
REPLICATION OF WEB SERVICES FOR QOS GUARANTEES IN
WEB SERVICE COMPOSITION

Dirk Thissen and Thomas Brambring
Department of Computer Science, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Keywords: Web services, replication, quality of service, proxy.

Abstract: The concept of web services defines a middleware for implementing distributed applications independent of
used platforms and programming languages. When developing new software systems, re-use of function-
nality of existing services can be done to reduce development time and costs. This process of re-use is called
web service composition. But, current web service standards are not equipped to consider non-functional
requirements, i.e. quality of service (QoS) aspects of a user to a composed service. Thus, capabilities of
composed services cannot be guaranteed. This paper presents an approach to integrate QoS aspects into the
composition of web services by using service replication. At composition time, service instances are chosen
depending on the QoS requirements of a user to the whole service, and it is decided which services in the
composition have to be replicated and which replication strategy to use. Replication ensures that the QoS
requirements are not only considered at service selection time, but also can be granted at service runtime.

1 INTRODUCTION

A web service is some software which is seen as a
service it offers, aiming at automatic machine-to-
machine communication independent of the imple-
mentation of the software. A software architecture is
defined to give standards for service definition
(WSDL) and interaction (SOAP). Web services are
loosely coupled; the search for services to communi-
cate with is done dynamically at runtime using a
service registry (UDDI). The interaction across plat-
forms and programming languages enables easy and
fast deployment of new software: complex software
systems can be plugged together from existing
services to a collaborating group. This is called web
service composition. One vision is to achieve an
automatic composition and interaction of services.
But, the standards are not equipped to consider non-
functional demands to a composition, i.e., QoS
requirements like performance, reliability, or cost.

For acceptance by customers, a business should
provide good quality of its composed services. This
paper focuses on handling QoS aspects in web
service composition. The service registry UDDI was
enhanced to select web services for a composition
with respect to the QoS requested by a user. A QoS
broker was added to UDDI to manage the services’
QoS information and to calculate the best combina-

tion of services in the composition due to a user’s
requirements. But, QoS aspects can be dynamic, so a
QoS-oriented selection is only considering a kind of
system snapshot. Depending on the time between
service selection and the execution of a selected
service in the composition (basing on the composit-
ion pattern and the interaction between the services),
QoS information used at selection time can be
outdated at service usage time. Thus, the architecture
is enhanced by service replication to guarantee the
QoS from selection time also at runtime. A flexible
replication framework was developed to allow for as
well performance-related as fault tolerance- and
availability-related replication of services.

The paper is structured as follows. Chapter 2
presents a short overview about related work in the
area of QoS and replication in web service compo-
sition. In chapter 3, the principle of the QoS broker
is explained. Chapter 4 describes the replication
architecture and gives an overview about the current
implementation status. Finally, chapter 5 concludes
the paper and gives an outlook on the ongoing work.

2 WEB SERVICES AND QOS

Several approaches for the composition of web
services exist. A prominent example is the Business

155
Thissen D. and Brambring T. (2008).
REPLICATION OF WEB SERVICES FOR QOS GUARANTEES IN WEB SERVICE COMPOSITION.
In Proceedings of the International Conference on e-Business, pages 155-160
DOI: 10.5220/0001906301550160
Copyright c© SciTePress

Process Execution Language (BPEL) for Web
Services (OASIS, 2007). But these approaches are
not considering quality of service in the composition
process. Though there is a lot of research in web
services and composition, not much is related to
QoS. The existing work mostly refers only to a part
of the whole problem. (Liu et al, 2004) for example
present a framework to publish up-to-date QoS
information for web services, but the success of this
mechanism depends on feedback of users about the
quality of the services they consume. (Zeng et al,
2004) present a method to select services that fit to a
user’s interest (expressed as QoS parameters). Local
optimization and global planning are combined to
find the best set of services for a composition. But,
in case of highly dynamic QoS parameters, the
global planning approach might take more time for
re-calculation than the execution of the service
would need. Thus the approach itself can violate the
QoS. (Jaeger et al, 2004) propose a mechanism
which could be more efficient by using an aggrega-
tion scheme for QoS aspects. The approach sounds
well but was not implemented nor tested by the
authors. We used this approach as basis for the
implementation of an own solution to consider QoS
aspects in composition (Thißen and Wesnarat, 2006)
which is explained more detailed in chapter 3.

