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Abstract: In this paper we view the possibilities to lance a multiple (iterative) birthday attack on NTRU. Recently Wag-
ner’s algorithm for the generalized birthday problem (Wagner, 2002) allowed to speed-up several combinato-
rial attacks. However, in the case of NTRU we can not hope to to apply Wagner's algorithm directly, as the
search space does not behave nicely. In this paper we show that we can nevertheless draw profit from a mul-
tiple birthday approach. Our approach allows us to attsi251ep6 parameter set on a computer with only
252 Bits of memory and about®2imes faster as with Odlyzko’s combinatorial attack — this is an improvement
factor about 22 in space complexity. We thus contradict the common believe, that in comparison to com-
putational requirements, the “storage requirement is by far the larger obstacle” (Howgrave-Graham, 2007) to
attack NTRU by combinatorial attacks. Further, our attack is abduin®es faster than the space-reduced
variant from (Howgrave-Graham, 2007) employing the same amount of memory.

1 INTRODUCTION 1.1 Our Contribution

The asymmetric NTRU encryption system (NTRU) We concentrate on adapting the attacks on NTRU to
(Hoffstein et al., 1998) is a well known cryptosys- machines with limited storage capacity and thus al-
tem, which to our knowledge is secure for large pa- lowing distributed attacks on NTRU. Evaluating the
rameter sets, e.g. witN ~ 500. For small parameter possible applications of an multiple birthday attack
sets, however, NTRU was subject to several attackson NTRU, we reduce the memory requirements of
connected to lattice theory like attacks on alterna- a combinatorial-only attack. This is an important
tive keys (Coppersmith and Shamir, 1997), exploita- issue: N. Howgrave-Graham states in (Howgrave-
tion of decryption errors (Howgrave-Graham et al., Graham, 2007) that the large storage requirements of
2003) and the ones using dimension reduced latticesOdlyzko's attack is “by far the larger obstacle” than
or zero-forcing (May and Silverman, 2001; Silver- the runtime for attacking NTRU with today’s hard-
man, 1999). These attack exploit the fact, that the pri- ware.

vate NTRU key is presumably the shortest vectorina A direct application of the standard solution for
lattice which can be deduced from the public NTRU generalized birthday paradox to NTRU is not pos-
key. Besides lattice-based attacks, there exists a comsible: The probability, that the secret NTRU vector
binatorial attack originally due to Odlyzko, see e.g. remains in the search space during the iterations of
(Howgrave-Graham, 2007). After several iterations Wagner's algorithm is too small to allow an efficient
of attacks and countermeasures, NTRU was consid-attack. We highlight this problem and present a work-
ered for standardization (P1363.1/D9, 2003). In that around which keeps track of the success probability
proposal, parameters of NTRU are chosen such thatduring the attack.

the combinatorial attack is (theoretically and practi- To perform a multiple birthday attack, we split the
cally) the fastest one. This is the case if the NTRU secret NTRU vectof into eight parts instead of two
parameters have = 2 with a smalld;. in Odlyzko’s attack. Further, we guess a permutation

of the positions of the secrgf such that the first posi-
tions ofg = fH are zero, whereél is the public NTRU
key. Since there are many ways to split up the secret
vectorf into eight parts, we can search the space of
*This work was funded by DFG grant OV 102/1-1 possible solutions by an iterative birthday approach:

237

Overbeck R. (2008).

A MULTIPLE BIRTHDAY ATTACK ON NTRU.

In Proceedings of the International Conference on Security and Cryptography, pages 237-244
DOI: 10.5220/0001916602370244

Copyright © SciTePress



SECRYPT 2008 - International Conference on Security and Cryptography

We search for those splits &fwhich lead to ay=fH introduction into lattice theory see (Micciancio and
with the first positions zero. This can be done by gen- Goldwasser, 2002).

erating first a list of vectors of weight one fourth of

the weight off with the first¢/1 positions zero via NTRU according to (P1363.1/D9, 2003) works as
the birthday approach. Then, we can search the sumfollows: System parameters are three prifNeg and

of pairs of such vectors, which are zero on the first p=2. NTRU uses the ring. = Z[X]/(XN —1). The

