
MODELS, FEATURES AND ALGEBRAS
An Exploratory Study of Model Composition and Software Product Lines

Roberto E. Lopez-Herrejon
Computing Laboratory, University of Oxford, U.K.

Keywords: Algebra, feature, Feature Oriented Software Development (FOSD), Model, Model Driven Software Develop-
ment (MDSD).

Abstract: Software Product Lines (SPL) are families of related programs distinguished by the features they provide.
Feature Oriented Software Development (FOSD) is a paradigm that raises features to first-class entities in the
definition and modularization of SPL. The relevance of model composition has been addressed in UML 2 with
new construct Package Merge. In this paper we show the convergence that exists between FOSD and Package
Merge. We believe exploring their synergies could be mutually beneficial. SPL compositional approaches
could leverage experience on the composition of non-code artifacts, while model composition could find in
SPL new problem domains on which to evaluate and apply their theories, tools and techniques.

1 INTRODUCTION

Software Product Lines (SPL) are families of related
programs distinguished by the set offeatures, i.e. in-
crements in program functionality, they provide (Ba-
tory et al., 2004). Extensive research has shown how
SPL practices can improve factors such as asset reuse,
time to market, or product customization and the im-
portant economical and competitive advantages they
entail (Pohl et al., 2005).

Feature Oriented Software Development (FOSD)
is a paradigm that raises features to first-class enti-
ties in the definition and modularization of SPL. A
fundamental premise of FOSD is step-wise devel-
opment: constructing complex programs by succes-
sively adding features. At the heart of FOSD is a fea-
ture algebra that drives the composition of the soft-
ware artifacts used throughout the software develop-
ment life cycle. However, to date, this algebra has
been applied to several artifact types such as source
code and XML files, but has not been thoroughly used
for model composition, in particular for UML-based
models.

The release of OMG’sModel Driven Architecture
(MDA) initiative has increased the attention to soft-
ware modeling of software practitioners, researchers,
and industry. A promise of MDA is to raise the ab-
straction level from lower level implementation arti-
facts to UML models and provide means to transform
such models, possibly through several stages, to exe-
cutable artifacts that can be targeted to different plat-

forms.Model Driven Software Development (MDSD)
goes a step further by broadening the scope to non-
UML based models. A crucial factor to make the
Model Driven promise a reality is the development of
techniques and tools that formally and precisely ab-
stract, represent and manipulate models and their el-
ements. Of particular importance are mechanisms to
break complex models into manageable partial views
that can subsequently be composed. Recent work ad-
dresses these issues by proposing generic algebraic
operations to describe model composition (Herrman
et al., 2007). The relevance of model decomposition
has also been addressed in UML 2 where new con-
struct Package Merge is used to simplify the specifi-
cation of the UML metamodel (OMG, 2007).

In this paper we show the significant convergence
that exists between research in FOSD and model
composition. As an example, we analyze the simi-
larities of Package Merge with the underlying alge-
bra of FOSD. We believe exploring the synergies of
both lines of research could be mutually beneficial.
Composition approaches for SPL development could
leverage experience on the composition of non-code
artifacts, while model composition could find in SPL
new problem domains on which to evaluate and apply
their theories, tools and techniques.

293
E. Lopez-Herrejon R. (2008).
MODELS, FEATURES AND ALGEBRAS - An Exploratory Study of Model Composition and Software Product Lines.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 293-296
DOI: 10.5220/0001901302930296
Copyright c© SciTePress

2 FEATURE ORIENTED
SOFTWARE DEVELOPMENT

Feature Oriented Software Development (FOSD) is
a paradigm that raises features to first-class enti-
ties in the definition and modularization of SPL. A
fundamental premise of FOSD is step-wise devel-
opment: constructing complex programs by succe-
sively adding features.AHEAD (Algebraic Hierarchi-
cal Equations for Application Design) is a realization
of FOSD (Batory et al., 2004).

AHEAD Tool Suite (ATS) provides support not
only for code composition but for several other arti-
facts such as XML files, grammar files, and equation
files. ATS has been used to synthesize large systems
(in excess of 250K Java LOC) from program expres-
sions (Batory et al., 2004). In ATS, a feature is im-
plemented as directory that contains all artifact files
related to the feature. Artifact types are distinguished
by the names of the file extensions and composition is
based on file and extension names.

2.1 FOSD Algebra

In FOSD a program consists of a set of composed fea-
tures, and a Software Product Line is the set of all pro-
grams that can be composed from the set of features of
the problem domain which satisfy its constraints (Ba-
tory et al., 2004). For example letM = {f, h, i,
j} which means domainD has featuresf, h, i, and
j. Programs are denoted as follows where• operator
corresponds to feature composition:

prog1= i•f // prog1 has features f and i
prog2= j•h // prog2 has features h and j
prog3= i•j•h // prog3 has features h,j,i

Features are hierarchical modules that can contain
any number of nested modules. Two features are com-
posed by recursively composing their nested elements
as captured by the following law:

Law of Composition. Let X andY be features defined
as follows:

X = {aX ,bX ,cX}

Y = {aY ,cY ,dY}

Wherea, b, c, andd are nested features whose sub-
script indicate the feature they belong to. The compo-
sition ofX andY, denoted asX•Y, is:

X • Y = {aX ,bX ,cX} • {aY ,cY ,dY}

= {aY • aX ,bX ,cY • cX ,dY}

Nested features are composed by names (ignoring the
subscripts). The features whose names do not have a
match, likebx or dy, are simply copied.