All these approaches have the same weakness:
services for the composition are chosen some time
before execution. If QoS parameters change, during
service execution the QoS demands of a user never-
theless can be violated. Replication is a possible
solution to deal with dynamic QoS parameters on
performance, high availability, and fault tolerance/
reliability. Instead of running a single instance of a
service, several copies are used. Replication defines
methods for keeping consistent all copies (called
replicas). The complexity is hidden from the user of
a service by a frontend which acts as the service
from the user’s view. A lot of replication algorithms
are given. In active replication, all replicas act in the
same way. The frontend uses group communication
to distribute a request to all replicas. It decides how
to deal with responses of the replicas, depending on
the QoS aspect which should be considered. To
ensure service available or to decrease the response
time of a service (performance), the frontend returns
the first response to the user. To improve fault
tolerance, it compares and combines all responses. A
different approach is passive replication. One replica
is a primary, and the frontend only communicates
with this replica. The primary forwards the requests
to all other replicas (backups) to keep them consis-

tent. If the primary fails, a backup can take over its
role, which improves fault tolerance and availability.

There are lot of other replication algorithms, and
also approaches exist to implement them within a
web service architecture. E.g., (Ye and Shen, 2005)
discuss active replication for web services. But, the
focus is only on reliability of web services, and only
active replication is implemented. The same holds
for (Chan et al, 2007): it is focussed on reliability.
WS-Replication (Salas et al, 2006) also uses active
replication to achieve high availability, and WS-
multicast is used for communication between the
replicas. WS-multicast is SOAP-based and maybe
causes a high overhead. (Osrael et al, 2007) is a
more flexible approach, implementing passive
replication and designing an open system for later
addition of other replication strategies. Consistency
can be weakened in this approach to reduce the
performance overhead caused by update propaga-
tion. But, till now only a variant of passive replica-
tion is realized, and the focus is on fault tolerance.

Concluding, the replication approaches either
focus on only one replication strategy, use multicast
on SOAP level which decreases performance, or
only consider a certain QoS aspect, e.g. availability.
Thus we designed an own replication framework for
integration with composition, which offers more
flexibility, see chapter 4.

3 QOS IN SERVICE SELECTION

For composing web services under QoS constraints,
we followed the approach presented in (Jaeger et al,
2004): a workflow pattern is given, showing the
relations between services. Aggregation rules are
used to combine quality measures assigned with
single services to come to an overall rating of sets of
services. We identified relevant QoS information
and basic composition patterns (SEQUENCE, AND,
OR, XOR, and LOOP) from which the whole
workflow pattern can be formed. Next, we defined
corresponding aggregation rules and a selection
mechanism to choose the best service candidates.
Given the workflow pattern for a composed service,
aggregation of QoS parameters is done by collapsing
the whole composition graph step-wisely into a
single node, starting with the innermost composition
pattern. By aggregating the properties recursively,
only one node is left in the final state. A set of
formulas was defined to model the aggregation of
the QoS parameters performance, cost, reliability,
and availability. This mechanism enables us to
check the resulting QoS of a set of services. Because

ICE-B 2008 - International Conference on e-Business

156

A. Publish Services

9. Receive
Service

UDDI

Service
Provider

Service
Provider

Service
Orchestrator

Service
Requestor

QoS
Broker

QoS and BPEL
Registry

Service
Provider

1. Request a
composite Service

2. Request WSDL of
sub-services

3. Receive WSDL of
sub-services

4. Select the most
suitable sub-services

5. Receive
information of

composite service
with the selected

sub-services

6. Request
for service

7. Request service from
selected sub-services

8. Receive
service from
selected sub-

services

B. Publish QoS
information

C. Publish
BPEL file

Monitor

Monitor

Monitor

Figure 1: Enhancement of the web service architecture.

we need to find a set of services to be executed, each
possible combination of service candidates for the
current composition pattern is evaluated, and the
best ones regarding the user’s demands are selected.
Multiple criteria decision making and weighting are
used to combine a service set’s aggregations for
different QoS parameters into one value, a quality
scores. For a composition pattern, the set of service
candidates with highest quality score is selected, and
it is done aggregation of the next innermost
composition pattern till a single node (the composed
service) remains with assigned QoS values.

For implementation of this approach we have
designed a prototype which enhances the general
web services architecture. Apache tomcat was used
as web container for the provided web services,
Apache Axis services as SOAP implementation.
jUDDI was chosen as UDDI registry, for executing
composed services the Oracle BPEL Process
Manager was used. It provides a service orchestrator
which can be assigned a workflow pattern and a set
of basic services; it then manages the execution of
the services due to the pattern. For integrating QoS
consideration as described before, we have imple-
mented some more components, see figure 1.