¢ > (1 positions and have the half weight f In elements of that ring are identified with their unique
the last part of the attack, we can relax the “birthday” representations iti|X] of degree less thad. We will
property, searching for those pairs of the latter vec- denote as weight Wf) of a polynomialf € g the
tors, which sum to a vector with the firét- p posi- number of non-zero coefficients. The NTRU secret
tions binary. Balancing!!,¢ andp, we can be sure, key are two binary polynomial§,g € % of weight
that the corredtis among the generated vectors. This df,dg respectively. There are various variants of
way we obtain sets of almost the same size at each it-NTRU. In this paper we concentrate on the one, where
eration and thus an attack, which requires much lessthe public key is given as = (f g modq), where
memory than Odlyzko’s attack. Further, such an at- “mod g’ means reduction of the coefficients modulo
tack is competitive with the fastest known NTRU at- ¢. All attacks on one variant of NTRU may usually be
tack (Howgrave-Graham, 2007) in terms of product of adapted for other variants.

time and space and even better than the space reduced A description how NTRU en- and decryption

variant presented in the same paper. work can be found, e.g., in (Hoffstein et al., 1998;
Howgrave-Graham et al., 2003). However, since at-
1.2 Related Work tacks on NTRU ciphertexts usually can be adapted to

attack the secret keys and vice versa, this paper deals

At CRYPTO 2007, N. Howgrave-Graham showed with attacks on the secret NTRU keys, only. We thus
that the security level for the NTRU parameters OMit giving details on en- and decryption.

proposed in (P1363.1/D9, 2003) is lower than in- AW ) )
tended (Howgrave-Graham, 2007). For his attack, 1heNTRU latticeis obtained from a matrix rep-
Howgrave-Graham used a hybrid lattice-reduction résentation of multiplications i . We can easily
and combinatorial attack against NTRU. By heuris- deduce a (cyclic) matrixi € Fy*" representing the
tic arguments he concludes, that he can attack themultiplication of polynomials witth in £ . With the
ees251ep6 parametgGSet in%2 modular additéigr;s N-dimensional identity matrix ld we obtain:

on a machine with 2° bits of memory or in 2* — =

modular additions on a machine wittt*® bits of G 3 .f[ ‘dn[H]=(fg) modg (1)
memory. Unfortunately, so far we are not able to com- for the coefficient vectord,g of f andg. Note
bine both approaches since Howgrave-Graham useghat [ ldn | H | defines a double-cyclic code over
the concept ok-admissible vectors, which prevents [Fq. To obtain the NTRU lattice out of the matrix

an iterative birthday approach in the search part of his [ ldn | H ], vectors allowing the reduction dH
attack. modulo q are added and in some caséss scaled

by ana:

1.3 Organization
LNTRU := [%] ()

In the next section we recall NTRU and the basic nota- ] o

tions. Then, we revise the generalized birthday para- According to the Gauss-heuristi@f,g) can be as-

dox and view it's application to NTRU. To conclude, Sumed to be the shortest vector in the NTRU lattice

we give numbers and a comparison to the other at-iIf @ is properly chosen (up to double-cyclic shifts).

tacks on NTRU. Most attacks aim to find this vector either by lattice
reduction or by a combinatorial approach. In the fol-
lowing we will takea = 1, as this is a suitable value.

2 PRELIMINARIES
In this paper we view only integer lattices, i.e. sub- 3 THE GENERALIZED

vector spaces oEN. We will call wt(f) the (Ham- BIRTHDAY PARADOX
ming) weightof a vectorf € ZN, which corresponds
to the number of non-zero entriesfinlf J is a sub- Many combinatorial attacks could be sped-up by

set of the positions df, we writef; = (fj)ics. For an Wagner's solution for the generalized Birthday para-
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dox. Wagner’s main theorem (Wagner, 2002) can be We get thatzi| = ('g‘) ~ g° ~ 2*1 and could thus hope

summarized as follows:

Theorem 3.1 (g-Generalized Birthday Prob-
lem). Let ra e N with (a+ 1)|[r and the sets
L1,L2,---,La C Fy be of cardinality q_h then, a
solution of the equation

26

Xi = 0 wherex; € i, (3
2,

can be found im(zaqﬁ) operations (ovefyr).

The algorithm proposed by Wagner is iterative: Fist,
he searches for partial collisions of the setsand
Lijsa1,i=1,---,2271 thatis, such pairéq,%_ ,a 1)
thatLSBr_ (X +X;,5a-1) = 0. This way, one obtains

221 |ists with approximately i pairs where the
last ﬁ entries are zero and can be omitted in the
next step. A recursive application of this step leads to
a solution of Equation (3).

