
DETECTION OF ILLICIT TRAFFIC USING NEURAL NETWORKS

Paulo Salvador, António Nogueira, Ulisses França and Rui Valadas
University of Aveiro, Instituto de Telecomunicações, Aveiro, Portugal

Keywords: Intrusion Detection System, Firewalls, Port Matching, Protocol Analysis, Syntatic and Semantic Analysis,
Traffic Signature, Traffic Pattern, Neural Networks.

Abstract: The detection of compromised hosts is currently performed at the network and host levels but any one of
these options presents important security flaws: at the host level, antivirus, anti-spyware and personal firewalls
are ineffective in the detection of hosts that are compromised via new or target-specific malicious software
while at the network level network firewalls and Intrusion Detection Systems were developed to protect the
network from external attacks but they were not designed to detect and protect against vulnerabilities that
are already present inside the local area network. This paper presents a new approach for the identification of
illicit traffic that tries to overcome some of the limitations of existing approaches, while being computationally
efficient and easy to deploy. The approach is based on neural networks and is able to detect illicit traffic based
on the historical traffic profiles presented by ”licit” and ”illicit” network applications. The evaluation of the
proposed methodology relies on traffic traces obtained in a controlled environment and composed by licit
traffic measured from normal activity of network applications and malicious traffic synthetically generated
using the SubSeven backdoor. The results obtained show that the proposed methodology is able to achieve
good identification results, being at the same time computationally efficient and easy to implement in real
network scenarios.

1 INTRODUCTION

The detection of compromised machines is cur-
rently performed at two levels: network and PC.
At the PC level, we have antivirus, anti-spyware
and personal firewalls. All these systems are in-
effective in the detection of hosts that are compro-
mised via new or target-specific malicious software.
Network firewalls and Intrusion Detection Systems
(IDS)(Denning, 1987; Mukherjee et al., 1994; Ilgun
et al., 1995) systems were developed to protect the
network from external attacks, but they are not de-
signed to detect and protect against vulnerabilities
that are already present inside the local area network.
The PC security is commonly compromised by care-
less behaviors of its legit users: a Trojan horse can get
inside a PC via an e-mail message rashly open or by
browsing less safe web sites. Therefore, the firewall is
not able to protect the network and their users because
the attack is made using information that is embedded
in licit traffic. IDSs analyze network traffic by look-
ing for characteristic traffic profiles of compromised
machines or their attacks; these profiles are called sig-
natures. These signature-based systems are effective

only if the compromised host do not simulate licit
traffic. Nowadays, the main goal for taking control of
network machines is the search and retrieval of clas-
sified information, maintaining themselves discreetly
active and making their detection almost impossible
by traditional IDSs. Antivirus and anti-spyware can
only detect and remove already known viruses or Tro-
jan horses. Illicit applications that were recently cre-
ated are discrete, undetectable and are not listed in any
threats database, making its detection and removal
virtually impossible. Personal firewalls could be an
effective tool to avoid PC infection but they require
an average know-how level of the tool functionalities
and special attention by the user, which rarely hap-
pens. A PC user may unconsciously open doors to
a mechanism that turns its PC into a compromised
machine. As soon as the system becomes compro-
mised, the personal firewall becomes ineffective be-
cause the PC’s total or partial control now belongs to
other users.

This paper will present a new approach for the
identification of illicit traffic/applications that tries
to overcome some of the limitations of existing ap-
proaches, while being computationally efficient and

5
Paulo P., Nogueira A., França U. and Valadas R. (2008).
DETECTION OF ILLICIT TRAFFIC USING NEURAL NETWORKS.
In Proceedings of the International Conference on Security and Cryptography, pages 5-12
DOI: 10.5220/0001920800050012
Copyright c© SciTePress



easy to deploy. The approach is based on neural net-
works and detects illicit traffic based on the histor-
ical traffic profile presented by each network appli-
cation. In a first phase, a neural network model is
conveniently trained using data traces corresponding
to completely/undoubtedly identified traffic profiles.
These traces can result from traffic measurements col-
lected on a real network operating scenario or from
synthetically generated traffic obtained in totally con-
trolled conditions. In a second phase, the trained
model is used to identify new traffic profiles that are
presented as inputs. The results obtained show that
the proposed model is able to achieve good identifica-
tion results. Besides, the computational burden is rel-
atively small and the proposed methodology can be
easily implemented in real network scenarios. Neu-
ral networks have been proposed to detect intrusions
at host level (Debar et al., 1992; Ryan et al., 1997)
and we extended this approach to detect illicit traffic
at network level.

