
QUALITY AND VALUE ANALYSIS OF
SOFTWARE PRODUCT LINE ARCHITECTURES

Liliana Dobrica
Faculty of Automation and Computers, University Politehnica of Bucharest

Spl. Independentei 313, Bucharest, Romania

Eila Niemela
VTT Technical Research Centre of Finland, Oulu, Finland

Keywords: Software architecture, analysis methods, quality attributes, product line.

Abstract: The concern of a software product line architecture systematic analysis is how to take better advantage of
views and analyze value and quality attributes in an organized and repetitive way. In this approach
architecture descriptions evolve from the conceptual level to a more concrete level. Architecture analysis at
the conceptual level provides a knowledge base of the domain architecture so as to perform a more
comprehensive analysis of quality attributes at the concrete level description. Concrete architecture
descriptions permit more relevant and accurate scenario-based analysis results for the development of
quality attributes such as portability and adaptability.

1 INTRODUCTION

A product line (PL) is a set of products that together
address a particular market segment or fulfil a
particular mission. Once a PL is established, new
products that belong to the PL can be developed
quickly and to a high quality. Although the concept
of PL is well known in industrial manufacturing
(Tharumarajah et al, 1996), it is a complex and
growing research field in software engineering that
raises a lot of significant technical and
organizational problems. Some of the issues about
PL are related to the process of initiation. Software
PL does not appear accidentally, but requires a
purposeful and definite effort from the organization
interested in using a PL approach. The revolutionary
initiation into a new PL means that product-line
architecture and components are developed to match
the requirements of all expected PL members, before
developing the first product in a new domain.
Product line architecture (PLA) is an adaptable
architecture that is applied to a set of products on a
PL and from which the software architecture of each
product can be derived. PLA includes commonality
and variability, indicating what can respectively be
common and different among members of a set of

PL products. PLA is the first step that shows results
of the earliest design decisions about a family of
software products. Taking good decisions could lead
to reduce costs and risks. In the case of software
architecture (SA) for single products analysis
methods are mature enough and several have been
presented and compared in a survey (Dobrica et al
2002). When considering software PLA analysis
methods a strategy for analyzing PLA is introduced
in (Dobrica et al 2000). The open problem of a PLA
analysis method is how to take better advantage of
architectural concepts and analyze quality attributes
in software PL in a systematic way. It is also very
important to identify potential risks and to verify
that the quality requirements of the PL domain have
been addressed in the PLA design. The PLA must
not only conform to the quality requirements for
each PL member, but it must also be generic and
adaptable to the whole PL domain. It is important to
know how reusable and flexible to anticipated
changes PLA is so as to maximize reusability and to
minimize possible changes in functionality required
by various product members.

64
Dobrica L. and Niemela E. (2008).
QUALITY AND VALUE ANALYSIS OF SOFTWARE PRODUCT LINE ARCHITECTURES.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 64-71
DOI: 10.5220/0001888700640071
Copyright c© SciTePress

2 BACKGROUND

2.1 PLA Representation

There are several architectural development
approaches that can be adopted in PLA
representation. The Model-driven Architecture
(Miller J and Mukerji J, 2003) is an approach that
guides the specification of information systems. The
idea is to separate descriptions of functionality from
the implementation specifications. Implementation
independent descriptions of functionality last longer
than implementation specifications that change as
soon as a better technology is available. In MDA, a
model means a formal specification of part of the
function, structure and/or behavior of a system. A
formal specification expects either textual or
graphical language with strictly defined syntax and
semantics. Other design approaches concentrates on
multiple views of an architecture. An architectural
view is a representation of a whole system from a
perspective of a related set of concerns (ISO/IEC
42010, 2007). View-oriented design approaches start
with 4+1 approach (Krutchen, 1995), after which
other news have been introduced (Jaaksi A et al,
1999) (Hofmeister et al, 2000). Among these
approaches there is no agreement on a common set
of views or on the way to describe SA. The need for
different architectural views depends on three issues:
the size, the domain and the number of different
stakeholders. Although a multiple view approach
helps in developing software products, it is easy to
introduce errors and inconsistencies in a multiple
view model. It is therefore necessary to provide
support for consistency checking among the multiple
views.

