
THE SUBSTITUTION CIPHER CHAINING MODE

Mohamed Abo El-Fotouh and Klaus Diepold
Institute for Data Processing (LDV), Technische Universität München (TUM), 80333 Munich, Germany

Keywords: Modes of operation, SCC, disk encryption, AES.

Abstract: In this paper, we present a new tweakable narrow-block mode of operation, the Substitution Cipher Chaining
mode (SCC), that can be efficiently deployed in disk encryption applications. SCC is characterized by its
high throughout compared to the current solutions and it can be parallelized. We used this mode to modify
Windows Vista’s disk encryption algorithm, to offer some parallelism in its original implementation and to
improve its diffusion properties.

1 INTRODUCTION

In todays computing environment, there are many
threats to the confidentiality of information stored on
end user devices, such as personal computers, con-
sumer devices (e.g. PDA), and removable storage me-
dia like (e.g., USB or external hard drive). A common
threat against end user devices is device loss or theft,
that can lead to identity theft and other frauds. Some-
one with physical access to a device has many op-
tions for attempting to view or copy the information
stored on that device. Another concern is insider at-
tacks, such as an employee attempting to access sensi-
tive information stored on another employees device.
Malware, another common threat, can give attackers
unauthorized access to a device, transfer information
from the device to an attackers system, and perform
other actions that jeopardize the confidentiality of the
information on a device (NIST, 2007).

Usually the data stored on the PC asset is often
significantly more valuable to a corporation than the
asset itself (Ferguson, 2006). To prevent the disclo-
sure of sensitive data, the data needs to be secured.
Disk encryption applications are usually used to pro-
tect the data on the disk by encrypting it, where all the
data is encrypted with a single/multiple key(s) and en-
cryption/decryption are done on the fly, without user
interference.

Disk encryption usually encrypts/decrypts a
whole sector at a time. There exist dedicated block
ciphers to encrypt the whole sector at a time like Bear,
Lion, Beast and Mercy (Anderson and Biham, 1996;
Anderson and Biham, 1996; Lucks, 1996; Crowley,

2001). Bear, Lion and Beast are considered to be
slow, as they process the data through multiple passes.
And Mercy was broken in (Fluhrer, 2002). The other
method is to let a block cipher like the Advanced en-
cryption standard AES (Daemen and Rijmen, 1998)
(with 16-bytes as a block size) to process the data
within a mode of operation. These modes of operation
can be divided into two main classes the narrow-block
and wide-block modes. The narrow-block modes op-
erate on relatively small portions of data (typically
16-bytes when AES is used), while the wide-block
modes encrypt or decrypt a whole sector (typically
512-bytes) at a time (IEEE P1619 homepage, 2007).

The current narrow-block modes of operations
are either slow and do not offer error propagation
(like XTS (Rogaway, 2003) and LRW (Liskov et al.,
2002)) or are subjected to some attacks like (CBC and
CFB (Menezes et al., 1996)). A need for a new secure
and fast mode of operation, that offer error propaga-
tion, has aroused.

In this paper, we propose a novel narrow-block
disk encryption mode of operation. We named this
mode Substitution Cipher Chaining mode (SCC). The
SCC mode is a tweakable block cipher mode of oper-
ation, that is base on Cipher Block Chaining mode
(CBC) (Menezes et al., 1996) and the Static Substi-
tution Model (SSM) (El-Fotouh and Diepold, 2008a).
The SSM model can provide a block cipher with a
secondary key. The secondary key is used to replace
some bits of the cipher’s expanded key. In SCC, each
sector has its unique tweak, this tweak and the pre-
vious ciphertext block will replace some bits of the
expanded key (with the exception to the first block).

421
Abo El-Fotouh M. and Diepold K. (2008).
THE SUBSTITUTION CIPHER CHAINING MODE.
In Proceedings of the International Conference on Security and Cryptography, pages 421-429
DOI: 10.5220/0001917904210429
Copyright c© SciTePress

In section 2, we will present the constraints fac-
ing the disk encryption applications. In section 3, we
will describe the current narrow-block modes of op-
erations used in disk encryption. In section 4, we pre-
sented our proposed mode of operation. In section 5,
we present a performance analysis and a benchmark
among the narrow-block modes of operations. In sec-
tion 7, we present out proposed modification to Win-
dows Vista’s disk encryption algorithm. Finally, we
present our conclusions in section 8.

