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Abstract: A Learning Automaton is a learning entity that learns the optimal action to use from its set of possible 
actions. It does this by performing actions toward an environment and analyzes the resulting response. The 
response, being both good and bad, results in behaviour change to the automaton (the automaton will learn 
based on this response). This behaviour change is often called reinforcement algorithm. The term stochastic 
emphasizes the adaptive nature of the automaton: environment output is stochastically related to the 
automaton action. The reinforcement scheme presented in this paper is shown to satisfy all necessary and 
sufficient conditions for absolute expediency for a stationary environment. An automaton using this scheme 
is guaranteed to „do better” at every time step than at the previous step. Some simulation results are 
presented, which prove that our algorithm converges to a solution faster than one previously defined in 
(Ünsal, 1999). Using Stochastic Learning Automata techniques, we introduce a decision/control method for 
intelligent vehicles, in infrastructure managed architecture. The aim is to design an automata system that can 
learn the best possible action based on the data received from on-board sensors or from the localization 
system of highway infrastructure. A multi-agent approach is used for effective implementation. Each 
vehicle has associated a “driver” agent, hosted on a JADE platform. 

1 INTRODUCTION 

The past and present research on vehicle control 
emphasizes the importance of new methodologies in 
order to obtain stable longitudinal and lateral 
control.  In this paper, we consider stochastic 
learning automata as intelligent controller within our 
model for an Intelligent Vehicle Control System. 

An automaton is a machine or control 
mechanism designed to automatically follow a 
predetermined sequence of operations or respond to 
encoded instructions. The term stochastic 
emphasizes the adaptive nature of the automaton we 
describe here. The automaton described here does 
not follow predetermined rules, but adapts to 
changes in its environment. This adaptation is the 
result of the learning process (Barto, 2003). 
Learning is defined as any permanent change in 
behavior as a result of past experience, and a 

learning system should therefore have the ability to 
improve its behavior with time, toward a final goal. 

The stochastic automaton attempts a solution of 
the problem without any information on the optimal 
action (initially, equal probabilities are attached to 
all the actions). One action is selected at random, the 
response from the environment is observed, action 
probabilities are updated based on that response, and 
the procedure is repeated. A stochastic automaton 
acting as described to improve its performance is 
called a learning automaton. The algorithm that 
guarantees the desired learning process is called a 
reinforcement scheme (Moody, 2004). 

Mathematically, the environment is defined by a 
triple },,{ βα c  where },...,,{ 21 rαααα =  represents 
a finite set of actions being the input to the 
environment, },{ 21 βββ =  represents a binary 
response set, and },...,,{ 21 rcccc =  is a set of penalty 
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probabilities, where ic  is the probability that action 

iα  will result in an unfavorable response. Given that 
0)( =nβ  is a favorable outcome and 1)( =nβ  is an 

unfavorable outcome at time instant 
...),2,1,0( =nn , the element ic  of c  is defined 

mathematically by: 
rinnPc ii ...,,2,1))(|1)(( ==== ααβ  

The environment can further be split up in two 
types, stationary and nonstationary. In a stationary 
environment the penalty probabilities will never 
change. In a nonstationary environment the penalties 
will change over time. 

In order to describe the reinforcement schemes, 
is defined )(np , a vector of action probabilities:  

rinPnp ii ,1),)(()( === αα  
Updating action probabilities can be represented 

as follows:  
)](),(),([)1( nnnpTnp βα=+  

where T is a mapping. This formula says the next 
action probability )1( +np  is updated based on the 
current probability )(np , the input from the 
environment and the resulting action. If )1( +np  is a 
linear function of )(np , the reinforcement scheme is 
said to be linear; otherwise it is termed nonlinear. 

2 REINFORCEMENT SCHEMES 

2.1 Performance Evaluation 

Consider a stationary random environment with 
penalty probabilities },...,,{ 21 rccc  defined above. 