Figure 1: Product line architecture views.

The goal of the design of a PLA is to address
every stakeholder’s concerns and to satisfy the win
conditions of all of the stakeholders. Stakeholders
determine the necessary views of architecture. So,
the most significant challenge for PLA
representations is to support useful and consistent
views of the architecture from multiple perspectives.
Works has been done on software architectural

views and the way to relate to them (Krutchen
1995), (IEEE 2000), and (Purhonen et al 2004). In
our method architecture views evolve from the
conceptual level description to a more concrete level
during design (Figure 1). Conceptual means abstract,
i.e. delayed design decisions concerning, e.g.
technologies to be selected or details in
functionality, whereas the concrete abstraction level
illustrates the realization of conceptual architecture.
Architecture design produces descriptions at both
abstraction levels from four viewpoints: structural,
behaviour, deployment and development. The
structural view is concerned with the composition of
software components, whereas the behaviour view
takes the dynamics into consideration. The
deployment view refers to the allocation of software
components to various computing environments.
Variation in space is an integral part of the first three
views, contrary to the development view that
represents the categorization and management of
domains, technologies and work allocation.

2.2 PLA Analysis

In (IEEE 1061,1998) software quality is defined as a
degree of software to process a desired combination
of quality attributes. The software quality model
(ISO/IEC 9126) defines six categories of
characteristics (functionality, reliability, usability,
efficiency, maintainability, and portability) that are
divided into subcharacteristics, which are externally
or internally observable properties of systems.

Scenario-based assessment is appropriate for
qualities related to software development, which are
specific to PLAs. Software qualities such as,
adaptability and portability can be expressed very
naturally through change scenarios. Portability is the
ease with which a system can be adapted to changes
in the technical environment and adaptability is the
ease with which a system can be adapted to changes
in the technical requirements. At first sight,
portability and adaptability very much look alike,
but they are not the same. The use of scenarios for
evaluating architectures is recommended as one of
the best industrial practices. By formulating a
number of scenarios, we can make each quality
attribute tangible, because a scenario capture what
we actually want to achieve with that quality
attribute. However, the evaluation depends on the
objectivity and creativity of the analyst who defines
and executes them.

The systematic quality analysis for both
conceptual and concrete architecture descriptions
takes into account scenarios The analysis may

Concrete
Structural

View

Concrete
Behavior

View

Concrete
Deployment

View

Concrete
Development

View

Conceptual
Structural

View

Conceptual
Behavior

View

Conceptual
Deployment

View

Conceptual
Development

View

QUALITY AND VALUE ANALYSIS OF SOFTWARE PRODUCT LINE ARCHITECTURES

65

involve multiple views. Utilizing the architectural
constructs mentioned above, the method provides an
explicit and quality-driven link between software
requirements and architecture. The functionality that
the products need to support is decomposed in a
structural view. At a conceptual level, this view is
useful for understanding the interactions between
entities in the problem space, planning functionality
and understanding the domain variability, and hence
thereafter, the possibilities of initiating a PL. At a
concrete level the elements from which the system is
built could be essential for understanding the
maintainability, modifiability, reusability and
portability of a system. Behaviour view is important
to understand not only performance but also
reliability and security. Deployment view consists of
central processing units, memory, buses, networks or
input/output devices. Quality attributes relevant to
this view are availability, capacity and bandwidth.
Utilizing the architectural constructs mentioned
above, the method provides an explicit and quality-
driven link between requirements and architecture.

3 PLA SYSTEMATIC ANALYSIS

Before starting the development of a PL, a company
has to consider various issues in order to gain an
understanding of whether a PL is appropriate for
different technologies and businesses (Niemela et al
2001). In order to help make decisions about PL
scope, an evaluation that considers an appropriate
value metric is needed. The analysis is driven by
scenarios, but it identifies which changes are most
valuable reported to a market and it quantifies the
expected return on making that change. Since it is
developing a common architecture for a family of
products, the goal is to design an architecture that
encompasses all the PL members’ common features,
but which can be easily adapted to produce any
member of the family. This means that addressing
the variations among members should require no
change, or very little change to the common
architecture.