2 DISK ENCRYPTION

Disk encryption is usually used to encrypt all the
data on the hard disk, where all the hard disk is
encrypted with a single/multiple key(s) and encryp-
tion/decryption are done on the fly, without user in-
terference (El-Fotouh and Diepold, 2007). The en-
cryption is on the sector level, that means each sector
should be encrypted separately. In the following sub
section, we will define the existing constrains.

2.1 Disk Encryption Constraints

The main constraints:

Data Size. The ciphertext length should be the same
as the plaintext length. In this paper, we will use
the current standard (512-bytes) for the plaintext.

Performance. The used mode of operation should be
fast enough, as to be transparent to the users (If
using the mode of operation results in a signif-
icant and noticeable slowdown of the computer
there will be great user resistance to its deploy-
ment (Ferguson, 2006)).

2.2 General Scheme

In Figure 1, we present our general scheme for en-
crypting a sector, where the mode of operation takes
four inputs to calculate the ciphertext (4096-bits).
These inputs are:

1. The plaintext of size 4096-bits.

2. Encryption key of size 128 or 256-bits.

3. Tweak Key of size 128 or 256-bits.

4. Sector ID of size 64-bits.

2.3 Tweak

Usually a block cipher accepts the plaintext and the
encryption key to produce the ciphertext. Modes

Figure 1: Disk encryption general scheme for encrypting a
sector.

of operations have introduced other inputs. Some
of these mode use initial vectors like in CBC, CFB
and OFB modes (Menezes et al., 1996), counters
like in CTR (McGrew, 2002) or nonces like in OCB
mode (Rogaway et al., 2001). The idea of using a
tweak was suggested in HPC (Schroeppel, 1998) and
used in Mercy (Crowley, 2001). In (Liskov et al.,
2002), the formal definition of tweakable block ci-
phers has been introduced. In this paper, the term
tweak is associated with any other inputs to the mode
of operation with the exception of the encryption key
and the plaintext.

2.4 Tweak Calculation

There are different methods to calculate the tweak
from the sector ID like ESSIV (Fruhwirth, 2005) and
encrypted sector ID (Ferguson, 2006). We are going
to use the encrypted sector ID approach, where the
sector ID (after being padded with zeros) is encrypted
by the tweak key to produce the tweak.

3 NARROW-BLOCK MODES OF
OPERATIONS

3.1 Terminologies

The following terminologies are used to describe the
modes of operations in this paper.

IN. The input plaintext of size 4096-bits.

EK. The encryption key of size 128 or 256-bits.

TK. The tweak key of size 128 or 256-bits.

BK. The block key of size 128 or 256-bits.

SID. The sector ID encoded as 64-bits unsigned inte-
ger.

GetTweak(TK,SID). Encrypts (using AES) SID af-
ter padding with zeros with TK and returns the
result.

SECRYPT 2008 - International Conference on Security and Cryptography

422

Table 1: CBC listing for disk encryption.

Encrypt-CBC(IN,EK,TK,SID)
T=GetTweak(TK,SID)
ExKey=Expand-Key(EK)
IN0= IN0

⊕
T

AES-Encrypt(ExKey,IN0,OUT0)
for i=1 to 31

INi= INi
⊕

OUTi−1
AES-Encrypt(ExKey,INi,OUTi)

end for
return OUT

T. The tweak.

ExKey. The expanded AES key.

Expand-Key(EK). Expands the EK with the AES
key setup routine and returns the result.

Xi. The ith block of text X, where a block is 128-bits.⊕
. Bitwise xor operation.

AES-Encrypt(ExKey,IN,OUT). Encrypts IN, using
the AES encryption routine with ExKey as the ex-
panded key, and returns OUT.⊗

. Multiplication operation in finite field.

+. Integer addition operation modulo 264.

Substitute(T,ExKey,i). Replaces the ith round sub-
keys in ExKey with T (Note that: the first round of
the AES is round zero and it is the pre-whitening
process).

len(X). Returns the length of the string X in bits.

3.2 CBC: Cipher Block Chaining

CBC is the most used cipher mode of operation for
hard disk encryption (Fruhwirth, 2005), where usu-
ally each sector is encrypted with a different initial
vector (IV). The listing of CBC is in table 1. Where
for the first block the plaintext is xored with the tweak
before it is encrypted, and for the other blocks the
plaintext is xored with the last ciphertext block be-
fore it is encrypted. This recursive structure does not
allow parallelization.