Proof. (Theorem 3.1). Let £1 and£; be two lists
of n-vectors withg’ elements, them, x £, contains
aboutg® elementgxy, x») and thus aboud’ elements
with (X1+X2){1’...,g} = 0. We can generate the latter
elements as follows: We sort the elements.gfand
L in lexicographic order, which takes(q’ log(q’))
0peration§. Now, we can for each elemeri € 4
look up the elements i, with the same value,
which takeso (|1 -log|£2|) = 0(qflog(q’)) opera-
tions again. We can apply the argument iteratively,
which concludes the proo

In general, the-generalized birthday paradox al-
lows to find one solution among many possible in
quite efficient time: The set of elements ig x
Lo X -+ X Loa and thus of size®/ @+ with about
o?/@) solutions of Equation 3. By Wagner's
algorithm, we can find one of these solutions in
0(22q/(@t1)) operations instead ob(q/?) opera-
tions with the standard birthday attack.

A direct application to NTRU is not possible. Let
us view for example thees251ep6 parameter set
(N =251q9=197,df = 48,dg =~ N/2). Here we
could try to se= 3 and

Li= {xH|xe {o,1}”,wt(x):df/8:6}.

2Here and in the following, any criteria for sorting is
valid. One could, e.qg., take lexicographic ordering or maybe
the evaluation of a non-cryptographic hash. We will assume
that sorting a listv , e.g. by “Smoothsort”, costs the same
time as computing the sorting criteria for each element.
However, in the worst case, sorting cost§/ | - log|4/ |)
operations.

to generate binary vectofssuch thaf - H is zero at
some 20=5- (a+ 1) positions by theg-generalized
birthday paradox. In a random lattice, we would ex-
pect, that there are about’Xuch vectors, so that we
could assume, that we can find the secret NTRU vec-
tor with probability 2-2°, if the chosen 20 positions of
g are zero. However, this is not true: There (a(ﬁa;z)
ways to split the secret NTRU vectbinto two parts

f = X1+ x2 of weightd f /2. Thus, the probability that
there is a4, such thaky - LyTru IS zero at the last 10
position is only(ddf;z) .19 < 2731 The probability,
that such &, splits nicely again i:fggiﬁ) gF° #7216,
turning an attack impossible. In the next section we
will explain how to work around this problem.

4 A MULTIPLE BIRTHDAY
ATTACK FOR NTRU

To apply a multiple birthday attack to NTRU, we have
to ensure that at each iteration there is at least one el-
ement in the search space, which leads to the secret
vectorg. By multiplying Lnytru With a permutation
matrix P we can assume without loss of generality
that the first positions off are zero. Our goal is to
generate a list of N-vectorsf of weightds with the
first £ € N positions ofg = fH zero and the nexte N
positions binary by applying the birthday paradox it-
eratively like in Wagner’s algorithm. However, in the
NTRU case, numbers and probabilities do not behave
nicely, so that we can not apply the generalized birth-
day paradox directly — as explained in the previous
section. Nevertheless, we can apply the principle.

The key issue of our attack is to balance parame-
ters in a way, such that with sufficient probability, the
secret NTRU vector stays in the search space at each
stage of the multiple birthday attack. For the ease of
presentation we will assume thaltd .

4.1 An Approach with Symmetric Sets

We will denote withxs, X2 a split off into two vectors
of weightds /2 andx; + x2 = f, then we will split up
these vectors into smaller parts until we have dplit
into 8 parts, see Figure 4.1.

Each parlxi[z] is in the set

&= {x[z] e {0, 1N [wt(xZ) = df/8},
i=1---,8. Asall setsai[z] look the same, we use the
term “symmetric” sets. The principle how to generate

£ out of theLi[z} is given in Figure 4.2.
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Figure 4.2: Scheme of the multiple birthday attack.
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Figure 4.1: Splitting the secret NTRU vector.

We have to assure, that at each step the probabil-
ity that the secret NTRU vector remains in the search

space is not too low. It is obvious, that there are

xZ el i=1,... 8suchthat=y8  xZ.

In the first iteration we want to generate the sets
Lim, i=1,---,4 with |Lim| ~ |Li[2]| such that there
arext € £¥ of weightd; /4 with 5% x =f. To

do so, we choose @ (X! < ¢ and set

wt(x[t) = d¢ /4
/\(X[l]H){ly...yg[l]} =0

is a split ofx;, where
de/2 (1]

df/4) possiblex; .