We define a quantity )(nM  as the average 
penalty for a given action probability vector: 

∑
=

=
r

i
ii npcnM

1

)()(  

An automaton is absolutely expedient if the 
expected value of the average penalty at one 
iteration step is less than it was at the previous step 
for all steps: )()1( nMnM <+  for all n  (Rivero, 
2003). 

The algorithm which we will present in this 
paper is derived from a nonlinear absolutely 
expedient reinforcement scheme presented by 
(Ünsal, 1999). 

 

2.2 Absolutely Expedient 
Reinforcement Schemes 

The reinforcement scheme is the basis of the 
learning process for learning automata. The general 
solution for absolutely expedient schemes was found 
by (Lakshmivarahan, 1973).  

A learning automaton may send its action to 
multiple environments at the same time. In that case, 
the action of the automaton results in a vector of 
responses from environments (or “teachers”). In a 
stationary N-teacher environment, if an automaton 
produced the action iα  and the environment 

responses are Njj
i ,...,1=β  at time instant n , then 

the vector of action probabilities )(np  is updated as 
follows (Ünsal, 1999): 
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for all ij ≠  where the functions iφ  and iψ  satisfy 
the following conditions: 
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for all }{\},...,1{ irj∈   
The conditions (3)-(6) ensure that 

rkpk ,1,10 =<<  (Stoica, 2007). 

Theorem. If the functions ))(( npλ  and ))(( npμ  
satisfy the following conditions: 

 (1)
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0))(( ≤npλ  
0))(( ≤npμ                                                  (7) 

0))(())(( <+ npnp μλ   
then the automaton with the reinforcement scheme 
in (1) is absolutely expedient in a stationary 
environment.  
The proof of this theorem can be found in (Baba, 
1984). 

3 A NEW NONLINEAR 
REINFORCEMENT SCHEME 

Because the above theorem is also valid for a single-
teacher model, we can define a single environment 
response that is a function f  of many teacher 
outputs. 

Thus, we can update the above algorithm as 
follows: 

)](1[)()1(
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for all ij ≠ , i.e.: 
)())(( npnp kk ∗−= θψ  

)()())(( npnHnp kk ∗∗∗−= δθφ  
where learning parameters θ  and δ are real values 
which satisfy:  

10 <<θ  and 10 <∗< δθ . 
The function H  is defined as follows: 
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Parameter ε  is an arbitrarily small positive real 
number. 
Our reinforcement scheme differs from the one 
given in (Ünsal, 1999) by the definition of these 
two functions: H  and kφ . 

The proof that all the conditions of the 
reinforcement scheme (1) and theorem (7) are 
satisfied can be found in (Stoica, 2007). 

In conclusion, we state the algorithm given in 
equations (8) is absolutely expedient in a stationary 
environment. 

4 EXPERIMENTAL RESULTS 

4.1 Problem Formulation 

To show that our algorithm converges to a solution 
faster than the one given in (Ünsal, 1999), let us 
consider a simple example. Figure 1 illustrates a grid 
world in which a robot navigates. Shaded cells 
represent barriers. 

  
  
  

Figure 1: A grid world for robot navigation. 

The current position of the robot is marked by a 
circle. Navigation is done using four actions 

},,,{ WESN=α , the actions denoting the four 
possible movements along the coordinate directions. 

Because in given situation there is a single 
optimal action, we stop the execution when the 
probability of the optimal action reaches a certain 
value (0.9999). 

4.2 Comparative Results 

We compared two reinforcement schemes using 
these four actions and two different initial 
conditions.  

Table 1: Convergence rates for a single optimal action of a 
4-action automaton (200 runs for each parameter set). 

 Average number of steps to reach 
popt=0.9999 

 4 actions with 

4,1

,4/1)0(

=

=

i

pi  

4 actions with 

3/9995.0

,0005.0)0(

=

=

≠opti

opt

p

p

θ  δ Ünsal’s 
Alg.  

New  
alg. 

Ünsal’s 
Alg.  

 

New  
alg. 