3.1 Value Analysis

The idea is to provide a common framework and
metric for making decisions which bring together
business issues and product issues. To do so, a value
metric that makes sense in all these assumptions is
required, to help make decisions about PL scope.
The focus could be on including or excluding
capabilities from PL scope and measuring a relative

benefit, adopting PL solutions based on cost/benefit
decisions or considering technologies applicable
only due to PL (e.g. realizing a specific software tool
needed for a PL). An important element in PL
domain definition is the market, represented by
customers as stakeholders. Value analysis is similar
to quality function deployment (QFD) (Hauser et al
1988) in searching for to harmonize market (i.e.
customer) needs with product design. It differs in
that it seeks to measure the customer’s perception of
total delivered value more directly and accurately,
i.e. what the customer will actually consider
important for the product. Second, it directly
measures the difference between an organization’s
internal understanding of customer value and the
customer’s actual recognition. This provides a basis
for aligning a company internal view of delivered
value with market realities. Activities related to
value analysis are clustered in domain definition and
commonalty analysis (Figure 2).

Domain definition consists of scope, economic
analysis and value analysis (VA). Scope considers
the creation of a preliminary definition of the PL in
terms of commonalties and variabilities. Economic
analysis is concerned with the building of an
economic model of the product’s cost/return using
the company’s current software products and then
PL; these models may be used to determine the
expected return from adopting a PL approach. VA
is performed to help establish the relative value of
the possible variations in the potential scope of the
PL. In this context, change scenarios are created
based on how the product is expected to evolve to
meet market (i.e. customer) needs. The results are
used both to identify which changes are most
valuable and to predict the expected return on
making the change. The change scenarios are used
against the current architecture to determine the
expected cost of evolving a product without using a
PL. Then VA evaluates the costs and benefits of
each approach based on the value of the product
changes the market wants and the costs of making
such changes under each development paradigm.

Commonality analysis. This activity has the goal
of identifying and documenting the commonalties
and variabilities characterizing the software PL.
Also, the VA is refined by developing value metrics
based on the more detailed definition of expected
variations. This new iteration on VA aligns market
value data with the PL requirements. The
architecture quality analysis (AQA) is correlated
with the design activities that have the result PLA
model (Figure 2).

ICSOFT 2008 - International Conference on Software and Data Technologies

66

Figure 2: Using value in architectural analysis.

Here, a compositional approach to domain
architecture is considered, in which a common,
reusable architecture for the PL is developed. In
order to generate various members of the PL,
adaptable, parameterized components can be used
(e.g. as in CelsiusTech architectural case study (Bass
et al 1995)). As part of the modeling activity, the
architecture must be evaluated against its quality
requirements. In particular, a detailed, quantitative
evaluation of how well the architecture instantiates
the commonalties and accommodates the
variabilities that characterize the PL is desirable.
The purpose is both to assess the quality of a
conceptual or concrete architectural design relative
to the requirements and to quantify that measure of
quality so it can meaningfully compare different
designs. This considers the results of domain
definition and commonalty analysis (Figure 2).

3.2 PLA Quality Analysis at the
Conceptual Level

This phase focuses on becoming aware of the
available and required information to carry out the
analysis, and then to collect and assemble it. The PL
requirements define not only the PL scope, but also
represent the input used to create a knowledge base
of requirement taxonomy (Figure 3). Syntactic
architectural notations should be well understood by
the parties involved in the analysis. The result of an
evaluation process depends on how well the
description is made. This phase focuses on specific
SA analysis and the generation of artifacts to make
the analysis. Examples of artifacts include: domain
models (which help in comparing competing
architectures within the same functional area);
relevant architectural views; architectural styles;

environmental assumptions and constraints; and
trade-off rationale.

Figure 3: Conceptual software PLA analysis.