Thus, the expected number of vakH} contained in

Li[l] is
ds/2\ |,
(df/ 4) /a

Li[l] _ {X[l] e {0,V

i=1,---,4. Note, thar’! + x"

f =x1+x2is asplit off. There arg

(4)
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and should be larger than one. Like in Wagner's al-
gorithm,Lim can be generated froméiz] andng]_l in
time O(|L£i2] |log, |L£i2]|) by sorting techniques. In the
second stage, we generate the sets

Li= {x € {0, 13" | wt(x) = d_zfA (XH) {10y = 0}’

i = 1,2, which should contain at least one of the vec-
tors which sum up td. A element(xy,X2) with
X1+ X2 =fwill be in £1 x £ with sufficient probabil-
ity if we can expect that there is an elemantc 4,
which matche$ in d; /2 positions. This is the case if
the expected number

(/)

is larger than one. Thus, we have to cho#8eand/¢

in respective to the Equations (5) and (4) — however,
there is no need to choosé2 = ¢ like in Wagner's
algorithm. To identifyf by the last application of the
birthday paradox, we do not longer search for exact
collisions on a subset of the positionsfeH but for a
binary collision in the firs? + p positions, i.e. those
elementgx1,X2) € £1 X L, such tha(x; +x2)-H €

£, as defined in Figure 4.2 (otherwibe: X1 + X2).

(5)

The cost of the presented multiple birthday attack
is summarized in the theorem below, which we proof
in the appendix. In the theoremy; represents the

costs to sort the selzq[z}, W, the cost, to generate the

Lim and 3 the number of vector operations needed
to generate the sorted sets Finally, w4 gives the
cost to generate and search it for the secret NTRU
vector.

Theorem 4.1. Assume that!Y ¢ and p are such that
|£2|/9" and the terms of the Equations (5) and (4) are
larger thanl. Then, the iterative birthday attack on
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NTRU can be performed in reduced lattice. Howgrave-Graham presents as well
2] 2] a space-reduced variant of his attack which consists
o ( |£17|logz[£17[-dt/8 in additional guessing of some structure in the secret
W key. Table 4.2 gives an overview of the performance

|L[2] 2 |L[2]|2 of the hybrid attack (where we give the binary com-

+ (1+log, < t[ll )) : ;[11 plexity rather than the complexity in operations over

q q Zq like in (Howgrave-Graham, 2007)). We can see,

W that a multiple birthday attack is competitive in mea-
|L[l]|2 |L[1]|2 (6) sure of product of time and space. In comparison
+ [1+log, | =21 1

with the space reduced variant of the hybrid attack,
the multiple birthday attack is even slightly better —
requiring about half the memory anel2’ times less

quz[ll quzm

2NGN binary operations.
+ (logy|L1|+d¥) T |£4] ) Table 4.3 gives an overview over Odlyzko’s at-
tack and shows that a multiple birthday attack clearly
Wa outperforms the standard combinatorial attack in time
vector operations, requires a memory of bit size and space complexity.
o((N+ (£ +wlogy(a) - (122 + 2] + |i])) and For a better comparison, we highlight the different

succeeds with probability N2 attacks for theees251ep6 Parameter set in Table 4.4.

We get the complexity of the multiple birthday at-

tack in binary operations from Equation (6) by multi-

plying Wi, W, andWs with N +log,(q) - (¢ +p) and S5 CONCLUSIONS

by replacing(log, |£1]| + df) in Wy with log, |£1] -

(ulogy(g) +N)+df -Nlog,(qg). The difference of the  The iterative application of the birthday paradox to

factors results from the different sizes of the vectors the NTRU problem allows performing distributed

used in each set. So far, we treated only the case,combinatorial attacks on machines with a smaller

where the term in (5) was larger than 1. However, storage capacity than previously. We achieve an at-

we can permit smaller numbers as well, which lowers tack, which is about 2times faster than the space-

the success probability of the algorithm. Please note, reduced attack from (Howgrave-Graham, 2007) on

that if | £2|/g" < 1, the number of lookups in> re- machines of about the same siz€Dits of mem-

mains the same, while the number of vector additions ory). However, even with the achieved reduction of

in the last step decreases with the expected number ofthe memory size we are still not able to perform com-

X2 matching thex;. binatorial attacks on a Desktop PC. Therefore and be-

cause we are not able to reduce the runtime of com-

Table 4.1 gives intuition of some parameter pinatorial attacks, our results do not affect NTRU pa-

choices and the expected sizes of the sets generategameters from (P1363.1/D9, 2003) in a practical or

during the attack. asymptotic sense.