Composition approaches for SPL development could

leverage experience on the composition of non-code

artifacts, while model composition could find in SPL

new problem domains on which to evaluate and apply

is a paradigm that raises features to first-class enti-

ties in the definition and modularization of SPL. A

fundamental premise of FOSD is step-wise devel-

opment: constructing complex programs by succe-

is a realization

provides support not

only for code composition but for several other arti-

facts such as XML files, grammar files, and equation

files. ATS has been used to synthesize large systems

(in excess of 250K Java LOC) from program expres-

sions (Batory et al., 2004). In ATS, a feature is im-

plemented as directory that contains all artifact files

1 /∗ Fea t u r e Base ∗ /

2 l a y e r Base ;

3 c l a s s F i g u r e { i n t x , y ; . . . }

4

5 l a y e r Base ;

6 c l a s s Rec t a ng l e ex t e nd s F i g u r e {

7 i n t width , h e i g h t ;

8 vo id draw () { . . . / / base r e c t a n g l e draw }

9 }

10 /∗ Fea t u r e Co lo r ∗ /

11 l a y e r Co lo r ;

12 r e f i n e s c l a s s Rec t a ng l e {

13 i n t c o l o r ;

14 P a t t e r n background ;

15 vo id draw () {

16 . . . / / s e t c o l o r and p a t t e r n

17 Super () . draw () ;

18 }

19 }

20

21 l a y e r Co lo r ;

22 c l a s s P a t t e r n { . . . }

23 /∗ Compos i t i on o f F e a t u r e Base and Colo r ∗ /

24 c l a s s F i g u r e { i n t x , y ; . . . }

25 c l a s s Rec t a ng l e {

26 i n t c o l o r ;

27 i n t width , h e i g h t ;

28 P a t t e r n background ;

29 vo id draw () {

30 . . . / / s e t c o l o r and p a t t e r n

31 . . . / / base r e c t a n g l e draw s u b s t i t u t e s

Super () . draw () ;

32 }

33 }

34 c l a s s P a t t e r n { . . . }

Figure 1: Jak Composition.

2.2 Example

In this section we provide a very simple example to
illustrate FOSD feature composition. We will use this
example again to illustrate package merge in next sec-
tion.

Consider a simple product line of graphics appli-
cations that consists of two features,Base andColor,
that draw rectangles that can either be empty or filled
with a color and a pattern. The ATS uses a language
called,Jak which is a superset of Java. The imple-
mentation of featuresBase andColor would look like
Figure 1, lines 1-9 and lines 10-22 respectively.

The Jak keyword refines indicates that
the elements in the class are effectively added
to an existing class,Rectangle in our case.
Also notice the keywordSuper whose syntax is:
Super(paramtypes).method(actparams); where
paramtypes are the formal parameter types,method
is the method name andactparams are the actual
parameters.Super works in a similar way to standard
method overriding but at the feature level. The result
of the composition of both features is shown in lines
23-34. In this example, the composition of method
draw causes the execution of the code that sets the
color and pattern (line 30) followed by the base
rectangle draw code (line 31).

This composition could also be expressed alge-

ICSOFT 2008 - International Conference on Software and Data Technologies

294

braically as follows1:

Base = {Figure,RectangleBase}

Figure = {x,y}

RectangleBase = {width,height,drawBase}

Color = {RectangleColor ,Pattern}

RectangleColor = {color,background,drawColor}

Color •Base = {Figure,Pattern,

RectangleColor •RectangleBase}

RectangleColor • RectangleBase =

{width,height,

drawColor •drawBase}

2.3 Algebraic Properties

Feature composition can thus be regarded as the bi-
nary function,• : F ×F → F, where F stands for fea-
ture, that exhibits the following properties wheref, g,
andh are features (Lopez-Herrejon et al., 2006; Apel
et al., 2007):

1. Closure: The composition of two features is a
composite feature.

2. Associativity: (f • g)• h = f • (g • h)

3. Identity: ξ is the representation of an empty fea-
ture.

4. Idempotence: f • f = f

5. Non-commutativity: f • g 6= g • f
This is a result of the order of composition when
considering method refinements such as method
draw in our example.

3 PACKAGE MERGE

Package Merge is novel construct of UML 2 which
is extensively used to specify the UML 2 metamodel
(OMG, 2007). It allows to merge or compose the con-
tents of one package with another and involves three
main entities:

• Merged package: The first operand of merge, the
packaged to be merged into the receiving package.

• Receiving package: The second operand of
merge, conceptually contains the results of the
merge.

• Resulting package: The package that conceptu-
ally contains the results of the merge.

