
Context Handling in a SOA Infrastructure
for Mobile Applications

Laura Daniele, Luís Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, Enschede, The Netherlands

Abstract. Context-aware mobile applications can dynamically adapt their
behaviour to changes in the user context and provide their users with relevant
services anywhere and at anytime. In order to develop such applications, a
flexible infrastructure is necessary that supports several tasks, such as context
information gathering and services provisioning according to this information.
This paper presents a SOA-based infrastructure that divides these tasks among
several components. These components interoperate by making use of each
other’s services. In order to allow components interoperability, we propose the
use of context models, which represent the relevant concepts of our application
domain independently of specific design and technological choices. Moreover,
we present a generic component, the context expression evaluator, which has
been defined to facilitate the handling of context conditions, and we illustrate
how this component has been integrated with other components of our
infrastructure by using context models.

1 Introduction

Context-aware mobile applications are capable to satisfy their users’ current needs by
dynamically adapting their behaviour to their users’ context without explicit user
intervention. These applications can sense and explore their users’ context, reason
about that, and, based on context changes, provide relevant services to their users
anywhere and at anytime. In order to develop context-aware mobile applications, an
infrastructure is necessary that consists of generic components and supports general
purpose functions used by such applications. Because of stringent time-to-market
requirements, it is not desirable that each individual application captures and
processes context information for its own use, since application development in this
case would be time consuming and costly. In contrast, with a proper infrastructure,
generic functions can be made available and reused in various context-aware mobile
applications without developing them from scratch.

This paper presents an infrastructure that has been developed within the A-MUSE
project [1]. This infrastructure is based on the Service-Oriented Architecture (SOA)
approach, which aims at facilitating distributed systems design through the disciplined
use of the service concept. As defined in [2], services can be described, published,
discovered and dynamically assembled for developing massively distributed,
interoperable and evolvable systems. Our SOA-based infrastructure supports common

Daniele L., Ferreira Pires L. and van Sinderen M. (2008).
Context Handling in a SOA Infrastructure for Mobile Applications.
In Proceedings of the 2nd International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 27-37
DOI: 10.5220/0001899300270037
Copyright c© SciTePress

functions of context-aware mobile applications by assigning them to dedicated
components. Particularly, user components provide the application with user events
through a user interface, context sources sense the user context and provide the
application with context events, action providers execute actions in response to
events, a service trader can be used to register the services offered by context sources
and action providers to make them dynamically available according to SOA, and,
finally, a coordinator orchestrates the components mentioned above. User
components, coordinator, context sources, action providers and service trader support
the goals of the application by interoperating with each others.

The main contribution of this work consists of introducing context models to allow
interoperability among components of the A-MUSE infrastructure. Context models
represent the relevant concepts in the application’s universe of discourse and
components that realize application parts may use these models as a reference to
interoperate with other components. In order to show how it is possible to make
additional components interoperable with our infrastructure as long as they comply
with our context models, we present a context expression evaluator, which is a
generic component dedicated to context processing that has been developed in the A-
MUSE project to facilitate the handling of context conditions, and we discuss how the
context expression evaluator has been integrated in the infrastructure by using context
models.

The structure of the paper is the following: Section 2 presents the A-MUSE
infrastructure, Section 3 discusses the importance of context models and shows an
example to illustrate them, Section 4 presents the context expression evaluator
component and discusses how it has been integrated in the infrastructure by using our
context model, Section 5 discusses some related work, and Section 6 presents our
conclusions and identifies topics for future work.

2 Infrastructure

The A-MUSE infrastructure supports general purpose functions that are commonly
used by context-aware mobile applications. For example, all context-aware mobile
applications are capable to retrieve context information from the user context and,
based on this information, provide relevant services to their user. Therefore, our
infrastructure is general enough to be used by various context-aware mobile
applications. However, it may be configured based on the specific application to be
developed by simply implementing functions that are not worth generalizing, since
they are too specific and, therefore, not used by other applications. These specific
functions should be offered by application-specific components.

Fig. 1 shows the A-MUSE infrastructure. Although it has been especially
developed in the A-MUSE project for a case study called Live Contacts [3], the same
infrastructure can be used by other context-aware mobile applications. Live Contacts
consists of a context-aware mobile application running on Pocket PC phones,
Smartphones, desktop PCs that allows its users to contact the right person, at the right
time, at the right place, via the right communication channel. Further information
about the functionality that Live Contacts offers to its user can be found in [4].