The proposed framework is intended to be incor-
porated in a future platform that will allow on-line de-
tection of illicit traffic: the platform should interact
with traffic analysis systems, should have a database
of utilization profiles from different network users,
an easy-to-update list of illicit traffic signatures and
a system of alert and counter measures.

It is known that several traditional techniques that
have been used to identify IP applications have impor-
tant drawbacks that limit or dissuade their application:
(i) port based analysis presents some obvious limita-
tions since most applications allow users to change
the default port numbers by manually selecting what-
ever port(s) they like, many newer applications are
more inclined to use random ports, thus making ports
unpredictable and there is also a trend for applications
to begin masquerade their function ports within well-
known application ports; (ii) protocol analysis (Jiang
et al., 2005; Chen and Laih, 2008) is ineffective since
IP applications are continuously evolving and there-
fore their signatures can change, application develop-
ers can encrypt traffic making protocol analysis more
difficult, signature-based identification can affect net-
work stability because it has to read and process all
network traffic, protocol analysis is not able to deal
with confidentiality requirements; (iii) syntactic and
semantic analysis of the data flows (Wang and Stolfo,
2004; Jiang et al., 2005) can be a burden to network
stability due to its high processing requirements and is
not appropriate when dealing with confidentiality re-
quirements because, in these situations, it is not pos-
sible to have access to the packet contents.

The paper is organized as follows: section 2 will
present the state of the art on intrusion detection

and prevention systems; section 3 describes the main
ideas behind the proposed detection approach and the
details of the developed framework; section 4 presents
and discusses the most important results and, finally,
section 5 presents the main conclusions of this study.

2 STATE OF THE ART ON
INTRUSION DETECTION AND
PREVENTION

Intrusion detection system (IDS) are software plat-
forms aimed to detect the undesirable remote manip-
ulation of computers from the Internet. IDSs are used
to detect several types of malicious traffic that can
not be detected by a conventional firewall, like net-
work attacks to vulnerable services, attacks directed
to applications, unauthorized logins, access to files
and malware distribution. An IDS includes several
components: (i) sensors, that generate security events;
(ii) a console, to monitor events and alerts and con-
trol the sensors; (iii) a central engine that saves the
events generated by sensors on a database and uses
the system rules to generate security alerts of the re-
ceived events. There are several types of IDSs: Net-
work Intrusion Detection System (NIDS), an inde-
pendent network platform that identifies intrusions by
examining network traffic; Protocol-based Intrusion
Detection System (PIDS), system or agent usually
located in front of a server that monitors and ana-
lyzes communication protocols between a device and
a server; Application Protocol-based Intrusion Detec-
tion System (APIDS), system or agent usually located
in front of a group of servers that monitors and an-
alyzes communication protocols that are specific to
a certain application; Host-based Intrusion Detection
System (HIDS), a PC agent that detects intrusions by
analyzing system calls, application logs, changes on
the file system, among other activities; Hybrid Intru-
sion Detection System (HyIDS), that combines one or
several of the above approaches. For example, Snort
or Prelude can operate as NIDS or HIDS.

An IDS is said to be passive if it simply detects
and alerts. When suspicious or malicious traffic is de-
tected an alert is generated and sent to the administra-
tor or user and it is up to them to take action to block
the activity or respond in some way. A reactive IDS
will not only detect suspicious or malicious traffic
and alert the administrator, but will take pre-defined
proactive actions to respond to the threat. Typically,
this means blocking any further network traffic from
the source IP address or user.

IDSs can be signature-based or anomaly detec-

SECRYPT 2008 - International Conference on Security and Cryptography

6



tion systems. A signature based IDS will monitor
packets on the network and compare them against a
database of signatures or attributes from known mali-
cious threats. This is similar to the way most antivirus
software detects malware. The issue is that there will
be a lag between a new threat being discovered in
the wild and the signature for detecting that threat be-
ing applied to the IDS. During that lag time, the IDS
would be unable to detect the new threat. An IDS
which is anomaly based will monitor network traffic
and compare it against an established baseline. The
baseline will identify what is normal for that network
- what sort of bandwidth is generally used, what pro-
tocols are used, what ports and devices generally con-
nect to each other - and alert the administrator or user
when traffic is detected which is anomalous, or sig-
nificantly different, than the baseline.