The role of a knowledge base is to allow
collections of architecture styles and patterns to be
evaluated in terms of both quality factors and
concerns, and anticipations of their use (Niemela et
al 2005). A ”pre-scored” of architectural patterns is
feasible in order to get a sense of their relative
suitability to meet particular quality requirements of
a system. In addition to evaluating individual
patterns, it is necessary to evaluate compositions of
patterns that might be used in architecture.
Identifying patterns that do not compose well (the
result is difficult to analyze, or the quality factors of
the result are in conflict with each other) should
steer a designer away from “difficult” architectures
towards those made of well-behaving compositions
of patterns. The knowledge base built in this way
helps to move from the notion of architectural styles
toward the ability to reason (whether quantitatively
or qualitatively) based on quality attribute-specific
models. The purpose of having a knowledge base is
to make architectural design more routine-like and
more predictable, to have a standard set of attribute-
based analysis questions, and to tighten the link
between design and analysis by means that can be
used to provide context-dependent measures. After
this phase, the activities of the concrete architecture
design and the second phase of architecture analysis
are performed.

3.3 PLA Quality Analysis at the
Concrete Level

In this phase recommendations are made, “hot
spots” in the architecture (areas of high predicted
complexity, large numbers of changes, performance
bottlenecks, etc.) are located and strategies for their
mitigation are enumerated, and common reference
models are identified. A detailed and quantitative
analysis, AQA, is developed by creating scenarios
based on the results of commonality analysis and
evaluating them based on the results of VA and an
analysis of the cost and benefits associated with
potential variations in the scope of the family.

1. Domain
Definition

3.Product-line
Architecture

1.1. Scoping

2.1. Commonalties and
variabilities identification

2.2. VA refinement

3.1. Design product
line architecture

3.2. Architectural quality
analysis (AQA)

2.
Commonalty

Analysis

1.2. Economic
analysis

1.3. Value Analysis (VA) creates
Taxonomy of
requirements

defines

analyzes

Product line
requirements

Product line Scope

Knowledge base

QUALITY AND VALUE ANALYSIS OF SOFTWARE PRODUCT LINE ARCHITECTURES

67

The knowledge base is attached to the PL scope in a
form of requirements’ taxonomy. This is used with
the aim to establish how adaptable the PLA is to the
expected changes related to this taxonomy. The
analysis considers PL specific techniques such as
commonality analysis, which systematically models
the required similarities and differences among PL
members. It is also considered that PLA contains the
common components of the architectures of the
product members and takes variabilities as possible
changes to this. The main inputs of the method are
the PL scope and PLA.

Figure 4: Inputs and activities of AQA.

The method consists of five important steps (Figure
4). The fist step is to derive change categories based
on PL scope (Figure 5). A category could contain
scenarios that are related to the technical
requirements. In this case scenarios explore the
applicability of the PLA in situations with various
technical requirements, so they represent PLA
adaptability. Another scenarios category may
concentrate on context identification and may
simulate changes in the technical environment, so
they represent PLA portability.

Figure 5: Derived change categories.

Then, the description of the PLA and the scenarios
identification are performed in parallel. The
simultaneity of these steps enables a decision to be

made as to what view should be considered for an
elicited scenario. Scenario effects evaluation and
interaction are the last steps performed sequentially.
An overall evaluation of the architecture may be
performed using customer value data to assign
weights to scenarios and scenario interactions. This
weighting can be used to evaluate one candidate
architectural design against another. When we
evaluate the effect of scenarios on the architecture,
we classify the effect of a scenario into four discrete
levels. At the first level, no changes are necessary,
which means that the scenario is already supported
by the architecture. At the second level, just one
component of the architecture needs to be changed.
At this level, we have true locality of change. At the
third level more than one component is affected, but
no new components are added or existing ones are
deleted. This means that the structure of the
architecture remains intact. At the fourth level,
architectural changes are inevitable, because new
components are necessary or existing ones become
obsolete. It is clear that one should seek to keep the
level of effect as low as possible.

4 CASE STUDY

4.1 PL Scope and PLA Description

Distributed services operate in different units that
are executed in devices and are organized to operate
in the form of a network. The units operate in a
collaborative way in order to provide the platform
system services. The system services are further
utilized through certain interfaces by application
servers and users. The purpose of the system
services of the platform is to enable application
services to distribute themselves smoothly and
comfortably. Figure 6 describes DiSeP context
diagram illustrating external actors that interface
with our platform. The new external actors,
TransactionManager and TransactionParticipant
are not mandatory. The context of the DiSeP PLA is
as important as the other PLA views because it
reveals other new, external actors that can interact
with a new potential PL member (Figure 4).

