
EFFICIENT SUPPORT COUNTING OF CANDIDATE ITEMSETS
FOR ASSOCIATION RULE MINING

Li-Xuan Lin, Don-Lin Yang, Chia-Han Yang
Dept. of Information Engineering and Computer Science, Feng Chia University, Taiwan

Jungpin Wu
Dept. of Statistics and Dept. of Public Finance, Feng Chia University, Taiwan

Keywords: Association rules, frequent itemsets, distributed data mining, incremental.

Abstract: Association rule mining has gathered great attention in recent years due to its broad applications. Some
influential algorithms have been developed in two categories: (1) candidate-generation-and-test approach
such as Apriori, (2) pattern-growth approach such as FP-growth. However, they all suffer from the
problems of multiple database scans and setting minimum support threshold to prune infrequent candidates
for process efficiency. Reading the database multiple times is a critical problem for distributed data mining.
Although more new methods are proposed, like the FSE algorithm that still has the problem of taking too
much space. We propose an efficient approach by using a transformation method to perform support count
of candidate itemsets. We record all the itemsets which appear at least one time in the transaction database.
Thus users do not need to determine the minimum support in advance. Our approach can reach the same
goal as the FSE algorithm does with better space utilization. The experiments show that our approach is
effective and efficient on various datasets.

1 INTRODUCTION

Association rule mining (Wang, 2005) has been
widely used in the applications of bioinformatics,
medical diagnosis, Web mining, and various data
analysis. Association rules represent the relationship
between attributes in the form of rules that can
enhance the understanding and application of the
underlying information for users.

In traditional methods, the minimum support is a
very important segment in association rule mining.
The association rules are generated by using the
minimum support. If the minimum support is set too
high, we may lose some useful information. If the
minimum support is too low, we may produce some
useless information. How to determine a good
minimum support is a very important subject. We
want to develop a novel approach which can
efficiently mine association rules without the need of
predetermining the minimum support threshold from
transaction databases.

Some influential algorithms have been
developed in two categories (Hipp, 2000): (1)
candidate-generation-and-test approach such as the

Apriori (Agrawal, 1994) and GSP (Srikant, 1996), (2)
pattern-growth approach such as the FP-growth
(Han, 2000) and PrefixSpan (Pei, 2004). However,
they all suffer from the problem of multiple database
scans and setting minimum support thresholds to
prune infrequent candidates for process efficiency
and obtaining useful associate rules with support
counts above the threshold value.

To remedy the above problems, our approach has
the following characteristics:

1. No multiple database scans.
2. No need to use previously found frequent

itemsets for candidate generation when we can
directly enumerate all candidate items with
non-zero count.

3. No predetermination of minimum support.

In this approach, we can get all the information
of items from the database. Afterwards, users can set
the best minimum support after they decide what
they want.

180
Lin L., Yang D., Yang C. and Wu J. (2008).
EFFICIENT SUPPORT COUNTING OF CANDIDATE ITEMSETS FOR ASSOCIATION RULE MINING.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 180-185
DOI: 10.5220/0001888101800185
Copyright c© SciTePress

2 RELATED WORK

To alleviate the problems mentioned in the last
section, some new methods are devised using
different approaches. In the following, we examine
two algorithms belonging to these new approaches,
on which our proposed algorithm is based.

2.1 Fast Support Enumeration
Algorithm: FSE

To generate association rules without the condition
of predetermining the minimum support threshold,
one scan the transaction database once and
enumerate all candidate itemsets with efficient
indexing of their support counters. Thus, it can
produce meaningful rules very easily for any item
that appears at least once in the transactions.

The FSE algorithm (Lin, 2006) is such an
approach that has the following five steps:

Step 1: Read a transaction T from the
transaction database D at a time. Here, each item is
identified with the encoded number.

Step 2: Enumerate all candidate n-itemsets X
for the items in each transaction T of the length n.
There is no need to set the minimum support
threshold in this step.

Step 3: Use Pascal triangle to compute the
indexes of support counters for the generated n-
itemsets X and increase the value of their
corresponding counters. The counters are stored
sequentially in n sub-lists where each i-itemset has
one sub-list, i = 1 to n. Note that each counter must
have a non-zero value since every candidate itemset
is generated after examining actual transactions.
This method is different from joining (i-1)-itemsets
to get i-itemsets where i > 1.

Step 4: Repeat the above three steps until the
last transaction is done.

Step 5: When the minimum support is decided,
one can easily visit the list of support counters to
find all frequent itemsets and generate
corresponding rules as needed.