28

The core of the infrastructure consists of a service coordinator, which receives
events and as a consequence triggers actions. Events may be either user input events,
which consist of explicit user requests to the application, or context events, which
consist of relevant changes in the user context. For example, a user input event may
be a request for the user’s list of buddies, and a context event may be the proximity
event whenever a buddy is nearby the user. Actions represent application reactions to
user input and context events, and may be an invocation of any internal or external
service, such as the generation of a signal, the delivery of a notification or a web
service request.

Fig. 1. A-MUSE infrastructure for context-aware mobile applications.

Fig. 1 depicts a user and his/her buddy (another user of the application) with their
context. They interact with the application through a presentation component that
provides the user interface to introduce inputs and receive outputs to/from the
application. Since context-aware mobile applications should be able to provide
relevant services to their users anywhere and at anytime, the presentation component
is integrated in the user device, which may be either a desktop PC, in case of users
with fixed location, or a Smartphone or Pocket PC phone in case of users on the
move. There is one presentation component for each user.

The user agent acts on behalf of the user. Particularly, the user agent interacts with
the presentation component to obtain user inputs and present user outputs, and
provides the service coordinator with user input events. The user agent is located in
the user device. There is one user agent for each user.

The service coordinator orchestrates all the components of the application,
including a database that contains status information about users (e.g., name,
password, preferred contacts means, list of buddies), and login information. In
principle we assume that there is one service coordinator and one database. The
service coordinator can manage multiple user instances in order to allow several users
to use the same application, and multiple application instances in order to allow
several context-aware mobile applications to share the A-MUSE infrastructure. The
service coordinator also interacts with context sources and action providers.

29

Context sources sense changes in the user context and provides the service
coordinator with context events. Fig. 1 shows a (GPS) location service that provides
information about users’ current location, a (MSN) presence service that provides
indications whether users registered in the application are available online in the
network, and a (Outlook) calendar service that provides information about users’
appointments and activities. We assume that there is one (GPS) location service, one
(MSN) presence service and one (Outlook) calendar service for each user agent in this
particular configuration. These services are registered in the service trader.

The action providers are responsible for performing actions triggered by the service
coordinator. Fig. 1 shows an SMS service, phone service, e-mail service and chat
service, which enable users to communicate with each other through, respectively,
sending messages, making a phone call, sending e-mails or chatting. There is one
SMS service, phone service, e-mail service and chat service for each user agent.
These services are also registered in the service trader.

The service trader registers all the available services offered by context sources and
action providers. This allows the coordinator to dynamically discover available
services based on the interface that is published in the service trader. After
discovering the proper service, the coordinator can invoke it by using the endpoint
location contained in the service description. This use of a service trader is a well
established pattern of service discovery in service-oriented architectures. Examples of
service traders in middleware platforms are the OMG CORBA trader [5] and the
UDDI registry [6].

The interactions among components of our infrastructure are based on the service-
oriented architecture (SOA) approach, which consider components only from the
point of view of the service that they provide or use without any mentioning of the
internal details of how the service itself is implemented. According to SOA,
components make use of each other’s services to cooperate in order to support the
goals of the application. Therefore, the coordinator uses the service offered by context
sources, which provide the coordinator with context events. However, the coordinator
is not aware of the details on how context sources obtain context information from the
user environment and how they process this information in order to generate context
events.

3 Context Model

In this work we start from the definition of context given in [7], which is the
following:

 “Context is a collection of interrelated conditions in which something exists or
occurs”.

This definition implies that we always consider context as a set of conditions
associated with a subject, which is something that “exists or occurs” in our definition.
In our models, a subject of context is called an entity. Although the concepts of entity
and context are strongly tied, these concepts are fundamentally different. Actually,
context is what can be said about an entity in its environment, which implies that
context does not exist by itself [8]. The context of an entity is characterized by several
and possibly interrelated conditions. Considering the context of a person, examples of

30

these conditions are the person’s geographical location, environmental conditions of
the person’s physical environment, such as temperature, humidity, light, etc., or the
person’s vital signs, like heart beat and blood pressure. Together, these context
conditions form the person’s context.

