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Abstract: Best-first graph search is a classic problem solving paradigm capable of obtaining exact solutions to optimiza-
tion problems. As it usually requires a large amount of memory to store the effective search space, in practice it
is only suitable for small instances. In this paper, we propose a pruning method, based on dominance relations
among states, for reducing the search space. We apply this methodtafgorithm that explores the space
of active schedules for the Job Shop Scheduling Problem with makespan minimizatioA* &lgwrithm is
guided by a consistent heuristic and it is combined with a greedy algorithm to obtain upper bounds during the
search process. We conducted an experimental study over a conventional benchmark. The results show that
the proposed method is able to reduce both the space and the time in searching for optimal schedules so as it
is able to solve instances with 20 jobs and 5 machines or 9 jobs and 9 machines. Afsoisteaploited with
heuristic weighting to obtain sub-optimal solutions for larger instances.

1 INTRODUCTION gorithm relies on the concept of critical path, i.e. a
longest path in the solution graph representing the

In this paper we propose a method based on domi- processing order of operations in a solution. In par-

nance properties to reduce the effective space in bestlicular, the branching schema is based on reversing
first search. The method is illustrated with an appli- °rders on the critical path. The main problem of the
cation of theA* algorithm (Hart et al., 1968; Nils- methods based on the critical path is that they can not

son, 1980; Pearl, 1984) to the Job Shop Schedulingbe efficiently adapted to objective functions other than
Problem (JSSP) with makespan minimization. We es- makespan.
tablish a sufficient condition for a state dominates The algorithm proposed in (Sadeh and Fox, 1996)
another state, so am, can be pruned. Also, we have is guided by variable and value ordering heuristics
devised a rule to evaluate this condition efficiently. and its branching schema is based on starting times of
The overall result is a substantial reduction in both operations. It is not as efficient as the Brucker’s algo-
the time and mainly in the space required for search- rithm for makespan minimization, but it can be easily
ing optimal schedules. adapted for other classic objective functions such as
Over the last decades, a number of methods hastotal flow time or tardiness minimization. In this pa-
been proposed in the literature to deal with the JSSP per, we consider the search space of active schedules
with makespan minimization. In particular there are in order to evaluate the proposed method for pruning
some exact methods such as the branch and boundPy dominance. This search space is suitable for any
algorithm proposed in (Brucker et al., 1994) or the objective function.
backtracking algorithm proposed in (Sadeh and Fox, = The paper is organized as follows. In section
1996). 2 the JSSP is formulated. Section 3 describes the
As the majority of the efficient methods for the search space of active schedules for the JSSP. Sec-
JSSP with makespan minimization, the Brucker’s al- tion 4 sumarizes the main characteristicddfalgo-
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rithm. In section 5, the heuristic used to guiétefor tail qy is defined so as the valug + py is the cost of

the JSSP with makespan minimization is described. the longest path from to end Hence,r, + py+ Qv

Section 6 introduces the concepts of dominance andis the makespan ¥ is in a critical path, otherwise,

establishes some results and an efficient rule to testit is a lower bound.PM, and SM, denote the prede-

dominance for the JSSP. Section 7 reports results fromcessor and successonafespectively on the machine

the experimental study. Finally, section 8 summarizes sequence anéJ, andSJ, denote the predecessor and

the main conclusions and outlines some ideas for fu- successor nodes wfrespectively on its job.

ture research. A partial schedule is given by a subgraph Gf
where some of the disjunctive arcs are not fixed yet.
In such a schedule, heads and tails can be estimated

2 PROBLEM FORMULATION as

rv = max{maXyep(y) ("'w + Pw),pa, + Ppa, }
The Job Shop Scheduling Problem (JSSP) requires 1)
scheduling a set dfl jobs {Jy,...,Jy} on a set oM Oy = Max{MaXyes(y) (Pw + ), Psy, +0sa }

resources or machiné®y,...,Rv}. Each jobJ; con-
sists of a set of tasks or operatiof1,...,0m } to
be sequentially scheduled. Each t&gkhas a single

resource requiremefy, , a fixed duratiorpg; and a tive successors af Hence, the valug,+ py+qy is a
start timest, to be determined. lower bound of the best schedule that can be reached