The FSE algorithm attempts to solve the
problems we have discussed previously. However, it
also has some problems of its own. FSE has a good
performance when the length of the candidate
itemset is short. However, it will incur a very high
cost of storage space when the length of the
candidate itemset is long.

2.2 Item-Transformation Approach

The Item-Transformation algorithm (Chu, 2005) is a
novel and simple method that does not belong to the

candidate generation-and-test approach and the
pattern growth approach. It treats the transaction
database as a data stream and finds the frequent
patterns by scanning the database only once. Two
versions of the approach are provided, Mapping-
table and Transformation-function.

Every item in a transaction can be combined
with each other to get all the possible sub-itemsets.
For example, transaction {a, b, c} can generate all
the sub-itemsets {a, b, c, ab, ac, bc, abc}. In the
following, two versions of the Item-Transformation
approach are introduced.

(1) Mapping-table approach: it uses a table to
represent all the sub-itemsets in the transaction by
using bit-map. Taking a 3-item transaction for
example, Table 1 shows all of their sub-itemsets
with a bit map approach.

(2) Transformation-function approach: it uses
a transformation function to achieve the same goal.
The following rules are used to get the Pattern
Vector (PV) inductively. Some pattern vectors are
shown in the last column of Table 1.

Rule 1: The rightmost position of the PV is
always equal to “1”.

Rule 2: If the next position of the Transaction
Vector (TV) has no item, it fills the PV with a “0” in
the corresponding positions. Some transaction
vectors are shown in the second column of Table 1.

Rule 3: If the next position of TV has an item,
it sets the PV with the value(s) of the previous part.

Table 1: A corresponding mapping table for 3 items.

Item
sets

Transaction
Vector

Set of patterns
(- denotes null)

Pattern
Vector

- 000 0000000,- 0000000
1

a 001 000000,a,- 0000001
1

b
a

011 0000,b,ba,a,- 0000111
1

b 010 0000,b,0,0,- 0000100
1

c
b

110 c,0,0,cb,b,0,0,- 1001100
1

c
ba

111 c,ca,cba,cb,b,ba,a,- 1111111
1

3 OUR PROPOSED METHOD

Based on the last two approaches in Section 2, we
take the advantage of candidate enumeration and
encoding scheme respectively to develop our
algorithm with the following five steps:

EFFICIENT SUPPORT COUNTING OF CANDIDATE ITEMSETS FOR ASSOCIATION RULE MINING

181

Step 1: Read one transaction from the
transaction database at a time, and use Arabic
numerals starting from one to encode all the items in
the transaction if they are not already numbered in
the previous transaction. From here on, each item is
identified with an encoded number.

Step 2: Enumerate all candidate n-itemsets for
the items in each transaction of the length n. Here n
is the number of distinct items in the transaction. No
minimum support is required here.

Step 3: Use our transformation approach to
transform these candidate n-itemsets to a form of
(X.Y) where X and Y are numerals. Then add each
of them to a new database if it appears the first time.

Step 4: Repeat the above three steps until the
last transaction is processed.

Step 5: When a threshold value of the
minimum support is specified, one can easily visit
the list of support counters to find all frequent
itemsets and generate corresponding rules as needed.

Since the value of the minimum support is a
given threshold value and the process of rule
generation is trivial, we will only describe the
candidate enumeration and support counting part of
our approach in the rest of the paper.

3.1 Main Concept

To meet the requirement of only one database scan
in our approach, we need to generate all possible
candidate n-itemsets after reading each transaction
t={i1,..,in} from a database D={i1,..,im}. Here
1≦n≦m and n becomes the maximum length of the
transactions in D at the end of database scan.
Without pre-determining the minimum support, our
approach generates every possible candidate n-
itemsets from all the transaction items. And there is
no need to specify the minimum support in our
candidate generation approach.

Although some (infrequent) itemsets cannot be
pruned during candidate generation, our method
requires only one database scan and allows users to
find association rules satisfying any non-zero
support count. Our challenge has twofold:

1. Find an effective way to enumerate all
possible candidate n-itemsets for each input
transaction. Next, the support count of each
n-itemset is recorded and then retrieved
efficiently later on for frequent itemset
verification to generate interesting rules.

2. Use the most efficient data structure and
indexes to store and access these support
counters.

3.2 Bit Map and Item-Transformation

We adapt the bit map (Dunkel, 1999) approach to
express each transaction in the database. In every
transaction, if an item appears, its corresponding
position (from left to right) will be marked as “1”,
otherwise it is encoded as “0.” Then, we transform
the binary coding system into decimal coding
system.