In order to develop context-aware mobile applications we need to identify the
context conditions that are relevant for the application or family of applications that
we want to develop. In order to achieve this we define a context model, which
represents the relevant context conditions of entities in the application’s universe of
discourse [8]. Particularly, we define a context model as a conceptual model of
context. Conceptual models are, in the sense of [9,10], abstract representations of a
“given subject domain, independent of specific design and technological choices”.
Therefore, when we define a conceptual model of context, we abstract from any
design and technological detail, such as the way context is sensed, provided, learned,
produced, and/or used.

Context models provide us with a conceptual foundation for the development
process of context-aware mobile applications. Particularly, context models allow us to
provide interoperability among components of the A-MUSE infrastructure depicted in
Fig. 1. In this infrastructure, each component realizes specific parts of the application
logic and, in order to support the goals of the application, it has to interoperate with
other components. Since our context model should represent all the concepts (entities
and context) used in the application, components that realize application parts use
concepts that should be represented in this model, and, therefore, are known and
understandable for other components. In other words, a context model is fundamental
since it provides the common vocabulary to “make our components understand the
same language”. We propose context models that are based on [8], which provides
foundational ontologies to support conceptual modelling and situation reasoning. Fig.
2 shows an example of context model.

Fig. 2 represents the Entity and Context classes, which are foundational concepts in
our context models. Any entity may be related to several different contexts and a
specific context may be referred to one or more entities. In Fig. 2, SpatialEntity
represents tangible objects, such as a person or a device and IntangibleEntity represents
intangible objects, such as an application or a network. IntrinsicContext represents a
context type that belongs to the essential nature of a single entity and does not depend
on the relationship with other entities. An example of intrinsic context is the location
of a person or a device. In contrast, RelationalContext represents a context type that
depends on the relation between distinct entities, such as the BuddyList in Fig. 2 that
belongs to a User entity and contains several Buddy entities. The User and Buddy
classes, which represent person types or roles in the Live Contacts application, are
overlapping since we assume that a user has several buddies and at the same time this
user is a buddy of other users. Therefore, a user is also a buddy and vice-versa.

Moreover, Fig. 2 depicts the ContextSituation class, which consists of contexts and
entities. We consider context situations since they enable the representation of
particular state-of-affairs of the applications’ universe of discourse. Example of
context situations are Proximity and ChangeMSNStatus, which describe, respectively,
when a certain buddy of a user is nearby this user, and when a certain buddy changes
his/her status on Messenger. Fig. 2 shows the specification of these context situations.
For the ChangeMSNStatus context situation, we assume that a user, whose status is
online, is interested to know when a buddy changes his/her status from busy to online.

31

Context

-hasContext

1..*

-isContextOf

1..*

ContextSituation

-entities1..*
*

-contexts1..**

SpatialEntity IntangibleEntity RelationalContext IntrinsicContext

Entity

Person GPSDevice

MSNApplicationBuddy

User

MSNStatus

GPSLocation

BuddyList

ChangeMSNStatus

Proximity

-hasDevice1..* -isDeviceOf0..*

-isUserOf
1..*

-hasUser
0..*

-hasLocation
1 1

-providesUserWith
1 1

-user11
*

-user21

*

-M
S

N
S

ta
tu

s2
*

*

-M
S

N
S

ta
tu

s1

*

*

-user21

*

-user11

*

-G
PS

Lo
ca

tio
n1

*
*

-G
PS

Lo
ca

tio
n2

*
*

*

-hasBuddyList1

-isInBuddyListOf1..*

*

{disjoint, complete}

{disjoint, incomplete}

{disjoint, complete}

{disjoint, incomplete}

{disjoint, incomplete}{o
ve

rla
pp

in
g,

 in
co

m
pl

et
e}

Proximity:

user1 = user
user2 = buddy
gpsLocation1 = user1.gpsDevice.gpsLocation
gpsLocation2 = user2.gpsDevice.gpsLocation
distance (x1, x2) = (x2 - x1)
proximity (user1, user2, threshold) = EVAL {distance (gpsLocation1, gpsLocation2) < threshold}

ChangeMSNStatus:

user1 = user
user2 = buddy
msnStatus1 = user1.msnApplication.msnStatus
msnStatus2 = user2.msnApplication.msnStatus
msnStatus2 == "busy"
changeMSNStatus (msnStatus1, msnStatus2) = EVAL {if msnStatus1 == "online" AND msnStatus2 == "online"}

Fig. 2. Context model example for the Live Contacts application.