For CBC, an attacker with read/write access to the
encrypted disk can copy a ciphertext sector from one
position to another, and an application reading the
sector of the new location will still get the same plain-
text sector (except perhaps the first 128-bits) (IEEE
P1619 homepage, 2007). In CBC, the attacker can flip
arbitrary bits in one block at the cost of randomizing
the previous block (Ferguson, 2006). Other attacks
like Watermarking attack is also applicable (Fruh-
wirth, 2005). Due these weaknesses we do not rec-
ommend using CBC in disk encryption applications.

Table 2: CFB listing for disk encryption.

Encrypt-CFB(IN,EK,TK,SID)
T=GetTweak(TK,SID)
ExKey=Expand-Key(EK)
AES-Encrypt(ExKey,T,OUT0)
OUT0= OUT0

⊕
IN0

for i=1 to 31
AES-Encrypt(ExKey,OUTi−1,OUTi)
OUTi= OUTi

⊕
INi

end for
return OUT

Table 3: LRW listing for disk encryption.

Encrypt-LRW(IN,EK,TK,SID)
ExKey=Expand-Key(EK)
for i=0 to 31

TK = TK
⊗

SID
INi = INi

⊕
TK

AES-Encrypt(ExKey,INi,OUTi)
OUTi= OUTi

⊕
TK

SID=SID +1
end for

return OUT

3.3 CFB: Cipher Feedback

CFB turns a block cipher into a self-synchronizing
stream cipher. The listing of CFB is in table 2. Where
the first ciphertext block is the result of the xor pro-
cess between the first plaintext block and the tweak
after encryption, and for the other blocks the plain-
text is xored with the encryption of the last ciphertext
block to produce the next ciphertext block. This re-
cursive structure does not allow parallelization.

Using CFB without message authentication code
(MAC) (Menezes et al., 1996) is trivially malleable,
and an attacker with write access to the encrypted me-
dia can flip any bit of the plaintext simply by flipping
the corresponding ciphertext bit (IEEE P1619 home-
page, 2007). Due this weakness we do not recom-
mend using CFB in disk encryption applications.

3.4 LRW

LRW is a tweakable mode of operation that can be
easily parallelized. The listing of LRW is in table 3.
It xors the plaintext before and after encryption with
the tweak key (Note that the tweak key is multiplied
”in the finite field of AES” in each loop with a counter
”initialized by the sector ID”).

The IEEE Security in Storage work group
(SISWG) used it in its early draft as a standard for
narrow-block encryption mode (when AES is the un-
derlying cipher). Then it was replaced by XTS due
to the following security issue. An attacker can de-

THE SUBSTITUTION CIPHER CHAINING MODE

423

Table 4: XTS listing for disk encryption.

Encrypt-XTS(IN,EK,TK,SID)
T=GetTweak(TK,SID)
ExKey=Expand-Key(EK)
for i=0 to 31

X = T
⊗

αi

INi = INi
⊕

X
AES-Encrypt(ExKey,INi,OUTi)
OUTi= OUTi

⊕
X

end for
return OUT

rive the LRW tweak key TK from the ciphertext, if
the plaintext contains TK||0n or 0n||TK. Here || is the
concatenation operator and 0n is a zero block. This
may be an issue for software that encrypts the parti-
tion of an operating system under which this encryp-
tion software is running (at the same time). The op-
erating system could write the LRW tweak key to en-
crypted swap/hibernation file. If the tweak key TK is
known, LRW does not offer indistinguishability un-
der chosen plaintext attack anymore, and the same in-
put block permutation attacks of ECB mode are pos-
sible (IEEE P1619 Email Archive, 2007). Due these
weaknesses we do not recommend using LRW in disk
encryption applications.

3.5 XTS

XTS is a tweakable mode of operation that can be eas-
ily parallelized. The listing of XTS is in table 4. It
xors the plaintext before and after encryption with the
tweak value (Note that the tweak value is multiplied
in the finite field GF(2128) in each loop with the ith

power of α ”a primitive element of GF(2128)”).
XTS is now the current narrow-block standard of

SISWG, it is slower than LRW. XTS is an instantia-
tion of XEX (Rogaway, 2003) mode of operation and
this mode of operation has a problem when a lot of
data is encrypted with the same key, because a colli-
sion will appear. In case of a collision between block
i and block j, the attacker can use his ability to cre-
ate legally encrypted data for position i and his ability
to modify ciphertext in position j to modify the ci-
phertext at j so it will decrypt to an arbitrary attacker-
controlled value. This security leak appears, when the
same key is used to encrypt more than a terabyte of
data (IEEE P1619 homepage, 2007).