The JSSP has three constraints: precedence, Caggm the partial schedule. This lower bound may be
pacity and no-preemption. Precedence constraints:

; i ) . improved from the Jackson’s preemptive schedule, as
translate into linear inequalities of the typety, + we will see in section 5.
Py < Sty y- Capacity constraints translate into dis-
junctive constraints of the fornst, + py < Sty V Sty +
pw < sk, if R, = Ry. No-preemption requires that the
machine is assigned to an operation without interrup- 3 THE SEARCH SPACE OF
tion during its whole processing time. The objective ACTIVE SCHEDULES
is to come up with a feasible schedule such that the
completion time, i.e. thenakespanis minimized. A schedule isactiveif for an operation can start ear-

In the sequel a problem instance will be repre- lier at least another one should be delayed. Maybe the
sented by a directed gragh= (V,AUE). Eachnode = most appropriate strategy to calculate active sched-
in the setV represents an actual operation, with the ules is theG&T algorithm proposed in (Giffler and
exception of the dummy nodesart andend which Thomson, 1960). This is a greedy algorithm that pro-
represent operations with processing time 0. The arcsduces an active schedule in a numbeNefM steps.

whereP(v) denotes the disjunctive predecessors,of
i.e. operations requiring machifg which are sched-
uled beforev. AnalogouslyS(v) denotes the disjunc-

of A are calledconjunctive arcsand represent prece- At each stepG&T makes a non-deterministic

dence constraints, and the arc&dre calledlisjunc- choice. Every active schedule can be reached by

tive arcsand represent capacity constraints. taking the appropriate sequence of choices. There-
E is partitioned into subsetE; with E = fore, by considering all choices, we have a complete

Ui=1....mEi. Ei includes ararc (v,w) for each pair of  search tree for strategies such as branch and bound,

operations requirin@R. The arcs are weighed with  backtracking oA*. This is one of the usual branch-

the processing time of the operation at the source ing schemas for the JSSP, as pointed in (Brucker and
node. Nodestart is connected to the first operation Knust, 2006), and it is the approach taken, for exam-
of each job and the last operation of each job is con- ple, in (Varela and Soto, 2002) and (Sierra and Varela,

nected to nodend 2005).
A feasible schedule is represented by an acyclic  Algorithm 1 shows the expansion operation that
subgraphGs of G, Gs = (V,AUH), whereH = generates the full search tree when it is applied suc-

Ui=1....mHi, Hi being a processing ordering for the op- cessively from the initial state, in which none of the

erations requirindz;. The makespan is the cost of a operations are scheduled yet.

critical path. A critical path is a longest path from In the sequel, we will use the following notation.

nodestartto nodeend Let O denote the set of operations of a problem in-
In order to simplify expressions, we define the fol- stance, andh; andn; be two search states. im, O

lowing notation for a feasible schedule. Thead ¥, can be decomposed into the disjoint un®@(n;) U

of an operatiorv is the cost of the longest path from US(n;), whereSQn;) denotes the set of operations
nodestart to nodeyv, i.e. it is the value oft,. The scheduled im; andU S(n;) denotes the unscheduled
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Algorithm 1: SUC(state n). Algorithm to expand a
staten. When it is successively applied from the ini-

SCHEDULING PROBLEM

If the heuristic function underestimates the ac-
tual minimal cost,h*(n), from n to the goals, i.e.

tial state, i.e. an empty schedule, it generates theh(n) < h*(n), for every noden, the algorithm is ad-

whole search space of active schedules.