The central component is the QoS broker which
implements the QoS aggregation rules. It involves a
BPEL registry and a QoS registry. Service providers
as usual register their services with UDDI (step A in
figure 1). To publish QoS information, a monitor is
assigned each service, registering with the QoS
registry when a service is put into UDDI (step B).
When a composed service is deployed, the workflow
pattern is stored in the BPEL registry (step C).

When a service requestor searches for a web
service, it contacts the QoS broker (step 1). It does
not need to know if a service is a composed one or

not; the broker uses the BPEL registry to search for
a composition pattern. If one is found, the broker
asks UDDI for available candidates to all services in
the pattern (step 2). Having retrieved a list of all
available candidates (step 3), the broker connects to
the QoS registry to get the QoS values for these
services. By stepwise aggregation of the values
according to the pattern from the BPEL registry and
by selection of the best fitting candidates, a set of
basic services is chosen (step 4). The requestor gets
back a reference to an orchestrator for using the
service (step 6/9). The orchestrator manages the
service execution (step 7/8). After execution, it gives
feedback to the broker. In other requests to the same
composed service, the broker can make use of it.

Not included in figure 1 is the use of the QoS
monitors. Getting the QoS information for aspects
like cost is no problem: the values are constant for a
longer period of time and can be filled in by the
service provider at service setup. But most aspects,
are dynamic, e.g. like performance. Thus a monitor
is assigned each service to record its behaviour, to
compute floating averages, and to forward this infor-
mation to the QoS registry. To avoid that service
providers have to modify their services, the monitors
are independent components. They get the needed
information from so called valves placed on Tomcat
engine level. Here, e.g. timestamps can be used to
get statistics about the queuing time of a request.

Nevertheless, the QoS broker cannot guarantee
the QoS from selection time to be constant at
runtime, thus we had to enhance this architecture by
a mechanism which allows for some control at
execution time of the services.

REPLICATION OF WEB SERVICES FOR QOS GUARANTEES IN WEB SERVICE COMPOSITION

157

4 REPLICATION FOR QOS
GUARANTEES AT RUNTIME

The architecture presented in chapter 3 is only able
to consider user demands at selection time. Our next
step was to enhance the architecture by capabilities
of replication, to control the selected QoS at run-
time. Because of the disadvantages of existing
approaches, we designed an own replication
architecture considering the following goals:

 Allow for flexible choice of replication algorithm
at runtime. We want to use replication for
guarantees on several QoS aspects, thus we need
different replication strategies supporting perfor-
mance, availability, and fault tolerance in one
approach.

 Open architecture which can easily be enhanced
with new replication algorithms. For the begin-
ning, we only considered the most prominent
algorithms: active and passive replication.

 Decide at composition time which services have
to be replicated to fulfil a requestor’s demands.
E.g., the use of several replicas may improve the
reliability, but may contradict the cost of service
usage if one has to pay for each extra replica.
Thus, in the selection process a tradeoff is
necessary between gain and costs of using repli-
cation, including the number of replicas to use.

 Transparently use group communication and
avoid communication overhead by using SOAP.
Otherwise, replication could contradict the QoS.

 Automatically generate request and result
classes for web services from WSDL files.
Reduce the costs and time for integrating the
mechanisms into each application newly.

We designed our replication architecture
oriented at these goals and allowing for easy inte-
gration with our QoS-based selection of service
candidates in a composed service (chapter 3). In the
following, the components of the architecture and
their interaction are described in more detail.

The QoS broker remains the central component
of the architecture. It is enhanced by enabling the
selection of a replication strategy as well as a set of
suitable replicas for a service. For simplicity, we
started with the consideration of simple services
within the replication process, but oriented at the
composition architecture for easy integration.

The interaction of the QoS broker with service
requestor and the replicas of a single service is
shown in figure 2. The replicas are all registering
with UDDI as usual (step (a) in figure 2). The
replicas additionally register with the QoS broker

resp. the assigned QoS registry via their monitors (b)
as described in chapter 3. The services’ monitors do
not need to know if they are belonging to a
replicated service or to a simple one, they have to
submit the same information as before. The monitors
regularly measure the QoS values of their replicas,
calculate advanced information like floating
averages, and deliver the resulting values to the QoS
broker.

Replicated service

Service
requestor

QoS
Broker

Service
Directory

Service
Provider

Service
Provider

Service
Provider

1 2

34

56
ab

Figure 2: Replication enhancement.