4 PROPOSED MODE

4.1 Goals

The goals of designing the SCC mode are:

Security. The constraints for disk encryption imply
that the best achievable security is essentially
what can be obtained by using ECB mode with
a different key per block (IEEE P1619 homepage,
2007). This is our aim.

Performance. SCC should be at least as fast as the
current solutions.

Error Propagation. SCC should propagate error to
further blocks (this may be useful in some appli-
cations).

4.2 Keys

The secret key in SCC is divided into three different
keys (each of them can be either 128- or 256-bits):

1. EKey. which is used to generate the expanded
key, used in encrypting the blocks .

2. TK. which is used to encrypt the sector ID to pro-
duce the tweak.

3. BK. which is used to generate the BT array, where
BT is an array of sixty four 128-bits words.

• BT is constructed once at the initialization of
SCC mode.

• BT is constructed using the AES in the counter
mode, where the counter is initialized with zero
and BK is the encryption key for the counter
mode.

4.3 Design

We decided to build the SCC mode using the SSM
model (El-Fotouh and Diepold, 2008a) to inherit from
its security and high performance and use CBC like
operations to gain the error propagation property. The
listing of SCC is in table 5 and it works as follows:

• The tweak T is calculated by encrypting the sector
ID with the tweak key TK, due to this step the
value of the tweak is neither known nor controlled
by the attacker.

• The expanded key ExKey is calculated.

• the values of x, y and z are determined by the en-
cryption key size.

• For the first block:

– The secret tweak T replaces the subkeys of the
yth round.

SECRYPT 2008 - International Conference on Security and Cryptography

424

Table 5: SCC listing for disk encryption.

Encrypt-SCC(IN,EK,Keylen,TK,SID)
T=GetTweak(TK,SID)
ExKey=Expand-Key(EK)
KL=len(EK)
if(KL==128)

x=4 y=5 z=6
else

x=5 y=7 z=10
end if
Substitute(T,ExKey,y)
Substitute(BT0,ExKey,x)
Substitute(BT1,ExKey,z)
AES-Encrypt(ExKey,INi,OUTi)
for i=1 to 31

Substitute(BT2×i,ExKey,x)
Substitute(BT2×(i+1),ExKey,z)
TT=OUTi−1 ⊕ T
Substitute(TT,ExKey,y)
AES-Encrypt(ExKey,INi,OUTi)

end for
return OUT

– The secret 128-bits BT0 replace the subkeys of
the xth round.

– The secret 128-bits BT1 replace the subkeys of
the zth round.

– The first block is encrypted by the new ex-
panded key.

• A loop that runs 31 times (where i takes the values
from 1 to 31):

– The secret 128-bits BT2×i replace the subkeys
of the xth round.

– The secret 128-bits BT(2×i)+1 replace the sub-
keys of the zth round.

– A variable TT is calculated by xoring cipher-
text of the previous block with T.

– TT acts as the active tweak and replaces the
subkeys of the yth round in the expanded key.

– The ith block is encrypted by the new expanded
key.

4.4 Discussion of SCC Mode

The goal of SCC is to encrypt each block on the hard
drive in a different way. This was achieved by using
the SSM model, where:

• The active tweak TT is placed in the middle of
the expanded key, to offer full diffusion and full
confusion properties in both the encryption and
decryption directions (i.e any difference between
two active tweaks, will be associated with full
confusion and full diffusion in both the encryp-
tion and decryption directions, eliminating the bit-
flipping attack of the CBC mode). Note that AES

requires only four rounds to obtain full bit con-
fusion (or mixing) and diffusion (each input bit
affecting each output bit) properties (May et al.,
2002).

• Note that the active tweak TT is the result of xor-
ing:

1. The tweak T (which is unique, secret and not
controlled by the attacker).

2. The ciphertext of the previous block (which is
known and controlled by the attacker).

3. From the above two notes, the attacker does not
know the value of TT, but can flip its bits. But
as TT replaces the subkeys of the yth round
(which is in the middle of the cipher), any
change in TT will be associated with full con-
fusion and full diffusion in both the encryption
and decryption directions.

• Replacing the subkeys of the xth and zth rounds of-
fers full diffusion and full confusion in the encryp-
tion and decryption directions among the blocks
of the same sector. Note that all the values of BT
are unique and key dependent.

