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Abstract: In the lifetime of a software product, development costs are only the tip of the iceberg. Nearly 90% of the 
cost is maintenance due to error correction, adoptation and mainly enhancements. As Belady and Lehman 
(Lehman and Belady, 1985) state that software will become increasingly unstructured as it is changed. One 
way to overcome this problem is refactoring. Refactoring is an approach which reduces the software 
complexity by incrementally improving internal software quality. Our motivation in this research is to detect 
the classes that need to be rafactored by analyzing the code complexity. We propose a machine learning 
based model to predict classes to be refactored. We use Weighted Naïve Bayes with InfoGain heuristic as 
the learner and we conducted experiments with metric data that we collected from the largest GSM operator 
in Turkey. Our results showed that we can predict 82% of the classes that need refactoring with 13% of 
manual inspection effort on the average.  

1 INTRODUCTION 

Refactoring is an approach to improve the design of 
a software without changing its external behaviour 
which means it always gives the same output with 
the same input after the change is applied (Fowler, 
Beck, Brant, Opdyke and Roberts, 2001) . As the 
project gets larger, the complexity of the classes 
increase and the maintenance becomes harder. Also, 
it is not easy or practical for developers to refactor a 
software project without considering the cost and 
deadline of the project. In general software 
refactoring compose of these phases (Zhao and 
Hayes, 2006): 

 Identify the code segments which need 
refactoring, 

 Analyze the cost/ benefit effect of each 
refactoring, 

 Apply the refactorings. 

Since this processes can be done by developers, a 
proper tool support can decrease the cost and 
increase the quality of the software. There are some 
commercial tools which enables refactoring, 
however there is still a need for process automation 
(Simon and Lewerentz, 2001).  Developers refactor 
a code segment to make it simpler or decrease its 

complexity such as extracting a method and then 
calling it. A code segment’s complexity can increase 
due to its size or logic as well as its interactions with 
other code segments (Zhao and Hayes, 2006).  

In this paper we focus on the automatic 
prediction of refactoring candidates for the same 
purposes mentioned above. We treat refactoring as a 
machine learning problem and try to predict the 
classes which are in need of refactoring in order to 
decrease the complexity, maintenance costs and bad 
smells in the project. We have inspired by the 
prediction results of Naïve Bayes and Weighted 
Naïve Bayes learners in defect prediction research 
(Turhan and Bener, 2007). In this research we use 
class level information and define the problem as 
two way classification: refactored and not-refactored 
classes. We then try to estimate the classes that need 
refactoring.  

The rest of the paper is organized as follows. 
Section 2 presents related work.  In section 3 we 
explain the Weighted Naïve Bayes algorithm. In 
section 4 we present our experimental setup to 
predict classes in need of refactoring. Results are 
presented and discussed is section 5, and the 
conclusions are given in section 6. 
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2 RELATED WORK 

Welker (Welker and Oman, 1995) suggested 
measuring software's maintainability using a 
Maintainability Index (MI) which is a combination 
of multiple metrics, including Halstead metrics, 
McCabe's cyclomatic complexity, lines of code, and 
number of comments. Hayes et al. (Hayes and Zhao, 
2006)  introduced and validated that the RDC ratio 
(the sum of requirement and design effort divided by 
code effort) is a good predictor for maintainability. 
Fowler (Fowler, Beck, Brant, Opdyke and Roberts, 
2001) suggested using a set of bad smells such as 
long method to decide when and where to apply 
refactoring. Mens, Tourwé and Muñoz (Mens, 
Tourwé and Muñoz, 2003) designed a tool to detect 
places that need refactoring and decide which 
refactoring should be applied. They did so by 
detecting the existence of "bad smells” using logic 
queries. Our approach differs from the above 
approaches since we treat the prediction of candidate 
classes for refactoring as a data mining problem. We 
use Weighted Naïve Bayes (Turhan and Bener, 
2007), which is an extension to the well-known 
Naïve Bayes algorithm in order to predict the classes 
which are in need of refactoring.  