An intrusion prevention system (IPS) is a com-
puter security device that exercises access control to
protect computers from exploitation. Intrusion pre-
vention technology is considered by some to be an
extension of IDS technology but it is actually an-
other form of access control, like an application layer
firewall. IPS have many advantages over IDS: (i)
they are designed to sit inline with traffic flows and
prevent attacks in real-time; (ii) most IPS solutions
have the ability to look at (decode) layer 7 protocols
like HTTP, FTP, and SMTP, which provides greater
awareness. There are several types of IPS: Host based
(HIPS), one where the intrusion-prevention applica-
tion is resident on a specific IP address, usually on a
computer; Network based IPS (NIPS) is one where
the IPS application/hardware and any actions taken to
prevent an intrusion on a specific network host is done
from a host with another IP address on the network;
Content based IPS (CIPS) inspects the content of net-
work packets for unique sequences, called signatures,
to detect and hopefully prevent known types of at-
tacks such as worm infections and hacks; Rate based
IPS (RIPS) are primarily intended to prevent denial of
service (DoS) and distributed DoS attacks and work
by monitoring and learning normal network behaviors
- through real-time traffic monitoring and compari-
son with stored statistics, RIPS can identify abnor-
mal rates for certain types of traffic (for example TCP,
UDP or ARP packets, connections per second, pack-
ets per connection, packets to specific ports); Protocol
analyzer IPS (PAIPS) is an IPS that uses a protocol
analyzer to fully decode protocols - once decoded, the
IPS analysis engine can evaluate different parts of the
protocol for anomalous behavior or exploits and the
IPS engine can drop the offending packets.

Snort (www.snort.org) is an open source network
intrusion prevention and detection system utilizing

a rule-driven language, which combines the benefits
of signature, protocol and anomaly based inspection
methods. Snort is the most widely deployed intru-
sion detection and prevention technology worldwide
and has become thede factostandard for the industry.
Snort is capable of performing real-time traffic anal-
ysis and packet logging on IP networks. It can per-
form protocol analysis, content searching/matching
and can be used to detect a variety of attacks and
probes, such as buffer overflows, stealth port scans,
Common Gateway Interfaces (CGI) attacks, Server
Message Blocks (SMB) probes, OS fingerprinting at-
tempts, amongst other features. The system can also
be used for intrusion prevention purposes, by drop-
ping attacks as they are taking place.

OSSEC (www.ossec.net) is an open source HIDS
that performs log analysis, integrity checking, Win-
dows registry monitoring, rootkit detection, real-time
alerting and active response. It runs on most operat-
ing systems, including Linux, OpenBSD, FreeBSD,
MacOS, Solaris and Windows.

SamHain (www.la-samhna.de/samhain) is a mul-
tiplatform, open source solution for centralized file in-
tegrity checking and/or host-based intrusion detection
on POSIX systems (Unix, Linux, Cygwin/Windows).
It has been designed to monitor multiple hosts with
potentially different operating systems from a central
location, although it can also be used as standalone
application on a single host.

Osiris (osiris.shmoo.com) is a HIDS that periodi-
cally monitors one or more hosts for change. It main-
tains detailed logs of changes to the file system, user
and group lists, resident kernel modules, and more.
Osiris can be configured to email these logs to the ad-
ministrator. Hosts are periodically scanned and, if de-
sired, the records can be maintained for forensic pur-
poses. Osiris keeps an administrator apprised of pos-
sible attacks and/or nasty little trojans. The purpose
here is to isolate changes that indicate a break-in or a
compromised system. Osiris makes use of OpenSSL
for encryption and authentication in all components.

Cfengine (www.cfengine.org) is one of the most
powerful system administration tools available to-
day. In a useful deviation from most scripting tools,
cfengine allows describing the desired state of a sys-
tem rather than what should be done to a system.
Cfengine itself takes care of testing compliance with
that state and will do its best to correct any misconfig-
urations. It also includes powerful classing capabili-
ties that allows grouping hosts into classes and create
different states on each class of host. Like all tools,
it has its drawbacks, but overall it should be consid-
ered the most important and most capable tool in the
sysadmin toolbox today.