Notes:
1. By introducing the tweak, the attacker can not

perform the mix-and-match attack (IEEE P1619
homepage, 2007) among blocks of different sec-
tors, as each sector has a unique secret tweak. The
tweak replaces the subkeys of the middle round
of the AES to assure that any difference between
two tweaks, will be associated with full confusion
and full diffusion in both the encryption and de-
cryption directions. Thus, encrypting two equal
blocks in different sectors will produce two differ-
ent ciphertexts and decrypting two equal blocks in
different sectors will produce different plaintexts.

2. By introducing the BT array values (that replaces
certain words in the expanded key) the attacker
can not perform the mix-and-match attack among
the blocks within the same sector. As each sec-
tor has two distinct 128-bits in the expanded key.
This requirement is achieved in both the encryp-
tion and decryption directions. As equal plain-
text blocks (within the same sector), will have the
same state until the xth encryption round then the
state will change. And equal ciphertext blocks
(within the same sector), will have the same state
until the zth decryption round then the state will
change.

4.5 Pros of SCC

Security. Each sector is encrypted in a different way,
so replacing ciphertext between different sectors

THE SUBSTITUTION CIPHER CHAINING MODE

425

Table 6: Theoretical operational time for each mode of op-
eration.

Encryption calls Multiplication calls
CBC 33 0
CFB 33 0
LRW 32 32
XTS 33 32
SCC 33 0

will not help the attacker, as they are encrypted
with a different expanded keys and each block
within the sector is encrypted in a different way,
due to the use of BT (so the attacker will not ben-
efit from changing the positions of the blocks).

Performance. SCC possesses high performance as it
uses only simple and fast operations.

Parallelization. SCC can be parallelized, actually it
favors the dual core processors, it can be paral-
lelized as following (using two processor cores):

• The second processor will compute till the yth

round for all the plaintext blocks (except the
first block), to produce intermediate ciphertext
blocks.
• The first processor will compute the first ci-

phertext block form the first plaintext block.
• The first processor will compute the other ci-

phertext blocks form intermediate ciphertext
blocks processed by the second processor.

In this way the ciphertext will be produced after
16.5 encryptions.

Error Propagation. As each sector depends on its
previous sector, error propagation is met.

5 PERFORMANCE ANALYSIS

5.1 Operational Time

5.1.1 Theoretical

Usually the theoretical time is calculated with how
many encryption calls are needed by each mode of
operation, as the other operations like the xor or addi-
tion is considered negligible. But LRW and XTS uses
finite field multiplication, which requires about half
the time needed by the AES encryption (128-bits ver-
sion) (McGrew, 2004). Table 6 summarizes the num-
ber of AES and finite field multiplication calls needed
by each mode.

Table 7: Number of clock cycles reported by each mode of
operation.

Key length 128-bits Key length 256-bits
CBC 12630 16898
CFB 12585 16935
LRW 19778 24015
XTS 24420 28846
SCC 12660 16867

5.1.2 Practical Operational Time

The Speed presented in table 7, are obtained form the
optimized Gladman’s C implementation (Gladman,
2006), Running on a PIV 3 GHz (Note that the val-
ues reported are in processor clock cycles). Note that
the reported values are the minimum of 1000 mea-
surements, to eliminate any initial overheads or cache
misses factors.

5.1.3 Parallel Implementation

With the wide spread of multi-core processors, speed-
ing up encryption using parallelization is made possi-
ble and parallelization is not a luxury anymore and
can increase the performance significantly. Encryp-
tion mode of operation should support parallelization.
CBC and CFB can not be parallelized, while LRW,
XTS and SCC can be parallelized.

5.2 Benchmark

To summarize our results, we present a benchmark.
The results of the benchmark is presented in table 8,
where under column:

Speed. we reported the speed ranking of each mode
of operation (note: CBC, CFB and SCC possess
the same rank as they require almost the same
number of clock cycles).

Parallelization. we reported the number of encryp-
tion calls required for each mode on a dual-core
processor (after the tweak is calculated).

Error Propagation. we reported if the mode pos-
sesses the error propagation property or not.

From the results in table 8, it is clear that SCC mode is
superior than all the other modes in all the benchmark
metrics and we recommend its use in disk encryption
applications.

6 ELEPHANT

Windows Vista Enterprise and Ultimate editions use
Bitlocker Drive Encryption as its disk encryption al-

SECRYPT 2008 - International Conference on Security and Cryptography

426

Table 8: Benchmark of the modes of operations.

