRIBUTED FILESYSTEM

173

since none can identify the file even if he knows the
author and the filename.

ID f = hashKd (UID, f ilename) (11)

4.5 Publishing the File

At this moment, the node has a local buffer with a set
of blocks B that are identified with H and the iNode
of the system identified with ID f . The node publishes
the contents of the local buffer in the DHT under they
keys. Readers will notice that since blocks, metadata
and the iNode were randomly introduce in the local
buffer, an attacker is not able to put them aside and a
cryptanalysis is really difficult.

4.6 Reading Process

The reading process is the inversion of the writing
process. From a filename users create a ID f , maybe
using a user key Kd to maintain privacy. From ID f ,
the user gets the iNode of the file and then the list of
metadata block. From the metadata, the user is able to
recreate H. Then, he downloads the blocks, deshuf-
fles and then decrypts the file.

4.7 Implementation and Additional
Mechanisms

The ideas in the previous sections were implemented
in a prototype accessible in (del Campo et al., 2008a).
The prototype uses Kademlia (Maymounkov and
Mazières, 2002) as the algorithm for the DHT, blocks
have 2048 bytes and there is a 30% of redundancy
in the IDA algorithm. Identifiers of files, nodes and
users have 128 bits. AES is used as the encryption
algorithm, and the first 128 bits of SHA as a hashing
algorithm. Kademlia was chosen as the DHT algo-
rithm since its buckets are more stable against ring
breakages than Chord, the DHT that CFS uses. The
prototype is written in Python and released under the
GPL license.

Apart from the mechanisms of the previous sec-
tions, our implementation of SCFS includes others to
enhance the security of the system. In this section we
will study these additional mechanisms that take place
in phases other that reading and writing data.

Attackers may join a large number malicious
nodes in order to perform a Sybil attack. In this way,
the attacker gains a large influence in a region of the
Kademlia ring and he may be able to put the complete
system down or perform denial of service attacks to
some users. In order to prevent this kind of attack,

the original designers of CFS proposed that the iden-
tifiers of the nodes must depend on the network ad-
dress of the node. Furthermore, the random identifiers
of each block disperse blocks in the whole ring, while
the IDA warrants that the file can be retrieved even
if a segment of the ring is not available. Kademlia is
especially strong against breakage of the ring (May-
mounkov and Mazières, 2002).

Attackers may collect information by means of
sniffing the communications of users in the network.
Files are encrypted, shuffled and splitted down in
blocks as explained in section 4.3, but metadata have
a slightly weaker encoding process, specially the first
of them. An attacker that gets the first iNode needs to
decrypt a single block of data to get the list of every
blocks in the system. That first iNode is encrypted us-
ing AES, but it contents known information that may
simplify the cryptanalysis. An attacker may identify
this first inode because it will be the first block than
a user demands. In this way, SCFS asks for several
random blocks apart from the iNode.

There is no deletion service in SCFS. A deletion
service needs to authenticate the owner of the file in
order to prevent deletion from unauthorised users. In
order to enhance privacy of the users, SCFS does not
include any authentication mechanisms. In order to
prevent exponential growing with time, data is actu-
ally deleted in nodes if owner does not access to the
block after a month. In order to show interest for
a block without the need of downloading it and in-
creasing the bandwidth, users must send a “ping” to
the data block. Nodes count these pings as an access
and will mark the block as no removable for an extra
month.

Both malicious and fair users may overwrite
blocks of legitimate users. Since identifiers of blocks
are random numbers, collisions are possible. Kadem-
lia supports storing different blocks under the same
key, and when a user demands that key he will receive
the whole collection. SCFS takes advantage of this by
means of saving the hash of the block in the iNodes.
In this sense, when a user demands a key and receives
several blocks, he is able to discriminate which one is
the valid to create the original file. This mechanism
does not prevent that malicious users are able to write
blocks under the same key, but their blocks won’t be
used to recreate the original file.

Directories are files with an unordered list of file
or directory identifiers than it holds. Raw content of
a directory is managed as any other regular file in the
system. SCFS uses different URIs to distinguish be-
tween files and directories.

SECRYPT 2008 - International Conference on Security and Cryptography

174

4.8 Security Analysis

In this section we study some possible attacks against
the system and their counter measures. These attacks
are based on the objectives that were listed in 3.2. For
a detailed comparison of SCFS with other distributed
file systems, the reader can consult (del Campo et al.,
2008b).