If a service requestor contacts the QoS broker to
ask for a service (1), the broker interacts with UDDI
to find all replicas to the requested service (2 + 3).
Based on the requested QoS, the broker now can
select a subset of fitting replicas which seems to be
sufficient to fulfil the requestor’s demands.
Simultaneously, it can decide on the best replication
strategy regarding the requested QoS. If e.g. high
performance is needed primarily, active replication
is chosen to reduce response times. If availability
has priority, passive replication is more appropriate
to reduce the communication overhead. Based on the
known availability probability of the service, also
the number of replicas could be determined.
Currently, active and passive replication are imple-
mented in our prototype, and only a few rules are
implemented, which strategy to use in which cases.

The service requestor gets back a reference for
its service (4) and can use it (5 + 6). The detailed
information transmitted in these steps depend on the
replication strategy chosen by the QoS broker since
the service requestor maybe has to contact a single
service or maybe a service group.

If the broker chooses passive replication, the
requestor only communicates with a single replica.
In contrast to common passive replication there is no
fixed primary replica which all the time is contacted.
Instead, the QoS broker chooses the actually best
replica due to the requestor’s demands and returns a
reference to this replica to the requestor. The other

ICE-B 2008 - International Conference on e-Business

158

replicas only serve as backups and are invisible to
the requestor. The dynamic primary selection allows
for a better average QoS level in terms of perfor-
mance because it enables a kind of load balancing
between all available replicas. But, one has to keep
in mind that using different primaries for different
requests can cause consistency violations. Thus it
depends on the service itself if the weakening of the
consistency is useful.

On the other hand, in active replication the
requestor has to communicate with all replicas
simultaneously. Thus he has to communicate with a
group of services instead with a single service.

To hide the different usage for the replication
schemas, proxies are used. They encapsulate the
functionality of communication with replicated
services. Only a single interface is offered to the
requestor. Independent if passive or active replicat-
ion is used, the requestor gets back a reference to the
used proxy instead of a reference to a concrete
service (in step 4 of figure 2) – the proxy itself
seems to be the service for the requestor. This
schema intentionally is designed similar to the usage
of composed services via an orchestrator as descry-
bed in chapter 3, to merge the functionalities of
orchestrator and proxy. The only difference for the
requestor is that the QoS broker not only sends back
a reference to a service (the proxy), but also some
additional configuration parameters the requestor
has to use in its request to enforce a certain replicat-
ion process (which was chosen by the broker).

Group Com-
munication

Message
Handler

Client Proxy

Client

Callback
functions

4 3

5

6

Service
request

2 Requestor
interface

1Group Com-
munication

Message
Handler

Client Proxy

Client

Callback
functions

4 3

5

6

Service
request

2 Requestor
interface

1

Figure 3: Client proxy.

Figure 3 shows the structure of such a proxy.
The client only holds a reference to its proxy, which
is capable of performing all replication strategies for
any kind of request. The proxy is informed by the
QoS broker about the set of replicas to use for a
request. To inform the proxy how to handle a certain
request, the requestor now has to include the
configuration parameters chosen by the QoS broker

in its request (step 1 in figure 3). Such a request may
look as follows:

Proxy.requestActively(request,
READ_ONLY, GET_FIRST, 2000);

The original request of the user is passed to the
proxy only as one parameter request. The proxy
is able to process this request by using the corres-
pondingly assigned replicas. In which way to use the
replicas, is defined by the other parameters of the
user’s call. The proxy implements functions
requestActively and requestPassively.
Depending on which replication mechanism is
chosen the client has to call the corresponding
function. The client gets this information from the
QoS broker as part of the configuration information.
The second parameter of the request tells the proxy
if the request is read-only or not. In case of read-
only, consistency is relaxed, which can improve the
performance of a request. This parameter is followed
by an information if the first response has to be
forwarded to the client (e.g. for performance or
availability aspects), or if the proxy has to wait for
all responses and to combines them in some way to
achieve fault tolerance. The last parameter is a
timeout. It defines how long the proxy has to wait
for responses before combining the received results
(or before sending an error message back to the
requestor).

The proxy now can inform the group
communication component about the needed
communication mechanism (2) and the request
correspondingly is passed only to a single service or
to a group of services (3). The results which are
coming back from the replicas (4) are passed on to a
message handler (5) which can treat the responses in
different ways as described above. If passive
replication was used, the proxy immediately uses a
callback function to deliver the result to the
requestor (6). In case of active replication, it can
forward the first response to the client, or collect all
requests coming in before a timeout and form a
consensus out of them before passing only a single
response to the requestor.