DETECTION OF ILLICIT TRAFFIC USING NEURAL NETWORKS

7



Figure 1: Traffic profiles for different Internet applications.

Nessus (www.nessus.org) is a comprehensive vul-
nerability scanning program. Its goal is to detect po-
tential or confirmed weaknesses on the tested ma-
chines, like for example: (i) vulnerabilities that al-
low a remote cracker to control the machine or access
sensitive data; (ii) misconfiguration (e.g. open mail
relay); (iii) un-applied security patches, even if the
fixed flaws are not exploitable in the tested config-
uration; (iv) default, common and blank/absent pass-
words; (v) denials of service against the TCP/IP stack.

3 DETECTION FRAMEWORK

It is known that Internet applications usually exhibit
characteristic traffic profiles, as illustrated in Figure
1:

• File sharing applications use high bandwidths and
are characterized by a high variability that can be
attributed to the enormous number of TCP ses-
sions that are opened/closed;

• HTTP traffic is characterized by short periods of
high bandwidth utilization with non-periodic du-
rations, intercalated by large periods of inactivity;

• FTP traffic also exhibits a high bandwidth utiliza-
tion, since established connections tend to occupy
all available resources. However, high activity pe-
riods are intercalated with inactivity periods;

• Games traffic is characterized by a medium level
continuous bandwidth utilization pattern, with pe-
riodic peaks;

• Skype traffic has an almost periodic pattern - since
it uses VoIP technology the bandwidth utiliza-
tion pattern should be periodic, but the adjustment

of the transmission parameters to the delay con-
straints imposed by the underlying network in-
duces some variability on the bandwidth utiliza-
tion profile;

• Streaming traffic is characterized by a
low/medium level and almost constant uti-
lization profile with some negative and positive
short non-periodic variations from the average
bandwidth. These variations can be explained
by bandwidth starvation and the consequent
bandwidth increment imposed by the streaming
protocol with the purpose of achieving an average
transfer rate.

The proposed detection framework will use this
knowledge about different application profiles to
build a ”memory” that will allow further identifica-
tions for new traffic traces that are presented to the
framework. Besides ”regular” or licit Internet ap-
plications, the detection framework must also have a
complete knowledge of the traffic profiles associated
to tasks or actions that are commonly performed by
controlled or compromised machines, so it can search
for and identify those profiles in a real operation sce-
nario. In order to obtain the typical traffic profiles as-
sociated to compromised machines, we had to mimic
the behavior of a compromised PC and the SubSeven
rootkit was chosen to generate the intended “illicit”
traffic traces.

A rootkit is a set of software tools intended to con-
ceal running processes, files or system data from the
operating system. They have their origin in benign
applications, but recently have been used by malware
to help intruders maintain access to systems while
avoiding detection. Rootkits often modify parts of
the operating system or install themselves as drivers
or kernel modules and can take full control of a sys-
tem. A rootkit’s only purpose is to hide files, network
connections, memory addresses, or registry entries
from other programs used by system administrators
to detect intended or unintended special privilege ac-
cesses to the computer resources. However, a rootkit
may be incorporated with other files which have other
purposes. Rootkits are often used to abuse a com-
promised system and often include so-called ”back-
doors” to help the attacker subsequently access the
system more easily. A backdoor may allow processes
started by a non-privileged user to execute functions
normally reserved for the superuser. All sorts of other
tools useful for abuse can be hidden using rootkits:
this includes tools for further attacks against computer
systems which the compromised system communi-
cates with, such as sniffers and keyloggers. Rootkits
are also used to allow its programmer to see and ac-
cess user names and log-in information for sites that

SECRYPT 2008 - International Conference on Security and Cryptography

8



require them.
The SubSeven backdoor is a Trojan Horse that

enables unauthorized people to access a computer
over the Internet without the knowledge of its owner.
When the server portion of the program runs on a
computer, the individual who is remotely accessing
the computer may be able to perform the following
tasks: (i) set it up as an FTP server; (ii) browse files
on that system; (iii) take screen shots; (iv) capture
real-time screen information; (v) open and close pro-
grams; (vi) edit information in currently running pro-
grams; (vii) show pop-up messages and dialog boxes;
(viii) hang up a dial-up connection; (ix) remotely
restart a computer; (x) open the CD-ROM; (xi) edit
the registry information.