4 Case Study: Integration of a Context Expression Evaluator

The context expression evaluator is a generic component developed in the A-MUSE
project that can be introduced in our infrastructure and facilitate the development
process of our applications. Actually, the context expression evaluator is dedicated to
context processing, namely, to gather context information from context sources and

32

reason about this information in order to provide notification of relevant events in the
user context. Since in the infrastructure depicted in Fig. 1 these tasks are realized by
the coordinator, which is also responsible of orchestrating all the internal interactions
within the infrastructure, the introduction of the context expression evaluator can
relieve the coordinator from the responsibility of managing context sources.
Moreover, the context expression evaluator may provide a mean to reduce the
network load that is caused by the SOA-based mechanism of registering and
discovering services in the service trader of our infrastructure. The use of the context
expression evaluator component is an architectural choice to facilitate context
processing in our applications. However, this component is not an essential part of our
infrastructure. Fig. 3 depicts the A-MUSE infrastructure with the addition of the
context expression evaluator.

Fig. 3. A-MUSE infrastructure with the context expression evaluator component.

Fig. 3 shows the context expression evaluator, which consists of an evaluation
engine and a broker. Context sources, such as GPS devices that provide users
location, register themselves in the broker in order to allow the evaluator component
to discover and invoke their services. The evaluation engine interacts with the broker
and evaluates context expressions provided by registered context sources. We are not
interested in the internal construction details of the context expression evaluator,
since, according to the SOA principles, it should be possible to introduce this
additional component in our infrastructure by only providing a description of the
service that this component offers. As depicted in Fig. 3, the description of the context
expression evaluation service may be registered in the service trader. In this way, the
coordinator, as well as any other component, can discover the context expression
evaluation service and invoke the proper operations in order to get notifications of
context events. Fig. 3 shows these operations.

In the infrastructure we have presented in Fig. 1, context sources register
themselves in the service trader in order to be dynamically available to the application
components and, particularly, to the coordinator. In this way, the coordinator can
subscribe to context sources of interest and get notifications of context events. In
contrast, in the configuration depicted in Fig. 3, context sources register their services
in the broker of the evaluator in order to be available to the evaluation engine.
Therefore, individual context sources are available only to the evaluator and not to

33

other application components. Since we consider it as a context source, the evaluator
is the only context source available to the application components and, particularly, to
the coordinator. In this way, if the context sources are not widely spread and are
placed in the proximity of the evaluator, it is in principle possible to reduce the
network load on the coordinator caused by the mechanism of registering and
discovering individual context sources in the service trader of the infrastructure.
However, a well-founded evaluation on the reduction of the network load can be
made only after implementing a prototype of our infrastructure.

The context expression evaluator works as follows. First, the coordinator has to
load the evaluator with a list of context expressions that are relevant to the application
(loadExpressionList operation). These expressions may concern either context events,
such as Proximity or ChangeMSNStatus described in Section 3, or specific values of
context information, such as the GPSLocation or MSNStatus of certain users. After
loading an expressions list, the coordinator can subscribe to specific expressions of
this list (subscribe operation) in order to get asynchronous notifications of context
events from the evaluator when changes occur in these expressions (valueChanged
operation). Alternatively, the coordinator can request the current value of some
context information and get a synchronous response from the evaluator (getValue
operation). Finally, the coordinator can unsubscribe to context expressions
(unsubscribe operation) and remove expression lists previously loaded in the
evaluator (removeExpressionList operation).

Concerning the interactions at the context sources side, context sources register
themselves in the broker as soon as they are available. For example, the GPS device
of a user registers its service to the evaluator whenever the user switches on the
device. Once the services are registered in the broker, the evaluation engine supports
both a subscription-based context information retrieval, analogously to the subscribe
operation of the coordinator, and a query-based context information retrieval,
analogously to the getValue operation of the coordinator. The evaluation engine
optimizes the communication with context sources by evaluating only essential
information. For example, when the engine is monitoring a boolean AND context
expression consisting of two sub-expressions and one of these sub-expression returns
false, the engine does not retrieve the value of the other expression until the first one
turns true. Moreover, when monitoring context expressions used in several user
instances, the engine retrieves only once the value of that expression from the
corresponding context source.