Also on server side a proxy is needed to
coordinate all replicas corresponding to the chosen
replication strategy, see figure 4. The request comes
in over the group communication mechanism (step 1
in figure 4) and is forwarded to the message handler
(2). The message handler in the background interacts
with the QoS monitor (a) to allow for statistics about
the number of requests per second, response times,
etc which is part of the QoS parameters collected by
the monitor. Because in active replication
consistency requires a sorted execution of requests

REPLICATION OF WEB SERVICES FOR QOS GUARANTEES IN WEB SERVICE COMPOSITION

159

from different clients on all replicas, the holdback
queue (3) delays all requests till they can be
executed without violating consistency to other
replicas. To do so, requests have to be sorted the
same way for all replicas. For this purpose Lamport
Timestamps are used. The requests are sorted into a
delivery queue (4) which simply implements a FIFO
strategy and executes one request to the service after
the other. The requests can be passed on to the web
service by using a callback function (5 + 6). The
delivery queue also gets back the response (7 + 8)
and initiates the transmission of this response back
to the requestor (9). Again, the group communicat-
ion mechanism takes over the transmission of the
result to the requestor (and to the backups, in case of
passive replication).

Group Com-
munication

Message
Handler

Monitor

Holdback
Queue

Server Proxy

Replica server

Callback
function

Delivery
Queue

Web
Service

1 10

2

3 4 5 6

9

8 7

a

Group Com-
munication

Message
Handler

Monitor

Holdback
Queue

Server Proxy

Replica server

Callback
function

Delivery
Queue

Web
Service

1 10

2

3 4 5 6

9

8 7

a

Figure 4: Server proxy.

Using client and server proxy, the whole
replication is transparent for users and services.
When new replication strategies are implemented,
only the proxies have to be enhanced.

5 CONCLUSIONS

Currently, the architecture as described in chapter 4
is finished, and experiments are performed to
evaluate the behaviour of the replication framework.
On one hand the experiments should validate the
correctness of the implementation. On the other
hand (and more important for the ongoing work) the
evaluations also should help in comparing gains and
costs of the replication strategies. These
comparisons are necessary for fine tuning of the
decision rules inside the QoS broker: for which
combination of requested parameters which strategy
should by used, and with how many replicas. In
parallel, implementation has started to integrate the
replication enhancement into composed services.
This task is easy because the architecture of the
replication system was oriented at the existing
composition architecture (integration of orchestrator
with client proxy, implementation of server proxy as

valves like the monitors). Afterwards, the gain of
using replication in the composition again has to be
evaluated by a number of experiments.

Replication only is one way to improve the
quality of a service. After finishing our current
work, beside integrating more replication strategies
we want to examine if instead executing the same
service several times, also equivalent services of
different providers could be used. Also, we plan to
enhance the functionality of the proxies by other
strategies, e.g. load balancing as a mechanism with
weaker guarantees as replication, but on the other
hand cheaper if services – and quality guarantees –
have to be paid for.

REFERENCES

Chan, P.P.W., Lyu, M.R., Malek, M., 2007. Reliable Web
Services: Methodology, Experiment and Modeling.
Proc. IEEE International Conference on Web Services
(ICWS 2007), Salt Lake City, USA.

Jaeger, M.C., Rojec-Goldmann, G., Mühl, G., 2004. QoS
Aggregation for Web Service Composition using
Workflow Patterns. Proc. 8th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC'04), Monterey, USA.

Liu, Y., Ngu, A.H.H., Zeng, L, 2004. QoS Computation
and Policing in Dynamic Web Service Selection. Proc.
13th International World Wide Web Conference, New
York City, USA.

OASIS, 2007. Web Services Business Process Execution
Language Version 2.0. OASIS Standard,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.pdf

Osrael, J., Froihofer, L., Weghofer, M., Goeschka, K.M.,
2007. Axis2-based Replication Middleware for Web
Services. Proc. IEEE International Conference on Web
Services (ICWS 2007), Salt Lake City, USA.

Salas, J., Pérez-Sorrosal, F., Patino-Martínez, M.,
Jiménez-Peris, R., 2006. WS-Replication: A
Framework for Highly Available Web Services. Proc.
15th International World Wide Web Conference
(WWW 2006), Edinburgh, Scotland.

Thißen, D., Wesnarat, P., 2006. Considering QoS Aspects
in Web Service Composition. Proc. 11th IEEE
Symposium on Computers and Communications
(ISCC’06), Cagliari, Sardinia, Italy.

Ye, X., Shen, Y., 2005. A Middleware for Replicated Web
Services. Proc. IEEE International Conference on Web
Services (ICWS’05), Orlando, USA.

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M.,
Kalagnanam, J., Chang, H, 2004. QoS-Aware
Middleware for Web Services Composition. In: IEEE
Trans. Software Eng., Vol.30, No.5.

ICE-B 2008 - International Conference on e-Business

160