In our simulation experiments, we have pro-
grammed three tasks on the SubSeven software: file
transfer, multiple port scan and periodic snapshots.
The file transfer bandwidth utilization profile is sim-
ilar to the FTP profile previously discussed and the
profiles associated to multiple port scan and periodic
snapshots are also illustrated in Figure 1: the first one
is characterized by several very short duration high
activity peaks and the second is characterized by pe-
riodic periods of high activity, each one demanding
constant bandwidth utilization.

The proposed framework for detection of illicit
traffic is based on neural networks, specifically a
feed-forward network model using the back propaga-
tion learning algorithm. Back propagation is a gen-
eral purpose learning algorithm for training multi-
layer feed-forward networks that is powerful but ex-
pensive in terms of computational requirements for
training. A back propagation NN model uses a feed-
forward topology, supervised learning, and the back
propagation learning algorithm. A back propagation
network with a single hidden layer of processing ele-
ments can model any continuous function to any de-
gree of accuracy (given enough processing elements
in the hidden layer) (Demuth and Beale, 1998).

For the dimension of our problem a feed-forward
back propagation network with three layers is appro-
priate. The correlation that exists between the tempo-
ral sequence of traffic values and the current distribu-
tion of traffic per application is taken into account by
presenting the current and the lasth (whereh repre-
sents a configurable parameter) traffic values as inputs
to the NN model. In this way, the input layer will have
h+1 neurons, corresponding to the dimensionality of
the input vectors. We have tried different values ofh,
concluding that the best performances were obtained
for NN models having between 4 and 16 neurons in
the input layer. The number of nodes of both the in-
put and hidden layers are empirically selected such

that the performance function (the mean square error,
in this case) is minimized. The output layer has 1 neu-
ron, since each output vector represents the existence
of licit or illicit traffic.

The application of a NN model to solve a partic-
ular problem involves two phases: a training phase
and a test phase. In the training phase, a training
set is presented as input to the NN which iteratively
adjusts network weights and biases in order to pro-
duce an output that matches, within a certain degree
of accuracy, a previously known result (named target
set). In the test phase, a new input is presented to
the network and a new result is obtained based on
the network parameters that were calculated during
the training phase. There are two learning paradigms
(supervised or non-supervised learning) and several
learning algorithms that can be applied, depending es-
sentially on the type of problem to be solved. For
our problem the network was trained incrementally,
that is, network weights and biases were updated each
time an input was presented to the network. This op-
tion was mostly determined by the size of the training
set: loading the complete training set at once and pre-
senting it as input to the NN was very consuming in
terms of computational memory. The training method
used was the Levenberg-Marquardt (Madsen et al.,
2004) algorithm combined with automated Bayesian
regularization, which basically constitutes a modifica-
tion of the Levenberg-Marquardt training algorithm to
produce networks which generalize well, thus reduc-
ing the difficulty of determining the optimum network
architecture.

The general approach used for the identification
of illicit traffic is depicted in Figure 2: in the train-
ing phase, the first half of the different application
traces, that are designated as application profiles, are
presented to the neural network model, together with
a previous classification of the different profiles. This
phase leads to a trained neural network model whose
parameters were conveniently adjusted according to
the identification requirements. In the test phase, the
second half of the application profiles are inputted to
the trained neural network model, producing the cor-
responding identification results. By comparing these
results with the pre-identification values, the model
can be conveniently validated.

4 RESULTS

As previously explained, the neural network model is
trained with the first half of each traffic trace and the
second half will be used to test the accuracy of the
trained model. The following applications were used

DETECTION OF ILLICIT TRAFFIC USING NEURAL NETWORKS

9



Neural NetworkProfile 1 Profile 2 Profile 3 ... Profile n

First half of 

the data

Pre-classification

Training phase

Neural NetworkProfile 1 Profile 2 Profile 3 ... Profile n

Second half 

of the data

Results

Test phase

Validation

Figure 2: General approach for the detection of illicit applications.