1.A={veUgn); Py € sqn)};
2. Letv € A the operation with the lowest completion
time if itis scheduled next, thatis + py < ry+ pu,Vu e
A
3.B={we A Ry=R,andry < ry+ py};
for eachw € B do
4.SCn") = SAn) U {w} andUuS(n’) = U S(n)\{w};
\* w gets scheduled in the current statexiy
5.Gy =Gpu{w—v,veUSn'), R, =Ry};
\* Sty is set to fy in ' and the ar¢w, v) is added to
the partial solution graph«\
6. c(n,n’) = maxo, (rw + pw) — max(ry+ pv),v €
sam)}}: o _
7. Update heads of operationsWr§(r') accordingly
with expression (1);
8. Addn' to successors;
end for
9. return successors;

ones.D(n;) = |SQAny)| is the depth of node; in the
search space. Give®¥ C O, rp, (O') is the vector of
heads of operation®' in staten;. rp, (0') < rp,(0)

iff for each operatiorv € O, ry(n1) < ry(nz), rv(ny)

andry(nz) being the head of operationin statesn;

andn, respectively. Analogously, (O') is the vec-
tor of tails.

4 BEST-FIRST SEARCH

For best-first search we have chosenAfiéNilsson’s
algorithm (Hart et al., 1968; Nilsson, 1980; Pearl,
1984). A* starts from an initial stats, a set of goal
nodesl” and a transition operat@UCsuch that for
each node of the search spac&UQ(n) returns the
set of successor statesrofEach transition fronm to

n’ has a positive cost(n,n’). P, denotes the mini-
mum cost path from nodgto noden. The algorithm
searches for a patfi., with the optimal cost, denoted
C.

missible, i.e. it returns an optimal solution. Moreover,
if h(ny) < h(nz2) +c(ng, np) for every pair of states;,

n, of the search graph is consistent. Two of the
properties of consistent heuristics are that they are ad-
missible and that the sequence of valdés) of the
expanded nodes is non-decreasing.

The heuristic functiotn(n) represents knowledge
about the problem domain, therefore as londy ap-
proximatesh* the algorithm is more and more effi-
cient as it needs to expand a lower number of states to
reach the optimal solution.

Even with consistent and well-informed heuris-
tics, the cost of the search becomes prohibitive for
not-too-large instances. In that case, it is possible to
relax the requirement of admissibility and modify the
algorithm to obtain near optimal solutions. Maybe,
the most common technique to do that is dynamic
weighting of the heuristih. The rationale behind
weighting is to enlarge the value bfn) so as it is
closer toh*(n). In order to do that it is common to use
an evaluation function of the form proposed in (Pohl,
1973)

f(n) =g(n) +P(n)h(n) )
whereP(n) > 1 is the weighting factor; this factor
may be calculated as

P(n)=1+K(1-d(n)/D) ?3)
whereK > 0 is a parameter andi(n) andD are the
depth of noden in the search space and the maximum
depth of a node respectively. With dynamic weight-
ing it is expected that the number of nodes expanded
to reach a solution is lower than that with the origi-
nal A*, but the admissibility is not preserved; however
the cost of the first solution state reached is not larger
thanC*(1+ K). As this node is not usually optimal, it

The set of candidate nodes to be expanded areMmakes sense to leaye searching for more solutions

maintained in an ordered liIQPEN The next node
to be expanded is that with the lowest value of the
evaluation functiorf, defined ad (n) = g(n) + h(n);
whereg(n) is the minimal cost known so far frosto

after the first one.

Also, best first search may be combined with
greedy algorithms to obtain upper bounds during the
search. For example, just before to expand a ngde

n, (of course if the search space is a tree, the value ofthe greedy algorithm can be run to solve the subprob-
g(n) does not change, otherwise this value has to belem represented hy. If this process results to be very

updated as long as the search progresseshands
a heuristic positive estimation of the minimal distance
from n to the nearest goal.