Distributed parts of the application services may
locate and utilize each other in a dynamic manner
reaching the following technical properties: 1)
platform implementation independence, 2)
distribution transparency and 3) mobility of system
services. The first technical property means
independence of implementation languages and a
universal communication manner between units. The
second property refers to the ability to resist

Technical
requirements

Technical
environment

PL
scope

defines

Identified in
determines

Identified in
Change categories

defines

Product line scope Knowledge base

Product line
architecture
description

Derive change categories from
the product line scope

Scenario identification

Evaluate the effect of scenarios

Scenarios interaction

ICSOFT 2008 - International Conference on Software and Data Technologies

68

dynamic changes in configuration of network of
interconnected units or in the physical
communication links between different devices. The
third considers that system services are not
centralized into one location, but any one of the
units can act as a system service provider. DiSeP is
the first model of PL in the domain.

Figure 6: DiSeP Context.

PLA has been documented around multiple views
describing conceptual and concrete levels, for each
view a static and dynamic perspective being offered.
The views were illustrated with diagrams expressed
in a real-time extension of UML.

Figure 7: DiSeP domain conceptual view.

The conceptual level considered a functional
decomposition of the architecture into domains. The
relationships between architectural elements are
based on pass control and pass data or uses. The
concrete level considered a more detailed functional
description, where the main architectural elements
are packages, capsules, ports, protocols. The
relationships are association, specialization,
generalization, etc. The dynamic aspect includes
statecharts and message-sequence charts. Layer
architecture style is considered for the conceptual
structural view. PLA concrete structural view
includes abstract components (Figure 8). All the
architectural elements are subsystems <<service>>
that are common to all product members. The
provided services, contained in the

SystemServiceProvider subsystem, are activated by a
Control subsystem. These services communicate
with the other subsystems, such as DataDistribution,
LocationServices and CommunicationServices.

Two variability points are identified in DiSeP
PLA, but others are implicit or unspecified. The
services inside the SystemServicesProvider represent
one of the variable points. In some of the products
there are two services: LeaseService and
DirectoryService that always come together. In other
products there also might be SecurityService,
TransactionService, etc. A second point of
variability is inside the CommunicationServices
domain. The communication could be performed
using SynchMessService or AsynchMessService.

Figure 8: Variability in service components.

4.2 DiSeP PLA Quality Analysis

To assess the quality of the DiSeP architecture, we
only use the software architecture analysis (AQA).
Due to the revolutionary initiation approach, we are
not able to perform VA (that can be done when the
first version of the new concept is ready).

As stated above, this is a scenario-based method
that consists of formulating a number of scenarios
and evaluating the effect of each of them on the
architecture. AQA is used to assess the quality at
architectural level, namely PLA, that represents the
commonalties and encapsulates the variabilites of
PL members. The first step in the evaluation is to
derive a number of scenarios from the requirements
of the architecture included in the PL scope. For
example, from the quality requirement portability we
can derive the following scenario: What happens
when another network protocol is to be used? By
formulating this scenario, we can make portability
tangible, because it captures what we actually want
to achieve with portability. The next step is to
evaluate the effect of these scenarios on the
architecture as described in the previous section. We
see that our example scenario demands a change in

New external actors

Distributed
Services

Platform (DiSeP)

Application
Service
Provider

Application
Service User

Lease
Grantor

Lease
User

Transaction
Manager

Transaction
Participant

Network

<<Domain>>
SystemServicesProvider

<<service>>
LeaseService

<<service>>
DirectoryService

<<service>>
TransactionService

<<service>>
SecurityService

<<service>>
SynchMessService

<<service>>
AsynchMessService

<<Domain>>
CommunicationServices

<<Domain>>
DiSeP

<<Domain>>
SystemServicesProvider

<<Domain>>
DataDistribution

<<Domain>>
LocationServices

<<Domain>>
CommunicationServices

<<Domain>>
Control

QUALITY AND VALUE ANALYSIS OF SOFTWARE PRODUCT LINE ARCHITECTURES

69

the CommunicationService component. Thus, this
scenario has a level two effect. It means that we
have locality of change for this scenario and that the
architecture is portable with respect to the network
protocol used.