An attacker eavesdrop user’s communications.
Every piece of data is locally encrypted and it is never
stored in plain text on SCFS. The objective of this at-
tack is getting the root directory, the iNode or a col-
lection of blocks of a file to perform the next attacks.
SCFS asks for a number of random blocks in the first
place. File blocks and metadata are indistinguishable
and all of them have the same size. SCFS makes diffi-
cult for an attacker to put file blocks apart from meta-
data or directories.

An attacker wants to get a particular file of a user.
The attacker knows of the existence of a file named in
a certain way in the personal namespace of the user,
as “income.xls”. SCFS uses the secure hash of a file-
name to identify an isolated file. In this case, the at-
tacker must break down the secure hash to get the iN-
ode, and decrypt this block to get the list of blocks
of the file. Our prototype uses random identifiers for
files stored in a directory, and only the name of the
directory of the root directory uses secure hash with
Kd . Random identifiers are safe against this attack.

An attacker wants to list the contents of a directory
Directory names are protected with Kd in the same
way that filenames are. An attacker could obtain the
identification of the root directory, or even its blocks,
if the last attack is successful. Directories are special
files a small number of blocks. It is feasible a brute
force attack to rearrange blocks on these small files,
but the attacker still have to break down a symmetric
encryption with K f .

An attacker gets the metadata of a file. The first
blocks that a user asks to SCFS are the metadata of
a file. An attacker could put apart these blocks and
cryptoanalise them to get K f f . In this sense, SCFS ask
for some random blocks apart from the actual ones to
make this attack less feasible.

An attacker collects every block of a single file. If
an attacker eavesdrops the communication of a user
he is able to get the list of blocks that conforms a
file without any need of decrypt the metadata. But
since the IDA algorithm takes place after the encryp-
tion and the attacker has no information about the Ks
that creates the vector space for the algorithm, he has
to permute the blocks of the file at random and then
perform the cryptanalysis to break down the file en-
cryption with K f . The IDA step adds an additional

security to the encryption that makes feasible to use
a weaker algorithm for encryption of the file for little
devices, as RC4.

An attacker deletes a file of a user. Since SCFS
does not offer a deletion mechanism as explained in
section 4.7, this attack cannot be performed.

An attacker controls a group of nodes in the net-
work. The original CFS uses Chord at the DHT level
and the identifiers of each node depend on the net-
work address. SCFS shares this behaviour with CFS,
and then an attacker has a limited range of identifiers
for his nodes. The DHT layer is is able to perform
long jumps even if a segment of the ring. The buckets
of Kademlia, that is the DHT used in SCFS, are even
stronger against a ring breakage (Maymounkov and
Mazières, 2002). Furthermore, since users only need
k blocks of n to reconstruct the original file, the blocks
stored in the segment that the attacker controls are not
really needed. As stated in (del Campo et al., 2008b),
SCFS does not currently have an economics system
to detect and prevent malicious behaviour. A system
of this kind minimises the dangers of malicious users
in the network by means of identifying them as soon
as possible.

Lazy nodes do not send a block, or an attacker
sends a false block back. Nodes that are overwhelmed
with links or prefer not to cooperate with other nodes
won’t answer to block requests. Since SCFS uses an
IDA algorithm, users will only have to gather k out of
n blocks to reconstruct the original file. Modification
of a block is easily identified with the hash included
in the iNode. An economics system to prevent such
kind of attack is advisable, as stated previously.

A node try to decrypt the blocks than it stores.
SCFS encrypts blocks using AES and breaks down
files in pieces with the IDA. The information of a sin-
gle block makes little sense to the node that stores a
single block. Even the block identification contents
no information about the contents, its filename or its
publishers.