time consuming, greedy algorithm may be run with a
small probability. This is the approach taken in our
experimental study.
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v 1 2 3 4 5 6 operation with the largest tail on machime Carlier
noo4 09 15200 2 and Pinson proved in (Carlier and Pinson, 1989; Car-
s w s lier and Pinson, 1994) that calculating theShas a
@) An OMS problem instance complexity of O(K x logz(K)), whereK is the num-
ber of operations.
I I T I 0 I T R A The JPS of problem J(n)|, provides a lower
’ b)AJPSgw?th mak;sspan 50 gi\lf:nf)gzcl)mpletion time ozfl;ob 5(36 + 14)36 ® bound Off*(n) due to the fact that the heads of op-

erations ofU S(n)|m are adjusted from the scheduled
operationsSQn). So, taking the largest of these val-
ues over machines with unscheduled operations and
taking into account the valuBmax(Jsc(n)), a lower
bound of f*(n) is obtained. Then, to obtain a lower

5 AHEURISTIC FOR THE JSSP bound ofh*(n), the value of the largest completion

o time of operations ir8C(n), i.e. g(n), should be dis-
Here, we use a heuristic for the JSSP based on prob¢ounted and the heuristic, termbgbs is calculated
lem relaxations. The residual problem represented by 54

a staten is given by the unscheduled operations in
n together with their heads and tails, i.e. the triplet hyps(n) = Mmax Cmax(Jsc(n)),JPYI(n))} —g(n)

J(n) = (US(n), rn(US(n)), g,(US(n))). In staten a .
number of jobs inJ have all their operations sched- IPI() = Madiner{IPFI(N)m)}
uled, whilst the remaining ones have some operations

not scheduled yet, these subsetd afill be denoted
as consistent (Pearl, 1984).

Figure 1: The Jackson's Preemptive Schedule for an OMS
problem instance.

As hjpsis devised from a problem relaxation, it is

Jus(n) ={J €3;3j,1<j <M,8; eUS(n)}
Jsc(n) = N\Jus(n)

6 DOMINANCE PROPERTIES

(4) Given two states; andny, we say thah; dominates
Also, we denote bfmax(Jsc(n)) to the maximum N2 if and only if the best solution reachable fram
completion time of jobs idsc(n), i.€. is better, or at least of the same quality, than the best
solution reachable fromy. In some situations this

Crmax(Jsc(n)) = max{rg,, (N) 4 Pay,Ji € Isc(n)} fact can be detected and then the dominated state can
(5) be early pruned.
with Cmax(Jsc(n)) = 0 if Jsc(n) = @. Let us consider a small example. Figure 2 shows

the Gantt charts of two partial schedules, with three
operations scheduled, corresponding to search states
for a problem with 2 jobs and 3 or more machines.

If the second operation of joly requiresR, and the
third operation ofl, requiresRs, it is easy to see that
the best solution reachable from the state of Figure
2a can not be better than the best solution reachable
from the state of Figure 2b. This is due to the resid-
ual problem of both states comprising the same set of
operations and in the first state the heads of all opera-

A problem relaxation can be made in the follow-
ing two steps. Firstly, for each machimerequired by
at least one operation iIdS(n), the simplified prob-
lem J(0)|m = (US(M)|m, Fn(US(M)|m), Gn(USO)|m))
is considered, wherd S(n)|m, denotes the unsched-
uled operations im requiring machinem. Prob-
lem J(n)|m is known as the One Machine Sequencing
(OM9) with heads and tails, where an operatiois
defined by its head,, its processing tim@, over ma-
chinem, and its tailgy. This problem is stiINP-hard,
so a new relaxation is made: the no-preemption of
machinem. This way an optimal solution to this prob-

lem is given by the Jackson’s preemptive schedule ;| g, (R, W R,
(JPS (Carlier and Pinson, 1989; Carlier and Pinson,
1994) 3 ‘ R, ‘ Ry ‘ R; L Ry ‘ Ry ‘ R;

Figure 1 shows an example 6MSinstance and
a JPSfor it. TheJPSis calculated by the following
algorithm: at any time given by a head or the com-
pletion of an operation, from the minimuny until
all jobs are completely scheduled, schedule the ready