Table 1: Correct identification percentages for the different traffic profiles - upload traffic.

Traffic type h # Neurons in Correct
hidden layer identification

HTTP + Port scan 10 16 98.26%
HTTP + Snapshots 16 20 100.00%

HTTP + File Transfer 8 16 94.49%
Streaming + Port scan 8 16 93.91%
Streaming + Snapshots 16 14 97.98%

Streaming + File Transfer 10 16 98.41%
HTTP + File Sharing + Skype +

(Snapshots or File Transfer) 16 12 88.80%

to evaluate the efficiency of the proposed methodol-
ogy: HTTP, Games, Peer-to-Peer File Sharing, Video
Streaming and Skype. Besides these licit applications,
illicit traffic was synthetically generated by program-
ming SubSeven to perform file transfer, multiple port
scan and periodic snapshots (with a 2 seconds period-
icity), as described in the previous section. By com-
bining these applications, the following traffic pro-
files were created: (i) HTTP Browsing + Port Scan;
(ii) HTTP Browsing + Periodic Snapshots; (iii) HTTP
Browsing + File Transfer; (iv) Streaming + Port Scan;
(v) Streaming + Periodic Snapshots; (vi) Streaming +
File Transfer; (vii) HTTP Browsing + P2P File Shar-
ing + Skype + (Snapshots or File Transfer). Only the
upload traffic will be considered and each trace has
1-hour duration and represents the number of upload
bytes per sampling interval (the sampling interval is
equal to 1 second).

Figure 3 depicts 5 minute samples of the HTTP
browsing traces. Figure 3(a) shows a licit HTTP
browsing typical profile with short non-periodical
peaks generated by HTTP requests. The HTTP
browsing and a non-aggressive port scan traffic joint
profile is depicted in 3(b). It is possible to observe
small periodic peaks characteristic of the port-scan
embedded within the normal licit traffic. Figure 3(c)
shows the traffic profile of periodic snapshots trans-
ferred to a remote machine characterized by periodic

bursts of traffic in upstream direction. Figure 3(d)
depicts a transference of a large file in the upstream
direction. This type of traffic may not be illicit be-
cause it can be the result of a normal HTTP file up-
load. Nevertheless, a HTTP browsing trace should
not include file uploads and we chose to classify these
events as an anomaly that should be detected.

Figure 4 depicts 5 minute samples of the stream-
ing traces and the same illicit traffic profiles, de-
scribed above for the HTTP browsing traces, can be
observed embedded now within a streaming trace.
The streaming trace is characterized by a constant (in
average) bandwidth occupation. The profile has some
negative and positive short non-periodic variations
from the average bandwidth. These variations can be
explained by bandwidth starvation and the consequent
bandwidth increment generated by the streaming pro-
tocol to counterbalance it and achieve an average con-
stant rate.

Figure 5 depicts 5 minute samples of the joint
HTTP Browsing + P2P File Sharing + Skype traces.
The licit traffic is depicted in Figure 4(a) and Fig-
ures 5(b) and 5(c) show the licit traffic in conjunc-
tion with snapshot and file transfer traffic, respec-
tively. The licit traffic is characterized by a high
bandwidth consumption with a relative high variation
around an average bandwidth value. We chose not to
include a non-aggressive port scan because such traf-

SECRYPT 2008 - International Conference on Security and Cryptography

10



 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250  300

by
te

s

seconds

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250  300

by
te

s

seconds

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250  300

by
te

s

seconds

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300

by
te

s

seconds

Figure 3: HTTP Browsing (from top to bottom): (a) Licit,
(b) Licit + Port Scan, (c) Licit + Snapshot and (d) Licit +
File transfer.

fic is imperceptible within such high licit bandwidth
consumptions. The tested trace with illicit compo-
nents was composed by an alternate usage of snapshot
and file transfer (10 minutes each time) embedded in
the licit traffic.