3 WEIGHTED NAÏVE BAYES 

The Naïve Bayes classifier, currently experiencing a 
renaissance in machine learning, has long been a 
core technique in information retrieval (Lewis, 
1998). In defect prediction it has so far given the 
best results in terms of probability of detection and 
false alarm (which will be defined in Section 5) 
(Menzies, Greenwald and Frank, 2007). However, 
Naïve Bayes makes certain assumptions that may 
not be suitable for software engineering data 
(Turhan and Bener, 2007). Naïve Bayes treats 
attributes as independent and with equal importance. 
Turhan and Bener argued that some software 
attributes are more important than the others (Turhan 
and Bener, 2007). Therefore each metric must be 
assigned a weight as per its importance. “Weighted 
Naïve Bayes” approach showed promising outcomes 
that can generate better results in defect prediction 
problems with the InfoGain and GainRatio weight 
assignment heuristics. In this paper, our aim is to 
implement and evaluate Weighted Naïve Bayes with 
InfoGain and show that it can be used for predicting 
the refactoring candidates. 

Naïve Bayes classifier is a simple yet powerful 
classification method based on the famous Bayes’ 

Rule. Bayes’ Rule uses prior probability and 
likelihood information of a sample for estimating 
posterior probability (Alpaydın, 2004). 

 
(1)

To use it as a classifier, one should compute 
posterior probabilities P( iC |x) for each class and 
choose the one with the maximum posterior as the 
classification result.  

 
(2)

This simple implementation assumes that each 
dimension of the data has equal importance on the 
classification. However, this might not be the case in 
real life. For example, the cyclomatic complexity of 
a class should be more important than the count of 
commented lines in a class. To cope with that 
problem, Weighted Naïve Bayes classifier is 
proposed and tested against Naïve Bayes (Turhan 
and Bener, 2007), (Ferreira, Denison and Hand 
2001). Class posterior computation is quite similar 
to Naïve Bayes only with the introduction of weights 
for each dimension and the formula in Weighted 
Naïve Bayes is as follows: 

 
(3)

Introduction of weights brings a flexibility that 
allows us to favour some dimensions over others but 
it also raises a new problem: determining the 
weights. In our case, dimensions consist of different 
attributes calculated from the source code and we 
need some heuristics for determining the weights (or 
the importance’s) of the attributes. InfoGain  
measures the minimum number of bits to encode the 
information obtained for prediction of a class (C) by 
knowing the presence or absence of a feature in data.  

 
(4)

In the equations “w” denotes the weight of 
attribute in data set which is calculated with 
Equation 5. 

 
(5)
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4 EXPERIMENTAL SETUP 

We collect data from a local GSM operator 
company. The data contains one project and its 3 
versions. The project is implemented in Java and 
corresponds to a middleware application. We 
collected 26 static code attributes including Halstead 
metrics, McCabe's cyclomatic complexity and lines 
of code from the project and its versions with our 
Metric Parser, Prest (Turhan, Oral and Bener, 2007) 
which is written in Java. The class information of all 
project versions is listed in Table 1. 

Table 1: Attribute and Class information of the project. 

 
In order to estimate the classes that should be 

refactored during each version upgrade, we made an 
assumption that if the cyclomatic complexity, 
essential complexity or total number of operands 
decreases from the beginning of the project, then 
these classes are assumed to be refactored. Since we 
did not know the affect of metrics on refactoring 
decision we assumed that complexity metrics 
affected the refactoring decision during the version 
upgrades. We normalized the data in Trcll1 datasets 
since it is a complex project at the application layer. 
It is refactored and changed frequently during the 
development of the project. After collecting refactor 
data, we apply Weighted Naïve Bayes for automatic 
prediction of candidate classes. 