1 2 3 4 5 6 7 8 0o 1 2 3 4 5
a) b)
Figure 2: Partial schedules of two search states, state b)
dominates state a).
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tions are larger or at least equal than the heads in themakespan of subproblemn). Hence, for a state
second state. So, the state of Figure 2a may be pruned, *(n) = maxCmaxJsc(n)),Cha(J(n)}, f(n) =
if both states are simultaneously in memory. max Cmax(Jsc(n)),IJPSI(n))}, being JIPLI(n)) <

Of course, a good heuristic will lead the searchto C};,,,(3(n)).
explore first the state of Figure 2b if both of them are Fromrn, (US) <rp,(US) andq, (US) =q,,(US)
in OPENat the same time. However, at a later time, it follows that G, (J(m)) < Ci.(J(n2)), as every
the state of Figure 2a and a number of its descendantsschedule for problem (&) is also a schedule for
might also be expanded. Consequently, early pruningJ(n;), and for analogous reason considering pre-
of this state can reduce the space and, if the compar-emtive schedules, it also follows that JB&;)) <
ison of states for dominance is done efficiently, also JPSJ(np)). From this result and fn;) < f(np) it
the search time. follows that

Pruning by dominance is not new in heuristic
search. For example, in (Nazaret et al., 1999) a simi- (2) Gax(m) < Cmax(nz) Of
lar method is proposed for the Resource Constrained(®) Cmax(N1) > Cmax(N2) and Gnax(n1) < IPFI(ny)).
Project Scheduling Problem (RCPSP), but no clear In the case €) as fn1) =
rules are given to apply it during the search; and maxCmnaxJsc(ni)),Cia(J(n1))}, analogous for
in (Korf, 2003) and (Korf, 2004) various rules are f*(np), it follows that f(ny) < f*(ny).
proposed for the Bin Packing Problem and the two-  In the case (b) f(n) = C;.(J(n2)))
dimensional Cutting Stock Problem respectively that max{Cmax(Jsc(n1)),Crnax(I(Mm))} = f*(n1). So
allow pruning some of the siblings of a nodet the dominates p
time of expanding this node.

More formally, we define dominance among states § 1 Rule for Testing Dominance
as it follows.
Definition 1. Given two states jnand rp, such that
n & P, and e ¢ Pg,, , m dominates pif and only ing dominance to be included in t#¢ algorithm. In
if £*(ng) < f*(ny). principle each time a new nodhe appears during the

Of course, establishing dominance among any two Search, this node could be compared with any other
states is problem dependent and it is not easy in gen-noden; reached previously. In this comparison, it
eral. Therefore, to define an efficient strategy, it is Should be verified i, dominatesn; and also ifn;
not possible to devise a complete method to determinedominates,. If one of the nodes is dominated, it can
dominance and apply it to every pair of states of the b€ pruned. It could be the case that botlominates
search space. So, what we have done is establishing &2 andnz dominatesn;; in this case either of them,
sufficient condition for dominance for the JSSP with but not both, can be pruned.
makespan minimization. As we will see, this condi-  Obviously, this rule does not seem very efficient.
tion can be efficiently evaluated, so as the whole pro- SO, in order to reduce the number of evaluations, we
cess of testing dominance is efficient, at the cost of proceed as follows:

not detecting all dominated states. 1. Each time a noda is selected byA* for expan-

= IV

From the results above, we can devise rules for test-

Theoreml Let m and rp be two states such
that USnp) = US(ng) = US, f(n1) < f(n2) and
m,(US) < rn,(US), then the following conditions

sion,n is compared with every nod® in OPEN
such thaD(n;) = D(n) andf(n) = f(n'). If any
of the nodes become dominated, it is pruned. In

hold: the case that bothdominatesy andn’ dominates
1. g, (US) = g, (US). n, n’ is pruned.

2. i dominates p 2. If noden is not pruned in step 1, it is compared
with those nodes’ in the CLOSE Dlist such that
us(n) =US(n) (f(n') < f(n) as a consequence
of the consistency of the heuristfgpg). If n’
dominates, thenn is pruned.