Speed Parallelization (dual core) Error propagation
CBC 1 32

√

CFB 1 32
√

LRW 4 16 X
XTS 5 16 X
SCC 1 16.5

√

gorithm, and at its heart is the AES-CBC + Ele-
phant diffuser encryption algorithm (ELEPHANT).
Bitlocker uses existing technologies like the AES in
the CBC mode and TPM (Trusted Computing Group,
2008), together with two new diffusers. Figure 2
shows an overview of ELEPHANT (Ferguson, 2006).
There are four steps to encrypt a sector:

1. The plaintext is xored with a sector key Ks (1).

2. The result of the previous step run through dif-
fuser A.

3. The result of the previous step run through dif-
fuser B.

4. The result of the previous step is encrypted with
AES in CBC mode using IVs (2), as the initial
vector.

Ks = E(Ksec,e(s)) ‖ E(Ksec,e′(s)) (1)

IVs = E(KAES,e(s)) (2)

Where E() is the AES encryption function, Ksec is a
key used to generate Ks, KAES is the key used to gen-
erate the sector IVs and used in the AES-CBC pro-
cess, e() is an encoding function that maps each sector
number s into a unique 16-byte value. The first 8 bytes
of the result are the byte offset of the sector on the vol-
ume. This integer is encoded in least-significant-byte
first encoding. The last 8 bytes of the result are al-
ways zero and e′(s) is the same as e(s) except that the
last byte of the result has the value 128.
Note that the plaintext and key are parameterized. In
our study we used the following parameters:

1. Plaintext of size 4096-bits (the current standard
sector size).

2. We examined the 256-bits key version of the AES
(that supports maximum security), that means
both Ksec and KAES of size 256-bits.

6.1 The Diffusers

Diffuser A and diffuser B are very similar. The fol-
lowing notations are used to define the diffusers:

1. di is the ith 32-bits word in the sector, if i falls
outside the range then di =di mod n, where n is the
number of the 32-bits in the sector.

Figure 2: Overview of AES-CBC with Elephant Diffuser.

Table 9: Diffuser A and diffuser B.

Diffuser A: Diffuser B:
for j=1 to AC for j=1 to BC
for i=n-1,...,2,1,0 for i= n-1,...,2,1,0
t=(di−5 << RAi mod 4) t=(di+5 << RBi mod 4)
t=t ⊕ di−2 t=t ⊕ di+2
di= di - t di= di - t

2. AC and BC are the number of cycles of diffuser A
and B, they are defined to be 5 and 3 respectively.

3. RA = [9, 0, 13, 0] and RB = [0, 10, 0, 25] hold
the rotation constants of diffuser A and B respec-
tively.

4. ⊕ is the bitwise xor operation.

5. << is the integer 32-bits left rotation operation,
where the rotation value is written on its right size.

6. - is integer subtraction modulo 232.

Table 9 presents the description of diffuser A and dif-
fuser B.

6.2 Proposed Modification

We propose to replace the CBC layer in ELEPHANT
with a SCC layer. Pros of this modification over the
original design:

• The SCC can be parallelized on a dual core ma-
chine, which can increase the performance.

• SCC has a better error propagation effect than
CBC in decryption direction, as more bits of
plaintext will be affected by a single bit change
(typically 256-bits for the SCC and 129-bits for
CBC).

• We named our variants ELEPHANT+ (when
AC=5 and BC=3) and ELEPHANT∗ (when
AC=BC=3).

THE SUBSTITUTION CIPHER CHAINING MODE

427

6.3 Bit Dependency Tests

• BD-Encryption() (El-Fotouh and Diepold,
2008b): is passed, when each bit in the ciphertext
depends on every bit in the plaintext. It tries to
answer: does each bit in ciphertext depend on all
the bits in the plaintext?

• BD-Decryption() (El-Fotouh and Diepold,
2008b): is passed, when each bit in the plaintext
depends on every bit in the ciphertext. It tries to
answer: does each bit in plaintext depend on all
the bits in the ciphertext?

The Bit-dependency functions are measured as fol-
lowing:

1. A dependency matrix M is constructed of size B
× B (where B is the number of bits in the plain-
text/ciphertext, here B = 4096).

2. The diagonal is initialized by 1 and all other bits
are set to zero, as initially each bit depends only
on itself.

3. Depending on the applied operation the matrix M
is updated, BD-Encryption applies the operation
in the encryption direction and BD-Decryption
applies them in the decryption direction.

