
REFACTORING PREDICTION USING CLASS COMPLEXITY
METRICS

Yasemin Köşker, Burak Turhan and Ayşe Bener
Department of Computer Engineering, Boğaziçi University, Bebek, İstanbul, Turkey

Keywords: Weighted Naïve Bayes, Refactoring, Software Metrics, Naïve Bayes, Defect Prediction, Refactor
Prediction.

Abstract: In the lifetime of a software product, development costs are only the tip of the iceberg. Nearly 90% of the
cost is maintenance due to error correction, adoptation and mainly enhancements. As Belady and Lehman
(Lehman and Belady, 1985) state that software will become increasingly unstructured as it is changed. One
way to overcome this problem is refactoring. Refactoring is an approach which reduces the software
complexity by incrementally improving internal software quality. Our motivation in this research is to detect
the classes that need to be rafactored by analyzing the code complexity. We propose a machine learning
based model to predict classes to be refactored. We use Weighted Naïve Bayes with InfoGain heuristic as
the learner and we conducted experiments with metric data that we collected from the largest GSM operator
in Turkey. Our results showed that we can predict 82% of the classes that need refactoring with 13% of
manual inspection effort on the average.

1 INTRODUCTION

Refactoring is an approach to improve the design of
a software without changing its external behaviour
which means it always gives the same output with
the same input after the change is applied (Fowler,
Beck, Brant, Opdyke and Roberts, 2001) . As the
project gets larger, the complexity of the classes
increase and the maintenance becomes harder. Also,
it is not easy or practical for developers to refactor a
software project without considering the cost and
deadline of the project. In general software
refactoring compose of these phases (Zhao and
Hayes, 2006):

 Identify the code segments which need
refactoring,

 Analyze the cost/ benefit effect of each
refactoring,

 Apply the refactorings.

Since this processes can be done by developers, a
proper tool support can decrease the cost and
increase the quality of the software. There are some
commercial tools which enables refactoring,
however there is still a need for process automation
(Simon and Lewerentz, 2001). Developers refactor
a code segment to make it simpler or decrease its

complexity such as extracting a method and then
calling it. A code segment’s complexity can increase
due to its size or logic as well as its interactions with
other code segments (Zhao and Hayes, 2006).

In this paper we focus on the automatic
prediction of refactoring candidates for the same
purposes mentioned above. We treat refactoring as a
machine learning problem and try to predict the
classes which are in need of refactoring in order to
decrease the complexity, maintenance costs and bad
smells in the project. We have inspired by the
prediction results of Naïve Bayes and Weighted
Naïve Bayes learners in defect prediction research
(Turhan and Bener, 2007). In this research we use
class level information and define the problem as
two way classification: refactored and not-refactored
classes. We then try to estimate the classes that need
refactoring.

The rest of the paper is organized as follows.
Section 2 presents related work. In section 3 we
explain the Weighted Naïve Bayes algorithm. In
section 4 we present our experimental setup to
predict classes in need of refactoring. Results are
presented and discussed is section 5, and the
conclusions are given in section 6.

289
Köşker Y., Turhan B. and Bener A. (2008).
REFACTORING PREDICTION USING CLASS COMPLEXITY METRICS.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 289-292
DOI: 10.5220/0001893802890292
Copyright c© SciTePress

2 RELATED WORK

Welker (Welker and Oman, 1995) suggested
measuring software's maintainability using a
Maintainability Index (MI) which is a combination
of multiple metrics, including Halstead metrics,
McCabe's cyclomatic complexity, lines of code, and
number of comments. Hayes et al. (Hayes and Zhao,
2006) introduced and validated that the RDC ratio
(the sum of requirement and design effort divided by
code effort) is a good predictor for maintainability.
Fowler (Fowler, Beck, Brant, Opdyke and Roberts,
2001) suggested using a set of bad smells such as
long method to decide when and where to apply
refactoring. Mens, Tourwé and Muñoz (Mens,
Tourwé and Muñoz, 2003) designed a tool to detect
places that need refactoring and decide which
refactoring should be applied. They did so by
detecting the existence of "bad smells” using logic
queries. Our approach differs from the above
approaches since we treat the prediction of candidate
classes for refactoring as a data mining problem. We
use Weighted Naïve Bayes (Turhan and Bener,
2007), which is an extension to the well-known
Naïve Bayes algorithm in order to predict the classes
which are in need of refactoring.