Proof 1. Condition1 comes from the fact that each
operation ve US is an unscheduled operation in
both states nand n, and so it has not any disjunc-
tive successor yet. So, according to equations (6),
Ov(n1) = Psy +0sy (M) and g,(nz) = psy +0dsy (N2).
AS Gnd(N1) = Gend(N2) = 0, reasoning by induction
from node end backwards, we have finallymg) =
av(n2). Hencegy, (US) = gy, (US).

To prove condition2 we can reason as fol-
lows. Let us denote as;(J(n)) to the optimal

In step 1,n is not compared with nodes’ in
OPENwith f(n) < f(n’). In this situation,n could
dominaterY, but this will be detected later if is se-
lected for expansion, as will be in CLOSED In
step 1 nodes’ with D(n’) = D(n) in OPEN are ef-
ficiently searched a®PEN s organized as an array
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with a component for each possible depth, from 1 to Table 1: Summary of results of pruning by dominance over
N« M, and in each component a list of nodes sorted instanced A01-15 andFT20. The last two columns show
by f values is stored. Similarly, in step 2, nod#s  results combining pruning by dominance with probabilis-
with US(n') = US(n) may be efficiently searched in ﬂc C"?‘";_“'atl'on ‘t); h‘?””St'CfSO'“E'r?”? f]tl.“rl'”? Ehe s(e;a;rhd’le(]f

- : - euristic algorithm is run from the initial state and then fo
C!_OSEDas this strL!Cture IS OTga”'ZEd as a hash table each expar?ded state with probabilRy= 0.01, the results
Wlltr(]j the hat§h ];Jgft')ofn returﬁ'ntg tthe set of unsched- ;e averaged over 20 runs for each instance.
uled operationt) S(n) for each state.

No Pruning  Pruning Pruning + UB
P=0,01
7 EXPERIMENTAL STUDY Inst.  Exp. T.(s) Exp. T.(s) Exp. T.(s)
LA11 131470 143 105449 272 1 0
LA12 1689 1 965 2 127 1
LA13 111891 141 13599 33 10206 25

For experimental study we have chosen two
sets of instances taken from th©Rlibrary
(http://people.brunel.ac.ukimastjjb/jeb/info.htnl LA14 258 0 257 @ 1 0

First we have chosen 6 instances of sizex2® (20 LALS 76967 93 22068 746722066 46
jobs and 5 machines)LA01 to LAO5 andFT20. FT20 9014 i .7 2756 i ,2753 >
Then we have chosen instances of size<1i. The bold indicates, memory getting exhausted.
reason for these selection is that these sizes are in the

threshold of what our approach is able to solve. We

used anA* prototype implementation coded in C++ Sults are averaged over 20 runs. As we can observe,

language developed in Builder C++0&or Windows, in this case all 6 instances get solved, being both the
the target machine was Pentium 4 &t&with 2Gb time taken and the number of expanded nodes less
RAM. than they are in the experiments without upper bounds

To evaluate the efficiency of the proposed prun- calculation.
ing method, we first solved these instances without  In the third series of experiments we apply the
considering upper bounds. So, none of the generatedsame method to a set of instances with size®ob-
statesn can be pruned from the conditidi{n) > UB tained from theORB set by eliminating the last job
and these nodes should be inserted in @REN and the last machine. The results are reported in Ta-
list, even though they will never be expanded due ble 2. As we can observe, when pruning is not applied
to heuristich;ps being admissible. Moreover, in this only 3 out of the 10 instances get solved; while 7 in-
caseA* only completes the search either when a so- stances get solved with pruning and for the 3 previ-
lution state is reached or when the computational ously solved the number of expanded nodes is much
resources (memory available or time limit) are ex- lower as well. However in this case the effect of
hausted. This allows us to estimate the size of the the greedy algorithm is almost null for the instances
search space for these instances. We have given a timeolved. But for the 3 instances unsolved, it seems that
limit of 3600 seconds for each run. the greedy algorithm allows to prevent many states to