For each class of licit traffic, one neural network
was trained to detect the presence of illicit traffic pro-
file signatures and identify the specific class of illicit
traffic. Table 1 presents the best correct identification
percentages for the different traffic profiles, as well
as the history length that was considered at the input
of the neural network (that is, the amount of tempo-
ral correlation that was taken into account in the input
traffic profiles) and the number of neurons in the hid-
den layer of each neural network model. As can be
seen from these results, the identification percentages
are quite high, illustrating the accuracy of the pro-
posed methodology for all considered traffic scenar-
ios. The worst result was obtained for the last traffic
profile, since it is the most heterogeneous profile that
includes a quite complicated mixture of applications.
Nevertheless, the trained model was able to correctly
identify more than 88% of the traffic values.

 10

 100

 1000

 10000

 0  50  100  150  200  250  300

by
te

s

seconds

 10

 100

 1000

 10000

 0  50  100  150  200  250  300

by
te

s

seconds

 100

 1000

 10000

 100000

 0  50  100  150  200  250  300
by

te
s

seconds

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300

by
te

s

seconds

Figure 4: Streaming (from top to bottom): (a) Licit, (b)
Licit + Port Scan, (c) Licit + Snapshot and (d) Licit + File
transfer.

5 CONCLUSIONS

This paper presented a new approach for the identi-
fication of illicit traffic that tries to overcome some
of the limitations of existing approaches, while be-
ing computationally efficient and easy to deploy. The
approach is based on neural networks and is able to
detect illicit based on the historical traffic profile pre-
sented by each licit and illicit network application.
The test of the proposed methodology was based on
traffic generated on a controlled environment, where
malicious traffic was generated using the SubSeven
backdoor. The results obtained show that the pro-
posed methodology is able to achieve good identifica-
tion results, being at the same time computationally
efficient and easy to implement in real network sce-
narios.

ACKNOWLEDGEMENTS

This work was done under the scope of the Euro-
NGI and Euro-FGI Networks of Excellence - De-

DETECTION OF ILLICIT TRAFFIC USING NEURAL NETWORKS

11



 10000

 100000

 1e+06

 0  50  100  150  200  250  300

by
te

s

seconds

 10000

 100000

 1e+06

 0  50  100  150  200  250  300

by
te

s

seconds

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300

by
te

s

seconds

Figure 5: HTTP Browsing + P2P File Sharing + Skype
(from top to bottom): (a) Licit, (b) Licit + Snapshots and
(c) Licit + File Transfer.

sign and Engineering of the Next Generation Internet,
and Euro-NF Network of Excellence - Anticipating
the Network of the Future (from Theory to Design),
funded by the European Union.

REFERENCES

Chen, P.-T. and Laih, C.-S. (2008). IDSIC: an intrusion de-
tection system with identification capability.Interna-
tional Journal of Information Security, 7(3):185–197.

Debar, H., Becker, M., and Siboni, D. (4-6 May 1992). A
neural network component for an intrusion detection
system.Research in Security and Privacy, 1992. Pro-
ceedings., 1992 IEEE Computer Society Symposium
on, pages 240–250.

Demuth, H. and Beale, M. (1998).Neural Network Toolbox
Users Guide. The MathWorks, Inc.

Denning, D. (1987). An Intrusion-Detection Model.IEEE
Transactions on Software Engineering, 13(2):222–
232.

Ilgun, K., Kemmerer, R., and Porras, P. (1995). State Tran-
sition Analysis - A Rule-Based Intrusion Detection
Approach.IEEE Transactions on Software Engineer-
ing, 21(3):181–199.

Jiang, W., Song, H., and Dai, Y. (2005). Real-time intru-
sion detection for high-speed networks.Computers &
Security, 24(4):287–294.

Madsen, K., Nielsen, H., and Tingleff, O. (2004).Methods
for Non-Linear Least Squares Problems. Technical
University of Denmark, 2nd edition.

Mukherjee, B., Heberlein, L., and Levitt, K. (1994). Net-
work Intrusion Detection.IEEE Network, 8(3):26–41.

Ryan, J., Lin, M.-J., and Miikkulainen, R. (1997). Intru-
sion detection with neural networks. InNIPS ’97:
Proceedings of the 1997 conference on Advances in
neural information processing systems 10, pages 943–
949, Cambridge, MA, USA. MIT Press.

Wang, K. and Stolfo, S. (2004). Anomalous Payload-based
Network Intrusion Detection.Recent Advances in In-
trusion Detection, Proceedings, 3224:203–222.

SECRYPT 2008 - International Conference on Security and Cryptography

12