Any user overwrites one or more blocks of an-
other user. Since there are many users in the network
that store many files with many blocks, there are high
chances that a legitimate user use the same identifier
that another user for different blocks. Attackers may
use the same identifier with malicious intentions. The
DHT is able to store several blocks under the same
identifier, and it will returns the whole list after a
question. Since SCFS stores the hash of the blocks
in the metadata, users can discriminate their blocks
from other user’s block even if they are stored under
the same key. Since SCFS uses SHA, we assume that
an attacker has not a feasible way to modify a block
while keeping the same hash and he won’t be able to

SCFS: TOWARDS DESIGN AND IMPLEMENTATION OF A SECURE DISTRIBUTED FILESYSTEM

175

overwrite a user’s block.
An attacker traces the publisher of a file. In this

attack we assume that the attacker could overcome the
attacks listed above. That assumption needs a consid-
erable processing power, and only major government
agencies can carry out such an attack. Since there is
not an authentication mechanism in the system, the
agency has not any knowledge of the original author
of the file. In this sense the agency has to supplant
the node that store the initial iNode and wait for the
publisher to download the file to catch him. Even in
this case, the network can use one of the mechanisms
described in (Freedman and Morris, 2002) or (TOR,)
to warrant access anonymity to its users.

A government agency prosecutes nodes that dis-
tribute a file. As stated in the previous attacks, nodes
in SCFS do not know which kind of content they
store, their contents or filename. In many countries,
denying knowledge of the content that a node store is
enough to prevent prosecution from local authorities
to node administrators.

5 CONCLUSIONS

In this paper we analyse several distributed filesys-
tems from the point of view of security and conclude
that, as far as we know, there is not a satisfying so-
lution to store personal data. We analyse the security
requirements of such service and conclude that CFS is
the network that best matches the necessities of per-
sonal users. Then, we present a Secure Cooperative
Filesystem that solves the security problems of CFS.
The ideas behind SCFS were implemented in (del
Campo et al., 2008a).

As a result of a security analysis, we conclude
that SCFS solves many of the security requirements
of a distributed file system, but it has several possi-
ble enhancements. Particularly, further research must
be done in order to include an economic system for
SCFS.

ACKNOWLEDGEMENTS

This project was partially supported by a grant of the
Spanish MCT, under the program Consolider-Ingenio
2010 CSD 2007-0004, under the ARES project.

REFERENCES

Tor anonymity online. Webpage: http://www.torproject.org.

(2000). Mnet-mojo nation. Web page: mnetproject.org.

Annapureddy, S., Freedman, M. J., and Mazières, D.
(2005). Shark: Scaling file servers via cooperative
caching. NSDI.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W.
(2000). Freenet: A distributed anonymous informa-
tion storage and retrieval system. In Designing Pri-
vacy Enhancing Technologies: International Work-
shop on Design Issues in Anonymity and Unobserv-
ability, volume 2009/2001 of Lecture Notes in Com-
puter Science, page 46. Springer Berlin / Heidelberg.

Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and
Stoica, I. (2001). Wide-area cooperative storage with
cfs. In SOSP ’01: Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages
202–215, New York, NY, USA. ACM Press.

del Campo, J. V., Hernández-Serrano, J., and Pegueroles, J.
(2008a). Scfs: lewis.upc.es/svn/dfs.

del Campo, J. V., Hernández-Serrano, J., and Pegueroles,
J. (2008b). Securing cooperative file system. In ES-
ORICS (sent).

Dingledine, R., Freedman, M. J., and Molnar, D. (2001).
The free haven project: Distributed anonymous stor-
age service. Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, USA,
July 2000, Proceedings:, 2009/2001:67.

Freedman, M. J. and Morris, R. (2002). Tarzan: A peer-to-
peer anonymizing network layer. In CCS.

Grothoff, C., Grothoff, K., Horozov, T., and Lindgren, J. T.
(2006). An encoding for censorship-resistant sharing.
http://gnunet.org/.

Hasan, R., Anwar, Z., Yurcik, W., Brumbaugh, L., and
Campbell, R. (2005). A survey of peer-to-peer stor-
age techniques for distributed file systems. In IEEE
International Conference on Information Technology
(ITCC). Las Vegas.

Maymounkov, P. and Mazières, D. (2002). Kademlia:
a peer-to-peer information system based on the xor
metrid. In IPTPS, pages 53–65.

Rabin, M. O. (1989). Efficient dispersal of information for
security, load balancing and fault tolerance. Journal
of the ACM, 36(2):335 – 348.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Bal-
akrishnan, H. (2001). Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceed-
ings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer com-
munications, pages 149 – 160. ACM Press.

Tatara, K., Hori, Y., and Sakurai, K. (2005). Query for-
warding algorithm supporting initiator anonymity in
gnunet. Proceedings. 11th International Conference
on Parallel and Distributed Systems, Vol. 2:235 – 9.

SECRYPT 2008 - International Conference on Security and Cryptography

176