Columns 2 to 5 of Table 1 summarizes the results be included iNOPEN, as the memory gets exhausted
of this experiment. As we can observe, when prun- after a larger number of expanded nodes.
ing is not applied, instancdsA11l andLA13 remain In the last series of experiments, we have con-
unsolved due to memory getting exhausted. On the sidered the originaDRB set with instances of size
other hand, when pruning is applied 5 of the six in- 10x 10. As only one of these instances gets solved
stances get solved and the number of expanded nodeso optimality with the exact algorithm, we applied the
is much lower in all 5 cases. Also, the time taken is heuristic weighting witiK = 0,01. In this caseA* is
lower. not stopped after reaching a solution state, but it runs

In the second experiments, we have enharged  until the memory gets exhausted or BEENIist gets
by calculating upper bounds by means of a greedy empty. Table 3 summarizes the results of these exper-
algorithm. As it was done in (Brucker et al., 1994; iments. As we can observe, only for instance 10 the
Brucker, 2004) we have used t8& T algorithm with OPEN list gets empty and so the optimal solution is
a selection rule based @ Scomputations restricted reached. For the remaining instances the memory gets
to the machine required by critical operations, i.e. exhausted before reaching the optimal solution, being
those of seB in Algorithm 1. Here, with a given  the mean error in percent 2,86. This error is much
probability P, a solution is issued from the expanded larger than that expected from the weighted heuristic.
node. Columns 6 and 7 of Table 1 reports results from The reason for this is that witK = 0,01 A* never
a set of experiments with = 0,01; in this case there-  reaches a solution node and the solution returned is
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Table 2: Summary of results fro@RBR9 x 9) instances ~ and the A* itself are much more efficient as they are
obtained from reduction dDRBinstances. The results of guided by better heuristic knowledge. These results

the last two columns are averaged for 20 runs. agree with those of other experiments, not reported

i i i here, that we have done with less informed heuris-

No Pruning  Pruning  Pruning + UB tics. In this case the reduction of the effective search
P=0,01 space for instances 205 was also of almost an or-

Inst Exp. T.(s) Exp. T.(s) Exp. T.(s) der of magnitude, but in any case the performance

1229245 133 36043 42 36043 45 was worse than that of heuristiges Hence we con-
2268186 149 31714 31 31708 34  jecture that the effect of the pruning by dominance
3467267 333 265217 1121 315933 1745 s in inverse ratio with the knowledge of the heuris-
4494016 329 79629 116 79628 122 tic estimation, so it may be especially interesting for
5588378 332 278995 738 379328 1320  complex problems where the current heuristics are not

6 430959 320182174 454 181384 457 very much accurate, as it is the case of the RCPSP.
7 561617 335 74528 164 74192 165

8 427836 315 260231 1448 350872 2301

9 614638 352272595 947 271024 950

10 525388 325106407 165 102494 158 8 CONCLUSIONS
bold indicates memory getting exhausted.

In this paper we propose a pruning method based on
dominance relations among states to improve the ef-
ficiency of best-first search algorithms. We have ap-
Overall, we can conclude that the proposed pjieq this method to the JSSP considering the search
method for pruning by dominance allows to reduce gnace of active schedules and Aiealgorithm. To do
drastically the size of the effective search space; be- ¢ \ve have defined a sufficient condition for dom-
ing this reduction more relevant for the most difficult ;,5nce and a rule to evaluate this condition which is
problems. As we can observe in Table 2 for the in- gfficient as it allows to restrict comparison of the ex-
stances that get solved in both cases, i.e. with Pruningpanded node with only a fraction of nodesQPEN
and without it, the number of expanded states is re- 3nqc| OSEDlists. This method is combined with a
duced almost in an order of magnitude when pruning greedy algorithm to compute upper bounds during the
is exploited. This reduction is less significative forin-  gaarch. We have reported results from an experimen-
stances of size 205, as itis shown is Table 1, which ¢, study over instances taken from @& library.
are easier to solve. However, the effect of the greedy These experiments show that the proposed method
algorithm over these instances is clearly more signi- of pruning by dominance, combined with the greedy
ficative than it is over the instances of size 9. This algorithm to obtain uppe’r bounds during the search
is due to the fact that the heuristic estimations ob- process, is efficient as it allows to save both space