 
0.01 

1 644.84 633.96 921.20 905.18 
25 62.23 56.64 205.56 194.08 
50 11.13 8.73 351.67 340.27 

 
0.05 

1 136.99 130.41 202.96 198.25 
5 74.05 63.93 88.39 79.19 

10 24.74 20.09 103.21 92.83 
 

0.1 
1 70.81 63.09 105.12 99.20 

2.5 59.48 50.52 71.77 65.49 
5 23.05 19.51 59.06 54.08 

The data shown in Table 1 are the results of two 
different initial conditions where in first case all 
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probabilities are initially the same and in second 
case the optimal action initially has a small 
probability value (0.0005), with only one action 
receiving reward (i.e., optimal action). 

Comparing values from corresponding columns, 
we conclude that our algorithm converges to a 
solution faster than the one given in (Ünsal, 1999). 

5 USING STOCHASTIC 
LEARNING AUTOMATA FOR 
INTELLIGENT VEHICLE 
CONTROL 

The task of creating intelligent systems that we can 
rely on is not trivial. In this section, we present a 
method for intelligent vehicle control, having as 
theoretical background Stochastic Learning 
Automata. We visualize the planning layer of an 
intelligent vehicle as an automaton (or automata 
group) in a nonstationary environment. We attempt 
to find a way to make intelligent decisions here, 
having as objectives conformance with traffic 
parameters imposed by the highway infrastructure 
(management system and global control), and 
improved safety by minimizing crash risk.  

 The aim here is to design an automata system 
that can learn the best possible action based on the 
data received from on-board sensors, of from 
roadside-to-vehicle communications. For our model, 
we assume that an intelligent vehicle is capable of 
two sets of lateral and longitudinal actions. Lateral 
actions are LEFT (shift to left lane), RIGHT (shift to 
right lane) and LINE_OK (stay in current lane). 
Longitudinal actions are ACC (accelerate), DEC 
(decelerate) and SPEED_OK (keep current speed). 
An autonomous vehicle must be able to “sense” the 
environment around itself. Therefore, we assume 
that there are four different sensors modules on 
board the vehicle (the headway module, two side 
modules and a speed module), in order to detect the 
presence of a vehicle traveling in front of the vehicle 
or in the immediately adjacent lane and to know the 
current speed of the vehicle. 

These sensor modules evaluate the information 
received from the on-board sensors or from the 
highway infrastructure in the light of the current 
automata actions, and send a response to the 
automata. Our basic model for planning and 
coordination of lane changing and speed control is 
shown in Figure 2. 

 

 
Figure 2: The model of the Intelligent Vehicle Control 
System. 

The response from physical environment is a 
combination of outputs from the sensor modules. 
Because an input parameter for the decision blocks 
is the action chosen by the stochastic automaton, is 
necessary to use two distinct functions 1F  and 2F  
for mapping the outputs of decision blocks in inputs 
for the two learning automata, namely the 
longitudinal automaton and respectively the lateral 
automaton.   

After updating the action probability vectors in 
both learning automata, using the nonlinear 
reinforcement scheme presented in section 3, the 
outputs from stochastic automata are transmitted to 
the regulation layer.  The regulation layer handles 
the actions received from the two automata in a 
distinct manner, using for each of them a regulation 
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buffer. If an action received was rewarded, it will be 
introduced in the regulation buffer of the 
corresponding automaton, else in buffer will be 
introduced a certain value which denotes a penalized 
action by the physical environment. The regulation 
layer does not carry out the action chosen 
immediately; instead, it carries out an action only if 
it is recommended k  times consecutively by the 
automaton, where k  is the length of the regulation 
buffer. After an action is executed, the action 

probability vector is initialized to 
r
1 , where r  is the 

number of actions. When an action is executed, 
regulation buffer is initialized also. 

6 SENSOR MODULES 

The four teacher modules mentioned above are 
decision blocks that calculate the response 
(reward/penalty), based on the last chosen action of 
automaton. Table 2 describes the output of decision 
blocks for side sensors. 

Table 2: Outputs from the Left/Right Sensor Module. 