3 WEIGHTED NAÏVE BAYES

The Naïve Bayes classifier, currently experiencing a
renaissance in machine learning, has long been a
core technique in information retrieval (Lewis,
1998). In defect prediction it has so far given the
best results in terms of probability of detection and
false alarm (which will be defined in Section 5)
(Menzies, Greenwald and Frank, 2007). However,
Naïve Bayes makes certain assumptions that may
not be suitable for software engineering data
(Turhan and Bener, 2007). Naïve Bayes treats
attributes as independent and with equal importance.
Turhan and Bener argued that some software
attributes are more important than the others (Turhan
and Bener, 2007). Therefore each metric must be
assigned a weight as per its importance. “Weighted
Naïve Bayes” approach showed promising outcomes
that can generate better results in defect prediction
problems with the InfoGain and GainRatio weight
assignment heuristics. In this paper, our aim is to
implement and evaluate Weighted Naïve Bayes with
InfoGain and show that it can be used for predicting
the refactoring candidates.

Naïve Bayes classifier is a simple yet powerful
classification method based on the famous Bayes’

Rule. Bayes’ Rule uses prior probability and
likelihood information of a sample for estimating
posterior probability (Alpaydın, 2004).

(1)

To use it as a classifier, one should compute
posterior probabilities P(iC |x) for each class and
choose the one with the maximum posterior as the
classification result.

(2)

This simple implementation assumes that each
dimension of the data has equal importance on the
classification. However, this might not be the case in
real life. For example, the cyclomatic complexity of
a class should be more important than the count of
commented lines in a class. To cope with that
problem, Weighted Naïve Bayes classifier is
proposed and tested against Naïve Bayes (Turhan
and Bener, 2007), (Ferreira, Denison and Hand
2001). Class posterior computation is quite similar
to Naïve Bayes only with the introduction of weights
for each dimension and the formula in Weighted
Naïve Bayes is as follows:

(3)

Introduction of weights brings a flexibility that
allows us to favour some dimensions over others but
it also raises a new problem: determining the
weights. In our case, dimensions consist of different
attributes calculated from the source code and we
need some heuristics for determining the weights (or
the importance’s) of the attributes. InfoGain
measures the minimum number of bits to encode the
information obtained for prediction of a class (C) by
knowing the presence or absence of a feature in data.

(4)

In the equations “w” denotes the weight of
attribute in data set which is calculated with
Equation 5.

(5)

ICSOFT 2008 - International Conference on Software and Data Technologies

290

4 EXPERIMENTAL SETUP

We collect data from a local GSM operator
company. The data contains one project and its 3
versions. The project is implemented in Java and
corresponds to a middleware application. We
collected 26 static code attributes including Halstead
metrics, McCabe's cyclomatic complexity and lines
of code from the project and its versions with our
Metric Parser, Prest (Turhan, Oral and Bener, 2007)
which is written in Java. The class information of all
project versions is listed in Table 1.

Table 1: Attribute and Class information of the project.

In order to estimate the classes that should be

refactored during each version upgrade, we made an
assumption that if the cyclomatic complexity,
essential complexity or total number of operands
decreases from the beginning of the project, then
these classes are assumed to be refactored. Since we
did not know the affect of metrics on refactoring
decision we assumed that complexity metrics
affected the refactoring decision during the version
upgrades. We normalized the data in Trcll1 datasets
since it is a complex project at the application layer.
It is refactored and changed frequently during the
development of the project. After collecting refactor
data, we apply Weighted Naïve Bayes for automatic
prediction of candidate classes.

We have designed the experiments to achieve
high degree of internal validity by carefully studying
the effect of independent variables on dependent
variable in a controlled manner (Mitchell and Jolley,
2001). In order to carry on statistically valid
experiments, datasets should be prepared carefully.
A common technique is working with two data sets
which are namely test and train instead of entire
data. Generally, these sets are constructed randomly
by dividing whole data into two sets. Here, a
problem arises due to the nature of random selection,
which is that it is not guaranteed to have a good
representation of the real data by doing a single
sampling. To cope with that problem, k-fold cross
validation is used. In k-fold cross validation, data is
divided into k equal portions and training process is
repeated for k times with k-1 folds used as train data
and one fold is used as test data (Turhan and Bener,

2007). We chose k as 10 in our experiments. This
whole process is repeated 10 times with the shuffled
data. Moreover, since both the train and test data
should have a good representation of the real data,
the ratio among the refactored and not-refactored
samples should be preserved. We have used
stratified sampling so when dividing the data into 10
folds, we made sure that each fold preserves the
refactored/ not-refactored samples ratio.

5 RESULTS

Table 2: Confusion Matrix.

We evaluated the accuracy of our predictor with
probability of detection (pd = A/(A+C)) and
probability of false alarm (pf = B/(B+D)) measures
(Menzies, Greenwald and Frank, 2007). Pd is the
measure of detecting real refactored classes over all
real refactored ones and pf is the measure of
detecting classes as refactored that are not actually
refactored over all not-refactored classes. Higher pd
values and lower pf values reflects the accuracy of
the predictor. The confusion matrix used for
calculating pd and pf is shown in Table 2.