tained from the Jackson's Preemptive Schedules areyp time. Also we have combined this method with a
much more accurate for 205 instances than they

are for 9x 9 ones. Hence, both the greedy algorithm \(l)vstli?:;nforuiilggIfcomitrgzdi;22&1':! S to obtain non
In comparison with other methods, our approach
Table 3: Summary of results combining pruning by domi- is more efficient than the backtracking algorithm pro-
nance, UB calculationR(= 0,01) and heuristic weighting  posed in (Sadeh and Fox, 1996), which is not able to
(K =0,01), overORE(10x 10) instances. solve instances of size 105; but it is less efficient
_ than the the branch and bound algorithm described in
Instance Optimum Best found Exp. nodes T.(S)  (grycker et al., 1994; Brucker, 2004), which is able
ORBO1 1059 1078 193019 206 to solve instances of size 3010 or even larger. Only
ORED2 888 915 207282 198 one of the instances considered in our experimental

ORED3 1005 1071 156886 225 study, theFT20, can not be solved to optimality by
ORB)4 1005 1052 161222 199 this algorithm.

the best one reached by the greedy algorithm.

ORB)5 887 893 209521 202 The Brucker’s algorithm exploits a sophisticated
ORB)6 1010 1050 189990 200 branching schema based on the concept of critical
ORB)7 397 405 216814 203 path which is not applicable to objective functions
ORB)8 899 917 257795 213 other than the makespan. However, the branching
ORBO9 934 970 180866 202 schema based oB&T algorithm is also suitable for
ORBLO 944 944 22775 23 objective functions such as total flow time or tardi-

bold indicates memory getting exhausted  negs. So it is expected that our approach is to be effi-
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cient in these cases as well. preprocessing procedure for the job shop problem.
As future work, we plan to improve our approach Annals of Operations Researchl5:125-142.

with better heuristic estimations, new pruning rules Giffler, B. and Thomson, G. L. (1960). Algorithms for solv-

and more efficient greedy algorithms to obtain upper ing production scheduling problem®perations Re-

bounds. Also, we plan to combine the pruning strat- search 8:487-503.

egy with constraint propagation techniques, such asHart, P., Nilsson, N., and Raphael, B. (1968). A formal

those proposed in (Dorndorf et al., 2000; Dorndorf basis for the heuristic determination of minimum cost

etal., 2002), as it is done in the branch and bound al- pazth_s-(;gE%Tfa“S- on Sys. Science and Cybernetics
gorithm described in (Brucker et al., 1994; Brucker, 4(2):100-107. ] _ _ _
2004). Korf, R. (2003). An improved algorithm for optimal bin-

It would be also interesting t IV the prun- packing. InProceedings of the 13th International
ou € aiso interesling to apply the pru Conference on Atrtificial Intelligence (IJCAIQ3)ages

ing by dominance method to other search spaces for 1252-1258.
the JSSP with makespan minimization and to other

. . Korf, R. (2004). Optimal rectangle packing: New results.
scheduling problems which are harder to solve such ( ). OP gep g

In Proceedings of the 14th International Conference

as the JSSP with total flow time or tardiness mini- on Automated Planning and Scheduling (ICAPS04)
mization; and the the JSSP with setup times. pages 132-141.

We will confront other problems such as the Trav- Nazaret, T., Verma, S., Bhattacharya, S., and Bagchi, A.
elling Salesman Problem, the Cutting-Stock Prob- (1999). The multiple resource constrained project

lem or the RCPSP. As search spaces of these prob-  scheduling problem: A breadth-first approadturo-
lems have similar characteristics to the space of active ~ Pean Journal of Operational Researdi.2:347-366.
schedules for the JSSP, we expect to obtain similar Nilsson, N. (1980). Principles of Artificial Intelligence
improvement of efficiency in all cases. Tioga, Palo Alto, CA.

Pearl, J. (1984)Heuristics: Intelligent Search strategies for
Computer Problem SolvingAddison-Wesley.
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