Considering the Proximity and ChangeMSNStatus context situations described in
Section 3, the coordinator first loads in the evaluator the following expressions list:

user1_gpsLocation = user1.gpsDevice.gpsLocation
user2_gpsLocation = user2.gpsDevice.gpsLocation
user1_user_2_proximity = proximity(user1,user2,threshold)
user1_msnStatus = user1.msnApplication.msnStatus
user2_msnStatus = user2.msnApplication.msnStatus
user2_changeMsnStatus =
changeMSNStatus(user1_msnStatus,user2_msnStatus)

The list above uses the language understood by the evaluator. In this language:
− user1_gpsLocation is an example of expression name, which is used by the

evaluator to identify a context expression unambiguously;

34

− user1.gpsDevice.gpsLocation is an example of context expression
concerning a specific value of context information. This expression refers to types
of entity (user1), context source (gpsDevice) and context (gpsLocation) that
are represented in our context model;

− proximity(user1,user2,threshold) is an example of context expression
concerning context events. This expression refers to the specification presented in
Fig. 2, in which proximity(user1,user2,threshold) has been defined as a
function that evaluates whether the distance between the GPS locations of a user
and one of his/her buddies is smaller than a certain threshold.

After loading the expressions list, the coordinator can subscribe to context events by
passing the name of the corresponding expression, e.g., user1_user_2_proximity,
as argument of the subscribe operation. Analogously, the coordinator can ask for a
specific value of context information by passing the name of the corresponding
expression, e.g., user1_gpsLocation, as argument of the getValue operation.

5 Related Work

The benefits of using Service-Oriented Architecture to support the development of
context-aware applications have been extensively discussed in the literature. In [15],
the convergence of context-awareness and Service-Orientation in ubiquitous
computing is discussed by comparing context-awareness principles, such as
adaptation and extension, to SOA principles, such as abstraction and loosely
coupling. Particularly, it is shown how abstraction and loosely coupling principles in
SOA support, respectively, adaptation and extension principles in context-awareness.
Much effort has been done to develop SOA-based middleware solutions for context-
aware applications [11, 12, 13, 14] in order to provide these applications with flexible
infrastructures that can be extended with little effort. Some of these solutions propose
context models to provide semantic interoperability among infrastructure parts. These
context models have been realized by using OWL [17], which is a web ontology
markup language proposed by W3C’s Web Ontology Working Group. Although these
context models are ontology-based, they do not consider ontologically well-founded
theories to support their modeling choices. For example, the concepts of context and
entity are frequently used interchangeably, which does not reflect the fundamental
characteristics of these concepts. Moreover, although related work address situation
modelling, often a required level of expressiveness, especially with respect to
temporal aspects, is not provided. In contrast, we have proposed context models that
are based on [8], which provides support to conceptual modelling with foundational
ontologies and a well-founded situation theory for situation reasoning, also with
respect to the definition of temporal relationships among situations.

6 Conclusions and Future Work

We have presented a SOA-based infrastructure for the development of context-aware
mobile applications that has been defined in the scope of the A-MUSE project. In

35

[16], we have defined this infrastructure as part of a design process based on the
Model-Driven Architecture (MDA) approach [18]. This design process first specifies
the behaviour of the application to be developed and gradually refines this behaviour
in sequences of interactions, called interaction patterns, among the infrastructure
components. Therefore, the use of our infrastructure for context-aware mobile
applications is tightly connected to the use of models that describe behavioural
aspects of such applications. These behavioural models are based on context models,
which provide a conceptual foundation to handle context conditions used by our
applications. We have discussed the importance of context models, which allow us to
provide interoperability among components of the A-MUSE infrastructure, and we
have presented examples of these models.

We have discussed how it is possible to integrate in our infrastructure additional
components that are dedicated to specific parts of the application logic, such as, e.g.,
context processing, as long as they comply with our context models. Particularly, we
have introduced a component, the context expression evaluator, which has been
developed in the A-MUSE project to facilitate the handling of context conditions. The
context expression evaluator has been defined to relieve the coordinator component
from managing context sources in order to get notifications of context events, so that
it can concentrate on the orchestration of the interactions between other components
in the infrastructure. Moreover, the evaluator may help in reducing the network load
caused by SOA interactions in our infrastructure. Particularly, we have shown how to
make the evaluator and coordinator components interoperable by using a context
model that represents relevant entities and context in the universe of discourse of
context-aware mobile applications.