The results of our experiments show that in the
first unstable version of a software our predictor
detects the classes that need to be refactored with
63% accuracy (Table 3). In the second version
which we can call that the first stable version the
predictor’s performance increases to 90%. We can
conclude that the learning performance improves as
we move to more stable versions and learn more
about the complexity of the code. Our results also
show that learning complexity related information
on the code, i.e. weight assignment, considerably
improves the learning performance of the predictor
as evidenced by the IG+WNB pd of 82 (avg) versus
NB pd of 76 (avg). We also observe that as we move
to later versions false alarm rates decrease (from
pf:16 to pf:11) with our proposed learner. Low pf
rates prevent software architects from manual
analysis of classes which are not needed to be
refactored. In tne three versions of a complex code
such as Trcll1 project we can predict 82% of the
refactored classes with 13% of manual inspection
effort on the average. Our concern for external
validity is the use of limited number of datasets. We
used one complex project and its three versions. To

REFACTORING PREDICTION USING CLASS COMPLEXITY METRICS

291

overcome ceiling effects we used 10-fold cross
validation.

Table 3: Results for Trcll1 project.

6 CONCLUSIONS AND FUTURE
WORK

The developers and the architects make refactoring
decisions based on their years of experience.
Therefore refactoring process becomes highly
human dependent, subjective and costly. Process
automation and tool support can help reduce this
overhead cost as well as increase consistency,
efficiency, and effectiveness of the code reviewing
and refactoring decision process.

In this paper we presented an empirical study of
refactoring prediction. We addressed the problem as
a machine learning problem and we used Weighted
Naïve Bayes with InfoGain weighting heuristic for
predicting the candidate refactorings of classes. We
used 3 data sets from Trcll1 project and run our
model on these data sets. We have seen that our
algorithm works better as it learns in terms of higher
pd rates and lower pf rates. We have seen that using
oracles to predict which classes to refactor
considerably decreases the manual effort for code
inspection (note that avg pf is 13), identifies the
complex and problematic pieces of the code and
hence makes the maintenance less costly and trouble
free process.

Our future direction would be to collect more
refactor data and repeat our experiments. We may
also try other heuristics to further lower the pf rate.

ACKNOWLEDGEMENTS

This research is supported in part by Bogazici
University research fund under grant number BAP-
06HA104 and by Turkcell A.Ş

REFERENCES

Simon, F. S., F., Lewerentz, C., 2001. Metrics based
refactoring. Proc. European Conf. Software
Maintenance and Reengineering.

Fowler, M., Beck, K., Brant,J., Opdyke,W., Roberts,D.,
2001. Refactoring: Improving the Design of Existing
Code, Addison-Wesley.

Lewis, D., 1998. Naive (Bayes) at Forty: The
Independence Assumption in Information Retrieval.
Proceedings of ECML-98, 10th European Conference
on Machine Learning.

Zhao, L., Hayes,J.H., 2006. Predicting Classes in Need of
Refactoring: An Application of Static Metrics. In
Proceedings of the Workshop on Predictive Models of
Software Engineering (PROMISE), associated with
ICSM 2006.

Welker, K., Oman, P.W., 1995. Software maintainability
metrics models in practice. Journal of Defense
Software Engineering.

Mens, T., Tourwé, T., Muñoz, F., 2003. Beyond the
Refactoring Browser: Advanced Tool Support for
Software Refactoring. Proceedings of the
International Workshop on Principles of Software
Evolution.

Fowler, M., Beck, K., Brant,J., Opdyke,W., Roberts,D.,
2001. Refactoring: Improving the Design of Existing
Code, Addison-Wesley.

Menzies, T., Greenwald, J., Frank, A., 2007. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering.

Turhan, B., Bener, A.B., 2007. Software Defect
Prediction: Heuristics for Weighted Naive Bayes.
ICSOFT 2007

Alpaydin, E., 2004. Introduction to Machine Learning,
MIT Press.

Lehman, M.M., Belady, L.A., 1985. Program evolution:
processes of software change, Academic Press
Professional.

Turhan, B., Oral, A.D., Bener, A.B., 2007. Prest- A tool
for pre-test defect prediction. Boğaziçi University
Technical Report.

Ferreira, J.T.A.S., Denison, D.G.T., Hand, D.J., 2001.
Weighted naive Bayes modelling for data mining.

Mitchell, M., Jolley, J., 2001. Research Design Explained,
New York:Harcourt.

ICSOFT 2008 - International Conference on Software and Data Technologies

292