We have created two categories of change
associated to adaptability and portability. Portability
is a quality requirement placed in the technical
environment category and adaptability represents the
flexibility of DiSeP to incorporate changes to its
technical requirements.

Adaptability. The scenarios simulate the use of
the DiSeP architecture in situations with diverse
technical requirements. The architecture is usable in
a situation when the scenario has an impact of level
three or lower.

Scenario 1. Which changes are needed when the
architecture is to be used in secure systems?

We assume that for secure systems a number of
things are necessary. First, each service
user/provider/grantor action should be authenticated
and it should be possible to grant different levels of
access to users (no access, read-only, full control,
etc.). This is already supported by the distributed
service platform architecture, so it is unaffected.
Second, the communication between components
should be encrypted. Encrypted communication is
not yet present in the architecture, but it could be
added by changing one component – communication
service. Finally, access to services should be
prohibited for unsecured units. This means that the
location service manager should be changed so that
it inspects the network addresses of clients. The
conclusion is that using the architecture for secure
systems demands changes to a number of existing
components and, therefore, this scenario has a level
three impact. Other scenarios could be:

2. Which changes are needed when the
architecture is to be used in real-time systems?

3. Which changes are needed when the
architecture is to be used in ultra-reliable systems?

4. Which changes are needed when another type
of interface is considered for a service user?

5. Which changes are needed when the
architecture is used in a system that uses workflow
management?

6. Which changes are needed in a system that
uses mobile computing?

The results are summarized in Table 1. As
expected, we see that the architecture is not directly
usable in every situation. Using it for real-time or
ultra-reliable systems requires major changes to the
architecture. In the other situations, the architecture
is usable, but some changes are needed. When the

DiSeP architecture is used in an actual situation,
more scenarios are probably required to evaluate
whether the right services are identified in order to
encapsulate the expected changes to the technical
requirements. Initiating the PL is a highly iterative
process. This analysis leads us to the conclusion that
first, a concrete functionality should be designed and
then attention to this quality attribute should be paid.

Table 1: Summary of the scenarios adaptability. (- =
unaffected, + = needs to be changed, O = one comp
affected, M = more comp affected).

DiSeP Scenario
Architecture Components

Impact
level

1
2
3
4
5
6

-
+
+
-
-
+

M
M
M
M
O
M

3
4
3
3
2
4

Portability. We exemplify with scenarios that
explore the effect of changes in the technical
environment.:

1. Which changes are needed when another end
point device is used?

2. Which changes are needed when another
network protocol is used?

Table 2: Summary of the scenarios for portability(- =
unaffected, + = needs to be changed, O = one component
affected).

DiSeP Scenario
Architecture Components

Impact
level

1
2

-
-

-
O

1
2

In Table 2, we observe that changes in the
technical environment affect very few of the DiSeP
architecture components. We notice that the
platform actually encapsulates access to the
environment. However, there may be potential
changes in the technical environment, not mentioned
here, that have an impact above level two.

5 CONCLUSIONS

In this paper we have introduced an analysis method
of a PLA that has been described in multiple views
on two abstraction levels. Our main and original
contribution is that we consider both economic and
quality aspects in this systematic analysis. The work
has been motivated by increasing realization in the
software engineering community of the importance

ICSOFT 2008 - International Conference on Software and Data Technologies

70

of PL from economic viewpoint and SA for
fulfilling quality requirements. Quality analysis at
the conceptual level examines the relationship
between architectural views and architectural styles,
as an architectural style is also considered to have an
impact on quality attributes of the system. In this
way, the result of the examination responds to
questions such as: (1) upon what architectural view
does the architectural style focus, (2) what specific
quality attributes the style is considered to support,
and (3) what kind of assumptions are made about
context or environment. Assuming that there are
already known benefits and drawbacks of each style
in relation to quality attributes, the analysis of
conceptual descriptions has the aim of checking
styles and violations to the standard patterns. Also,
the role of analysis at the conceptual level is to
provide a knowledge base of the PLA so as to
perform a more comprehensive analysis at the
concrete level description. Thus, the experts’
knowledge could be better structured and used in a
more systematic way to generate scenarios
associated with the most important quality attribute
of the domain. Towards an architectural knowledge
base for wireless service engineering some progress
has been made and described in (Niemela et al,
2005). The quality analysis of the concrete
architecture makes it possible to obtain better results
that improve the design. Concrete architecture
permits more relevant and accurate results.