Since this work is part of an ongoing project and the A-MUSE infrastructure has
not been implemented yet, we have not provided technical details, such as which
protocols and technologies are used to realize the service-oriented architecture, which
limits we have experienced in these technologies, and how we have integrated in the
infrastructure different services like the GPS, MSN and Outlook services. These
issues have to be considered in further investigation. The natural evolution of this
work consists of implementing a prototype of our infrastructure that uses the context
expression evaluator component for handling context conditions. In order to achieve
this, current work is being done within the A-MUSE project in order to realize a
running context-aware mobile application, based on the Live Contacts case study
presented in Section 2, which concretely demonstrates the interoperation of the A-
MUSE infrastructure components at runtime.

Acknowledgements

This work is part of the Freeband A-MUSE Project (http://a-muse.freeband.nl).
Freeband is sponsored by the Dutch government under contract BSIK 03025. We
would like to thank Mathieu Hutschemaekers and Hugo Zwaal (Ericsson
Telecommunicatie B.V.) for their contribution to this work on the design and
implementation of the context expression evaluator component.

36

References

1. Freeband A-MUSE Project; http://a-muse.freeband.nl
2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: A

Research Roadmap. In: Procedings of Dagstuhl Seminar on Service Oriented Computing
(2005). Internationales Begegnungs und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (2007)

3. Live Contacts home; http://livecontacts.telin.nl
4. Ter Hofte, G.H., Otte, R.A.A., Kruse, H.C.J., Snijders, M.: Context-Aware Communication

with Live Contacts. In: Conference Supplement of Computer Supported Cooperative Work
(CSCW2004). November 2004, Chicago, USA

5. Object Management Group: Trading Object Service Specification, Version 1.0, formal/00-
06-27 (2000)

6. OASIS: OASIS-Committes- OASIS UDDI Specifications TC;
http://oasis-open.org/commitees/uddi-spec/doc/tcspecs.htm

7. Merriam-Webster Online Dictionary page; http://www.m-w.com/dictionary/context
8. Dockhorn Costa, P.: Architectural Support for Context-Aware Applications: from Context

Models to Services Platforms. Ph.D. thesis, University of Twente, Enschede, The
Netherlands (2007)

9. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Ph.D. thesis,
University of Twente, Enschede, The Netherlands (2005)

10. Mylopoulos, J.: Conceptual Modeling and Telos. In: Conceptual Modeling, Databases, and
CASE, Whiley 49-68

11. Kim, E., Choi, J.: A Context-Awareness Middleware Based on Service-Oriented
Architecture. In: Procedings of the 4th International Conference on Ubiquitous Intelligence
and Computing (UIC 2007). Lecture Notes in Computer Science, Vol. 4611. Springer
(2007) 953-962

12. Bai, Y., Ji, H., Han, Q., Huang, J., Qian, D.: MidCASE: A Service Oriented Middleware
Enabling Context Awareness for Smart Environment. In: International Conference on
Multimedia and Ubiquitous Engineering (MUE 2007). IEEE Computer Society Press
(2007) 946-951

13. Kiani, S.L., Riaz, M., Sungyoung, L., Young-Koo, L.: Context Awareness in Large Scale
Ubiquitous Environments with a Service-Oriented Distributed Middleware Approach. In:
4th Annual ACIS International Conference on Computer and Information Science (ICIS
2005). IEEE Computer Society Press (2005) 513-518

14. Gu, T., Pung, H.K., Zhang, D.Q.: A Service-Oriented Middleware for Building Context-
Aware Services. In: Journal of Network and Computer Applications (JNCA), Vol.28, No.1.
Academic Press Ltd, London, UK (2005) 1-18

15. Yoon, H.: A Convergence of Context-Awareness and Service-Orientation in Ubiquitous
Computing. In: International Journal of Computer Science and Network Security (IJCSNS),
Vol.7, No.3 (2007) 253-257

16. Daniele, L., Ferreira Pires. L., van Sinderen, M.: Interaction Patterns for Refining
Behaviour Specifications of Context-Aware Mobile Services. In: Proceedings of the 4th
International Workshop on Model-Driven Enterprise Information Systems (MDEIS 2008),
12 July 2007, Barcelona, Spain. INSTICC Press, to appear

17. OWL home; http://www.w3.org/TR/owl-features
18. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)

37