We have designed the experiments to achieve 
high degree of internal validity by carefully studying 
the effect of independent variables on dependent 
variable in a controlled manner (Mitchell and Jolley, 
2001). In order to carry on statistically valid 
experiments, datasets should be prepared carefully. 
A common technique is working with two data sets 
which are namely test and train instead of entire 
data. Generally, these sets are constructed randomly 
by dividing whole data into two sets. Here, a 
problem arises due to the nature of random selection, 
which is that it is not guaranteed to have a good 
representation of the real data by doing a single 
sampling. To cope with that problem, k-fold cross 
validation is used. In k-fold cross validation, data is 
divided into k equal portions and training process is 
repeated for k times with k-1 folds used as train data 
and one fold is used as test data (Turhan and Bener, 

2007). We chose k as 10 in our experiments. This 
whole process is repeated 10 times with the shuffled 
data. Moreover, since both the train and test data 
should have a good representation of the real data, 
the ratio among the refactored and not-refactored 
samples should be preserved. We have used 
stratified sampling so when dividing the data into 10 
folds, we made sure that each fold preserves the 
refactored/ not-refactored samples ratio. 

5 RESULTS 

Table 2: Confusion Matrix. 

 
 

 

 

We evaluated the accuracy of our predictor with 
probability of detection (pd = A/(A+C)) and 
probability of false alarm (pf = B/(B+D)) measures 
(Menzies, Greenwald and Frank, 2007). Pd is the 
measure of detecting real refactored classes over all 
real refactored ones and pf is the measure of 
detecting classes as refactored that are not actually 
refactored over all not-refactored classes. Higher pd 
values and lower pf values reflects the accuracy of 
the predictor. The confusion matrix used for 
calculating pd and pf is shown in Table 2.  

The results of our experiments show that in the 
first unstable version of a software our predictor 
detects the classes that need to be refactored with 
63% accuracy (Table 3). In the second version 
which we can call that the first stable version the 
predictor’s performance increases to 90%. We can 
conclude that the learning performance improves as 
we move to more stable versions and learn more 
about the complexity of the code. Our results also 
show that learning complexity related information 
on the code, i.e. weight assignment, considerably 
improves the learning performance of the predictor 
as evidenced by the IG+WNB pd of 82 (avg) versus 
NB pd of 76 (avg). We also observe that as we move 
to later versions false alarm rates decrease (from 
pf:16 to pf:11) with our proposed learner. Low pf 
rates prevent software architects from manual 
analysis of classes which are not needed to be 
refactored. In tne three versions of a complex code 
such as Trcll1 project we can predict 82% of the 
refactored classes with 13% of manual inspection 
effort on the average. Our concern for external 
validity is the use of limited number of datasets. We 
used one complex project and its three versions. To 
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overcome ceiling effects we used 10-fold cross 
validation. 

Table 3: Results for Trcll1 project. 

 

6 CONCLUSIONS AND FUTURE 
WORK 

The developers and the architects make refactoring 
decisions based on their years of experience. 
Therefore refactoring process becomes highly 
human dependent, subjective and costly. Process 
automation and tool support can help reduce this 
overhead cost as well as increase consistency, 
efficiency, and effectiveness of the code reviewing 
and refactoring decision process.  

In this paper we presented an empirical study of 
refactoring prediction. We addressed the problem as 
a machine learning problem and we used Weighted 
Naïve Bayes with InfoGain weighting heuristic for 
predicting the candidate refactorings of classes. We 
used 3 data sets from Trcll1 project and run our 
model on these data sets. We have seen that our 
algorithm works better as it learns in terms of higher 
pd rates and lower pf rates. We have seen that using 
oracles to predict which classes to refactor 
considerably decreases the manual effort for code 
inspection (note that avg pf is 13), identifies the 
complex and problematic pieces of the code and 
hence makes the maintenance less costly and trouble 
free process. 

Our future direction would be to collect more 
refactor data and repeat our experiments. We may 
also try other heuristics to further lower the pf rate.  
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