 Left/Right Sensor Module  

Actions 
Vehicle in sensor 

range or no adjacent 
lane 

No vehicle in 
sensor range 
and adjacent 
lane exists 

LINE_OK 0/0 0/0 
LEFT 1/0 0/0 

RIGHT 0/1 0/0 

Table 3: Outputs from the Headway Module. 

 Headway Sensor Module  

Actions 
Vehicle in range 
(at a close frontal 

distance) 

No vehicle 
in range  

LINE_OK 1 0 
LEFT 0 0 

RIGHT 0 0 
SPEED_OK 1 0 

ACC 1 0 
DEC 0* 0 

As seen in Table 2, a penalty response is 
received from the left sensor module when the 
action is LEFT and there is a vehicle in the left or 
the vehicle is already traveling on the leftmost lane. 
There is a similar situation for the right sensor 
module. 

The Headway (Frontal) Module is defined as 
shown in Table 3. If there is a vehicle at a close 

distance (< admissible distance), a penalty response 
is sent to the automaton for actions LINE_OK, 
SPEED_OK and ACC. All other actions (LEFT, 
RIGHT, DEC) are encouraged, because they may 
serve to avoid a collision. 

The Speed Module compares the actual speed 
with the desired speed, and based on the action 
choosed send a feedback to the longitudinal 
automaton. 

Table 4: Outputs from the Speed Module. 

 Speed Sensor Module  

Actions Speed: 
too slow 

Acceptable 
speed 

Speed: 
too fast 

SPEED_OK 1 0 1 
ACC 0 0 1 
DEC 1 0 0 

The reward response indicated by 0* (from the 
Headway Sensor Module) is different than the 
normal reward response, indicated by 0: this reward 
response has a higher priority and must override a 
possible penalty from other modules. 

7 A MULTI-AGENT SYSTEM 
FOR INTELLIGENT VEHICLE 
CONTROL 

In this section is described an implementation of a 
simulator for the Intelligent Vehicle Control System, 
in a multi-agent approach. The entire system was 
implemented in Java, and is based on JADE 
platform (Bigus, 2001).  

In figure 3 is showed the class diagram of the 
simulator. Each vehicle has associated a JADE agent 
(DriverAgent), responsible for the intelligent control. 
“Driving” means a continuous learning process, 
sustained by the two stochastic learning automata, 
namely the longitudinal automaton and respectively 
the lateral automaton. 

The response of the physical environment is a 
combination of the outputs of all four sensor 
modules. The implementation of this combination 
for each automaton (longitudinal respectively 
lateral) is showed in figure 4 (the value 0* was 
substituted by 2). 
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Figure 3: The class diagram of the simulator. 

// Longitudinal Automaton 
public double reward(int action){ 
  int combine; 
  combine=Math.max(speedModule(action), 
                  frontModule(action)); 
  if (combine = = 2) combine = 0; 
  return combine; 
} 
// Lateral Automaton 
public double reward(int action){ 
  int combine; 
  combine=Math.max( 
          leftRightModule(action), 
          frontModule(action)); 
  return combine; 
} 

Figure 4: The physical environment response. 

8 CONCLUSIONS 

Reinforcement learning has attracted rapidly 
increasing interest in the machine learning and 
artificial intelligence communities. Its promise is 
beguiling - a way of programming agents by reward 
and punishment without needing to specify how the 
task (i.e., behavior) is to be achieved. Reinforcement 
learning allows, at least in principle, to bypass the 
problems of building an explicit model of the 
behavior to be synthesized and its counterpart, a 
meaningful learning base (supervised learning).  

The reinforcement scheme presented in this 
paper satisfies all necessary and sufficient conditions 
for absolute expediency in a stationary environment 
and the nonlinear algorithm based on this scheme is 

found to converge to the ”optimal” action faster than 
nonlinear schemes previously defined in (Ünsal, 
1999). 

Using this new reinforcement scheme was 
developed a simulator for an Intelligent Vehicle 
Control System, in a multi-agent approach. The 
entire system was implemented in Java, and is based 
on JADE platform 
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