The PLA of the DiSeP is the first stage of a
software development cycle and we have tried to
model it by means of applying an approach for PL
initiation from PL requirements. The development of
the DiSeP PLA is an iterative process, so the
analysis is as well. One of the goals of analyzing the
conceptual design of PLA is its relevancy for
uncovered PL features. On the concrete architecture
we analyzed adaptability and portability as
development quality attributes, using a scenario-
based method. We mention that is very important to
consider the economic aspects of the analysis. We
could not exemplify the value analysis, due to the
lack of an economic data model. However a value
metric of an economic model is required to make
decisions about PL scope and in commonality
analysis, too. (Clements, 2007) described SA
decisions based on an economic model.

In future research we want to validate this
systematic approach in various software application
domains where a product line is initiated. More work
is needed to develop systematic ways of bridging
other quality and economic requirements to a PLA.
However this paper presented the main concepts and
justified why this concepts are required.

ACKNOWLEDGEMENTS

We wish to thank the anonymous referees for their
valuable suggestions and comments.

REFERENCES

Bass L., P. Clement and R. Kazman, (2003) Software
Architecture in Practice, Addison Wesley, Reading.

Dobrica L., E. Niemelä, (2002) A Survey on Software
Architecture Analysis Methods, IEEE Trans
Software. Eng., Vol.28 (7), 638-653.

Dobrica L., E. Niemelä, (2000), A Strategy for Analyzing
Product Line Software Architecture, VTT
Publications 427, Espoo, Finland, 124 p.

Hauser J.R. and Don Clausing (1988), The House of
Quality, Harvard Business Review, May-June.

IEEE Std 1471-2000 (2000), IEEE Recommended
Practice for Architectural Description of Software-
Intensive Systems.

ISO/IEC WD1 42010 (2007), Systems and Software
Engineering – Architectural Description.

IEEE 1061 (1998), IEEE Standard. for Software. Quality
Metrics Methodology, IEEE Std 1061-1998.

Krutchen P. B., (1995), The 4+1 View Model of
Architecture, IEEE Software, Nov.,pp. 42-50.

Matinlassi, M., E. Niemelä and L. Dobrica, (2002),
Quality-driven architecture design and quality
analysis method - A revolutionary initiation approach
to product line architecture, VTT Publications 456,
Espoo, Finland, 139p.

Niemelä E. and T. Ihme, (2001), Product Line Software
Engineering of Embedded Systems, Procs of SSR'01,
Symposium on Software Reusability, pp. 118 – 125.

Niemelä E., Kalaoja J., P. Lago, (2005) Toward an
Architectural Knowledge Base for Wireless Service
Engineering, IEEE Trans. Software Eng., Vol 31 (5),
p. 361 – 379.

Purhonen A. , E. Niemelä , M. Matinlassi, (2004)
Viewpoints of DSP software and service architectures,
Journal of Systems and Software, Vol.69(1-2), p.57-
73.

Tharumarajah A, A.J. Wells, L. Nemes, (1996) A
Comparison of the bionic, fractal and holonic
manufacturing concepts, International Journal of
Computer Integrated Manufacturing 9 (3) 217-226.

Clements P. (2007), An economic model for software
architecture decisions, Procs. ICSEW’07 International
Conference on Software Engineering Workshops.

Miller J and Mukerji J, 2003, MDA Guide Version 1.0.1.,
Object Management Group, 2003.

Jaaksi A et al, 1999, Tried & True Object Development:
Industry-Proven Approaches with UML. Cambridge
Univ. Press, 1999.

Hofmeister C et al., 2000, Applied Software Architecture.
Addison-Wesley, 2000.

QUALITY AND VALUE ANALYSIS OF SOFTWARE PRODUCT LINE ARCHITECTURES

71