4. If an output bit is dependent on an input bit(s), the
column of the output bit is ORed with that (those)
of the input bit(s). For example:

(a) Xor operation: each output bit is dependent on
the corresponding input bit.

(b) Addition and subtraction modulo 232 opera-
tions are approximated to xor operation for sim-
plicity and generality.

(c) AES operation in CBC: each bit in the input
128-bit is dependent on the other 127-bits.

(d) AES operation in SCC: each bit in the previous
block (with the exception of the fist block) af-
fects all the bits of the encrypted block (as full
confusion and full diffusion properties are met).

(e) 32-bits rotation: the columns change there or-
der depending on the rotation amount and di-
rection.

5. All the operation of the tested ciphers are applied
and the matrix M is updated.

6. At the end the sum of all ones in the matrix is
added and is divided by B2.

7. If the returned value in the previous step is 1, this
means that each bit of the output bits depends on
all the bits of the input and the function is passed,
it fails otherwise.

Table 10: BD-Encryption and BD-Decryption results.

Pass AC′ BC′ AC BC SF Speed
ELEPHANT true 2 1 5 3 2.7 22147
ELEPHANT+ true 0 2 5 3 4 22098
ELEPHANT∗ true 0 2 3 3 3 21635

The results of applying BD-Encryption and BD-
Decryption functions are found in table 10, where
we reported the minimum values of AC and BC each
algorithm needs to pass these tests (under columns
AC′ and BC′), together with the used values. The
results show that ELEPHANT needs at least AC=2
and BC=1 to pass BD-Encryption and BD-Decryption
functions, while ELEPHANT∗ and ELEPHANT+

need only BC=2 to pass them and the SCC layer does
the rest of the diffusion.

7 PERFORMANCE

We studied the performance of the optimized C ver-
sions of the ciphers. For the diffusers we used loop
unrolling mechanism (Davidson and Jinturkar, 1995)
and for the AES we used optimized Gladmann’s im-
plementation (Gladman, 2006). The results are listed
in table 10 under column speed, note that the reported
measurements are done on a PIV 3 GHz processor
running on Windows Vista, where the programming
environment was Microsoft VC++ 6. Here we report
the number of clock cycles needed by each cipher,
which is the minimum of 1000 iteration to remove any
initial overheads or cache misses. The results show
that ELEPHANT and ELEPHANT+ possess the same
speed, while ELEPHANT∗ is about 23% faster than
them.

We define the Safety Factor (SF) in (3), which
is the ratio between the total number of used dif-
fusers’ cycles over the minimum required. SF rep-
resents how safe is the current number of diffusers’
cycles, under any circumstances this ratio should not
be less than one. The values of SF are reported in
table 10. These values show that ELEPHANT+ and
ELEPHANT∗ possess a higher SF than ELEPHANT.

SF = (AC +BC)÷ (AC′+BC′) (3)

From (Ferguson, 2006), suppose an attacker is at-
tacking two identical hard drives, one encrypted with
ELEPHANT and the other one encrypted with CBC.
We are going to give the attacker the tweak key (Ksec),
this means the attacker can now perform the diffusion
layer for any plaintext. In other words, the diffuser
layer becomes transparent to the attacker. All what is
left now for the attacker is to attack the CBC layer,

SECRYPT 2008 - International Conference on Security and Cryptography

428

which is the same problem that he has when attacking
the other hard drive (encrypted only using CBC). Al-
though we helped the attacker significantly by provid-
ing him with the tweak key, he still have to attack the
CBC layer. This shows that attacking ELEPHANT is
not easier than attacking just CBC, and ELEPHANT
is at least as secure as CBC.

By applying the same methodology,
ELEPHANT+ and ELEPHANT∗ are at least se-
cure as SCC, however they possess a higher SF than
ELEPHANT.

8 CONCLUSIONS

In this paper, we proposed a novel mode of operation
for disk encryption applications. We analyzed this
mode with the state of the art modes. Our proposed
mode is superior than the other modes, as it possesses
a high throughput. Although, it was designed based
on the CBC mode, it can be parallelized and does not
suffer from the bit-flipping attack. We used this mode
to modify Windows Vista’s encryption algorithm, to
enhance some of its diffusion properties together with
the ability to be partially parallelized.

REFERENCES

Anderson, R. and Biham, E. (1996). Two practical and
provable secure block ciphers: BEAR and LION. In
Dieter Gollmann, editor, Fast Software Encryption:
Third International Workshop (FSE’96).