4.2 Experimental Results 5.1 Open Questions

We fully implemented the attack and made various ex-
periments for small parameter sets. Our experiments
corroborate the numbers from Theorem 4.1. For the
toy exampleN = 53,q=37,d; = 16,dg~ N/2 (com-
pare (Howgrave-Graham, 2007)) our attack generated
lists of maximal 2* vectors, needed?® vector oper-

So far were not able to combine the multiple birthday
attack presented in this paper with the hybrid attack
by Howgrave-Graham. We thus leave this question
for further research.

ations and had a success probability 41 To better “tune” a multiple birthday attack, i.e. to
] _ get|Li[2]| ~ |Li[l]| ~ |Li| =~ |£| we propose to use re-
4.3 Comparison with Other Attacks laxed “birthday” conditions. So far, we considered

only binary or zero birthdays, that is, we say that
The hybrid lattice reduction/combinatorial attack pre- two vectorsx,y have a “birthday” on a position if
sented at CRYPTO 2007 (Howgrave-Graham, 2007) (x — y)H; is binary or zero. Likewise one could de-
by Howgrave-Graham performs a BKZ lattice reduc- fine birthdays agx —y)Hi € {—a,--- ,a} for some
tion first and then tries to find the secret key in the a < g/2. We did not have time to check this, but one
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Table 4.1: The multiple birthday attack on NTRU — Time in binaperations.

NTRU Parameters Multiple Birthday attack

(N,q,ds,dg) Woen | 122 ] 12% | 1z | Eq. @) ] Eq. 5) || Eq. (6) | Time | Space
Toy example

(53,37,16,N/2) 13,3 2104 1 213 214 | 2 22 2213 228 2205 pits
Toy example

(107,67,32,N/2) | 2,5,5 222 | 226 | 2815 | 2L5 2-11 2433 252 239 pits

ees251ep6
(251,197,48 N/2) || 2,8,7 238 | 251 | 250 | 26 216 2835 287 2597 pits

ees251ep6
(251,197,48 N/2) || 3,9,7 238 | 2435 | 42 | =15 | p-23 2842 2% 252 pits

ees397epl
(397,307,74N/2 | 4,9,14 | 2695 | 2806 | 283 | 2 2-20 2124 21385 1= o3 bits

ees491epl
(491,367,91,N/2) || 5,14,15 | 275 | 2867 | 2954 | 2-018 | 5-32 2154 58 Y 2160 hits

Table 4.2: Performance of Howgrave-Graham's Attack — Timleinary operations.

Parameter set Hybrid attack

(N,q,ds,dg) Space reduced | Time | Space
Toy example

(107,67,32,N/2) | no A 2362 pits
ees251epb

(251,197,48 N/2) || no ot 2656 pits
ees251ep6

(251,197,48 N/2) | yes 2°%¢8 2536 pits

Table 4.3: Odlyzko’s attack on NTRU — Time in binary operato

Parameter set Odlyzko's Attack
(N,q,ds,dg) # Vectors | Time | Space
Toy example

(53,37,16,N/2) = 2311 2284 pjts
Toy example

(107,67,32,N/2) | 2*4 2573 2535 pits
ees251ep6

(251,197,48 N/2) || 2842 2997 2952 pits
ees397epl

(397,307, 74, N/2 | 2134 21470 2151 pits
ees491epl

(491,367,91,N/2) || 21665 2184 21787 pits

Table 4.4: Summary of available attacks on NT&$251ep6.

ttac ime pace ime Space

Attack Ti S TimeS
Odlyzko 2997 2952 pits 21949
Hybrid 2538 2555 bits 2149
Hybrid space reduceq 2%%8 2536 pits 21504
Multiple birthday 2% 2520 pits 21420
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might well achieve to reduce the storage requirementsimately

even more by this approach. 1 N 2/ dr -
N \di/2) " \di/2

REFERENCES samples, where each can be generatédl-id¢ /2 ad-
ditions modulag. Here, a “collision” for the birthday
Coppersmith, D. and Shamir, A. (1997). Lattice attacks paradox is C_haractenzed by. the binary _Sum OT two
on NTRU. Proc. of Eurocrypt '97, LNCS Springer- samples, which can be easily checked if the list of
Verlag. ’ samples is sortéd For theees251ep6 parameter set

Hoffstein, J., Pipher, J., and Silverman, J. (1998). NTRU: from (P1363.1/D9, 2003N=251.9=197,d; = 48,

a ring based public key cryptosystefroc. of ANTS ~ dg = N/2), this attack requires storing a list of’Z
I, 1423 of LNCS:267-288, Springer-Verlag. vectors, compare Table 4.3.