1For simplicity we omit the subscripts when not neces-
sary.

Figure 2: Packages Base and Color.

Notice here the use of the adverbconceptually which
takes the same connotation in the case of generaliza-
tion where the subclass conceptually, not textually,
contains the elements of the superclass. Also notice
here, that the receiving and resulting package are de-
fined to be the same.

The UML specification defines package merge
with (OMG, 2007): match rules which determine
when two elements are to be merged,constraints
that define the preconditions that must be met for the
merge to take place, andtransformations describe the
postconditions of the merge. Among the transforma-
tion rules of package merge three of them stand out in
our context, transcribed verbatim next:

1. Default rule: Merged or receiving elements for
which there is no matching element are deep
copied into the resulting package.

2. The result of merging to elements with matching
names and metatypes are the exact copies of each
other in the receiving element.

3. Matching elements are combined according to the
transformation rules specific to their metatype and
the results included in the resulting package.

Armed with these specifications we can now illus-
trate package composition with our example of Sec-
tion 2.2. Consider now each feature modeled as a
package as shown in Figure 2.

Following the rules of package merge, the result-
ing package would look like Figure 3. Not surpris-
ingly, given that package merge combines elements
by name and deep copies elements with no match, the
outcome is remarkably equivalent to that of Jak shown
in Figure 1.

3.1 Algebraic Properties

Dingel et al. have performed an exhaustive study
of package merge (Dingel et al., 2007). Their study
found that the UML specification has multiple cases
where merge rules are missing or are ambiguously

MODELS, FEATURES AND ALGEBRAS - An Exploratory Study of Model Composition and Software Product Lines

295

Figure 3: Conceptual Composed Packages.

defined. Their work provides new rules when miss-
ing and eliminates existing ambiguities. Furthermore
they develop a formal model based in Alloy to check
the following properties: uniqueness, associativity,
commutativity, and idempotence (Dingel et al., 2007).
It must be noted that, from the UML specification,
package merge has as identity the empty package and
is closed (OMG, 2007).

4 ANALYSIS

We have seen that both feature composition and pack-
age merge exhibit remarkably similar algebraic prop-
erties. There are however significant differences. In
the case of FOSD the order composition is relevant
and is made explicit in the order of the operands of
feature composition operator•. In the case of pack-
age merge there is not an explicit order of composi-
tion when a receiving package is merged with multi-
ple merged packages. Another difference is that in
package merge the resulting package is always the
receiving package, this expressed algebraically us-
ing feature composition as:Receiving = Merged •
Receiving .

5 CONCLUSIONS AND FUTURE
WORK

In this paper we show the significant convergence that
exists between research in FOSD and model compo-
sition, in particular with package merge. We believe
exploring the synergies of both lines of research could
be mutually beneficial. For instance, FOSD could
be extended to compose UML class diagram artifacts
which can serve as documentation of the single prod-
uct applications or be the basis to generate from them

other artifacts such as code. As a first step we are im-
plementing a prototype tool that uses Epsilon merg-
ing language to perform package merge. Our goal is
to integrate it into the ATS.

Much of the tooling effort in MDD today is fo-
cused on representing UML-based models and defin-
ing model transformations. What is generally lacking
are tools to express model composition of UML mod-
els by algebraic means. We believe that frameworks
such as MOMENT (Boronat et al., 2007)and the work
of Romero et. al (Romero et al., 2007) can serve as a
foundation on which to implement the FOSD algebra
in a framework that encompasses not only models but
also code artifacts such as Jak. Building such tools is
the subject of our future work.

REFERENCES

Apel, S., Lengauer, C., Batory, D., Moller, B., and Kast-
ner, C. (2007). An algebra for feature-oriented soft-
ware development. Technical report, University of
Passau/MIP-0706.

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004).
Scaling Step-Wise Refinement.IEEE Transactions on
Software Engineering (TSE), 30(6):355–371.

Boronat, A., Carsí, J. A., Ramos, I., and Letelier, P. (2007).
Formal model merging applied to class diagram inte-
gration.Electr. Notes Theor. Comput. Sci., 166:5–26.

Dingel, J., Zito, A., and Diskin, Z. (2007). Understanding
and Improving Package Merge. Software and Systems
Modeling.

Herrman, C., Krahn, H., Rumpe, B., Schindler, M., and
Volkel, S. (2007). An Algebraic View on the Seman-
tics of Model Composition. InECMDA-FA.

Lopez-Herrejon, R., Batory, D., and Lengauer, C. (2006).
A Disciplined Approach to Aspect Composition. InA
Disciplined Approach to Aspect Composition. PEPM.

OMG (2007). Uml infrastructure specification v2.1.2.

Pohl, K., Bockle, G., and van der Linden, F. J. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. InSpringer.

Romero, J., Rivera, J., Durán, F., and Vallecillo, A. (2007).
Formal and Tool Support for Model Driven Engi-
neering with Maude. Journal of Object Technology
6(9):187-207.

ICSOFT 2008 - International Conference on Software and Data Technologies

296