Crowley, P. (2001). Mercy: a fast large block cipher for disk
sector encryption. In Bruce Schneier, editor, Fast Soft-
ware Encryption: 7th International Workshop, FSE
2000.

Daemen, J. and Rijmen, V. (1998). AES Proposal: Rijndael.
http://citeseer.ist.psu.edu/daemen98aes.html.

Davidson, J. and Jinturkar, S. (1995). An Aggressive Ap-
proach to Loop Unrolling. Technical report, Depart-
ment of Computer Science. University of Virginia.
Charlottesville.

El-Fotouh, M. and Diepold, K. (2007). Statistical Testing
for Disk Encryption Modes of Operations. Cryptology
ePrint Archive, Report 2007/362.

El-Fotouh, M. and Diepold, K. (2008a). Dynamic Substitu-
tion Model. In 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DB-
SEC’08), Naples, Italy.

El-Fotouh, M. and Diepold, K. (2008b). The Analysis of
Windows Vista Disk Encryption Algorithm. In The
Fourth International Conference on Information As-
surance and Security (IAS’08), London, UK.

Ferguson, N. (2006). AES-CBC + Elephant diffuser :
A Disk Encryption Algorithm for Windows Vista.
http://download.microsoft.com/download/0/2/3/
0238acaf-d3bf-4a6d-b3d6-
0a0be4bbb36e/BitLockerCipher200608.pdf.

Fluhrer, S. (2002). Cryptanalysis of the Mercy block cipher.
In Mitsuru Matsui, editor, Fast Software Encryption,
8th International Workshop, FSE 2001.

Fruhwirth, C. (2005). New Methods in Hard Disk Encryp-
tion. http://clemens.endorphin.org/nmihde/nmihde-
A4-ds.pdf.

Gladman, B. (2006). AES optimized C/C++ code. http: //
fp.gladman.plus.com/ AES /index.htm.

IEEE P1619 Email Archive (2007). http:// grouper.ieee.org/
groups/ 1619/ email/ thread.html.

IEEE P1619 homepage (2007). Draft 18 for P1619:
Standard Architecture for Encrypted Shared Stor-
age Media. http://attachments.wetpaintserv.us/
Wbr7V2GY67Sxaxbw6ZFBeQ %3D%3D262488.

Liskov, M., Rivest, R., and Wagner, D. (2002). Tweakable
Block Ciphers. In CRYPTO ’02: Proceedings of the
22nd Annual International Cryptology Conference on
Advances in Cryptology.

Lucks, S. (1996). BEAST: A fast block cipher for arbitrary
blocksizes. In Patrick Horster, editor, Communica-
tions and Multimedia Security II, Proceedings of the
IFIP TC6/TC11 International Conference on Commu-
nications and Multimedia Security.

May, L., Henricksen, M., Millan, W., Carter, G., and Daw-
son, E. (2002). Strengthening the Key Schedule of
the AES. In ACISP ’02: Proceedings of the 7th Aus-
tralian Conference on Information Security and Pri-
vacy, pages 226–240, London, UK. Springer-Verlag.

McGrew, D. (2002). Counter Mode Secu-
rity: Analysis and Recommendations.
http://citeseer.ist.psu.edu/mcgrew02counter.html.

McGrew, D. (2004). PRP Modes Compari-
son IEEE P1619.2. http://grouper.ieee.org/
groups/1619/email/pdf00050.pdf.

Menezes, A., Oorschot., P. V., and Vanstone, S. (1996).
Handbook of Applied Cryptography. CRC Press.

NIST (2007). Guide to Storage Encryp-
tion Technologies for End User Devices.
http://csrc.nist.gov/publications/nistpubs/800-
111/SP800-111.pdf.

Rogaway, P. (2003). Efficient Instantiations of Tweak-
able Block ciphers and Refinements to Modes
OCB and PMAC. http://citeseer.ist.psu.edu/ rog-
away03efficient.html.

Rogaway, P., Bellare, M., Black, J., and Krovetz, T. (2001).
OCB: a block-cipher mode of operation for efficient
authenticated encryption. In ACM Conference on
Computer and Communications Security, pages 196–
205.

Schroeppel, R. (1998). The Hasty Pudding cipher. The first
AES conference, NIST.

Trusted Computing Group (2008). TCG TPM Specification
Version 1.2. www. trustedcomputinggroup.org.

THE SUBSTITUTION CIPHER CHAINING MODE

429