Howgrave-Graham, N. (2007). A hybrid lattice-reduction . . ]
and meet-in-the-middle attack against ntru. Piroc. Complexity of the Multiple Birthday

of CRYPT'07volume 4622 of_ecture Notes in Com- ; i
puter Sciencgpages 150-169. Springer. Attack with Symmetrlc Sets

Howgrave-Graham, N., Nguyen, P., Pointcheval, D., Proos, proof, (Theorem 4.1). We fist observe, that the sets

J., Silverman, J., Singer, A., and Whyte, W. (2003). 2] f
The impact of decryption failures on the security of £i @€ the same for eadh The same holds for the

NTRU encryption. To appear in Proc. of CRYPTO Lim andz;. In the following we assume, that in each
03, LNCS 2729:226-246. Springer-Verlag. list, we store as well the valug-H)y ... .4y together

May, A. and Silverman, J. (2001). Dimension reduction _, . . . [2 .
methods for convolution modular latticesProc. of with f. Computing and sorting; after the lexico

CalC 2001, LNC2146:111-127. Springer-Verlag. ~ 9raphic order off,f-H) ¢, ,uy (most significant bit
on the right) takes

Micciancio, D. and Goldwasser, S. (2002L.omplexity of

Lattice Problems: a cryptographic perspectivenl- . (N N

ume 671 ofThe Kluwer International Series in En- Wi = (df/s) 'IOgZ((df/8)> -df /8

gineering and Computer Scienc&luwer Academic

Publishers, Boston, Massachusetts. operations on vectors iy x Fy™*. Storing these sets

P1363.1/D9, I. (2003). Draft standard for public-key cryp- requires
tographic techniques based on hard problems over lat- N
tices. W. Whyte (editor). My = (df/g) “(N+ (£+ W) logy(a))

Silverman, J. (1999). Dimension reduced lattices, zero- ) 1]
forced lattices, and the NTRU public key cryptosys- bits. Generating the set(s)" takes
tem. NTRU Technical Repqart013. available at

. N \2 /1 N 2, gl
www.ntru.com. W = <1+|092 ((df/s) /d )) (df/8) /d
Wagner, D. (2002). A generalized birthday problem. In

Yung, M., editor, CRYPTQvolume 2442 ofLecture  gperations, since for each elementsf ; we have
Notes in Computer Sciengeages 288-303. Springer. N " ] *[2] )
about(yg) /" matching elements of ;. Storing

(4

L;” requires
APPENDIX N\ gl
Mz = (4,74)/a" - (N+ (€ + ) log,(q))
Odlyzko's Combinatorial Attack bits. Generating the set(s) takes

. 2, 4 1 2, o 1
Odlyzko proposed to randomly spfitin two binary Ws = (1+|092 ((di/4) /ot )) (agya) /d
parts of weightls /2, sayfy, f» € FY, such thafH =

f1H+f2H. Now, it is sufficient to list all the(j//))

possiblef;H, with f, of weightd; /2 and check for M3 = (47)5) /d - (N+plogy(q))
each possiblé, (of weightds /2), if f1H 4 foH is bi- -
nary. Because of the possible rotations there are about  °In (Howgrave-Graham, 2007) it is proposed to use an

df . . _ordering according to the signs of the entrie; 1l is rep-
N(df/z) correct choices fof;. By the birthday para resented as a vector with entries in the intefval/2,q/2].

dox, one correct pain,f, can be found after approx- However, other sorting criteria can be used as well.

operations. The resulting lists have a size of
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bits. On the construction of; we sort the lists di-
rectly after the last + p Positions offH. We choose
i such that|zi|/g" is relatively small. To find the
secret NTRU vector, for each elementec 1, we
searchs, for the elementx,, with a binary differ-
ence fromx, - H in the lastu Positions, which requires
2Hlookups each requiring lggi£ | operations on vec-
tors inF} x IFé“‘ plus|1|/g" comparisons. As soon
as we have found a binayxy +X2)H)1,... o4y, We
check thaf = x1 + Xz is binary and computg = fH.

If gis binary, we have found the secret NTRU vector.
This last step requires

W, = (Iog2 ((df'\‘/z)éqé) +df)
M
g (ayy2) /0

operations on vectors iffy x Fy. Thus, the total
workfactor for a multiple birthday attack on NTRU
starting with Li[z] is YW and requires about
s 1M; bits of memory. The success probability
results from assuming to be zero in the first
coordinates and the fact, that there are abNut
different cyclic shifts off, which can serve as secret
vector.m
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