To illustrate the process, an item showing in the
first position will be displayed as 20 and the second
will be 21, the n-th item is 2n-1 and so on. Under this
mechanism, we can transform each of the items into
a decimal number and sum up their decimal values
for the itemset. For example, we assume a
transaction includes two items A and C. By using
the transformation approach we can obtain a bit map
of 101 and a decimal number of 1×20+0×21+1×
22=1+0+4=5. It is a step by step transformation.
Different items will be transformed into different
numbers. The number is unique for every itemset.

Table 2 shows all the bit map expressions for
items A, B, C, and D in the order of the decimal
system, i.e., decimal numbers from 1 to 31. In Table
2, there are 31 sub-itemsets generated from the
itemset ABCDE. This is the one-dimension case
where a linear expression is used.

Table 2: A mapping table from binary to decimal.

Item
sets

Bit
map

Deci
-mal
value

Item
sets

Bit
map

Deci
-mal
value

A 1 1 E 00001 16
B 01 2 AE 10001 17

AB 11 3 BE 01001 18
C 001 4 ABE 11001 19

AC 101 5 CE 00101 20
BC 011 6 ACE 10101 21

ABC 111 7 BCE 01101 22
D 0001 8 ABCE 11101 23

AD 1001 9 DE 00011 24
BD 0101 10 ADE 10011 25

ABD 1101 11 BDE 01011 26
CD 0011 12 ABDE 11011 27

ACD 1011 13 CDE 00111 28
BCD 0111 14 ACDE 10111 29

ABCD 1111 15 BCDE 01111 30
 ABCDE 11111 31

In the two-dimension case, each row can have 2n
itemsets. Choosing a proper n=2, it becomes a two-

ICSOFT 2008 - International Conference on Software and Data Technologies

182

dimension array consisting of 4 itemsets in each
row. If n=3, each row will have 8 itemsets. The
itemsets are placed from left to right and from top to
bottom. The first itemset in each row and column is
called the leading itemset. Otherwise, it is called a
non-leading itemset. The only exception is the upper
leftmost entry 0(0) which is treated as null. For
example, A(1) is the leading itemset of the second
column and D(8) is the leading itemset of the third
row. The number in the parentheses is the
corresponding decimal number of the itemset. The
value of n can be defined by the user. Table 3 shows
the result of transforming the representation from
one-dimension to two-dimension.

Table 3: A two-dimension list of itemsets.

0(0) A(1) B(2) AB(3)

C(4) AC(5) BC(6) ABC(7)
D(8) AD(9) BD(10) ABD(11)
CD(12) ACD(13) BCD(14) ABCD(15)
E(16) AE(17) BE(18) ABE(19)
CE(20) ACE(21) BCE(22) ABCE(23)
DE(24) ADE(25) BDE(26) ABDE(27)
CDE(28) ACDE(29) BCDE(30) ABCDE(31)

In Table 3 we can observe that each non-leading
itemset is composed of leading itemsets from its
corresponding row and column. Take itemset BCE
for example, it is a combination of the leading
column itemset B and the leading row itemset CE.
The other non-leading itemsets can be verified in the
same way easily. This is a case when the length of
the row or column is 2n.

The reason for the case of the length 2n is due to
the use of bit map and the binary system. We can
find that after we present the itemsets with bit map
and the row has the length of 2n, the first row
contains a null and the first n items along with their
combinations. And the first column contains a null
and the remaining items along with their
combinations. For n = 2, we can see that the first
row contains the leading itemsets of the first n items
A and B. And the first column contains the leading
itemsets of the rest of items C, D, and E.

Another interesting characteristic of Table 3 is
that the items in the first column can be added
incrementally along with the composed itemsets to
become the leading itemsets. While adding a new
item, it will append its combinations with the
previous results at the end of the table.

For example, the upper half of Table 3 is the list
of itemsets for items {A, B, C, D} in a two-
dimension representation. The corresponding

decimal numbers are from 0 to 15. When we add a
new item E, it will combine with the existing
itemsets of {A, B, C, D} and form the lower part of
Table 3. The corresponding decimal numbers are
from 16 to 31. The newly formed table with the
decimal numbers from 0 to 31 is exactly the same as
Table 3 for itemsets {A, B, C, D, E}. This means
that we can deal with item updates in our approach.

To simply our process, each itemset will be
represented by its corresponding column and row.
We denote their decimal values as X and Y
respectively. Take ABCE (23) for instance, it can be
taken apart as ABCE (23) = AB (3) + CE (20). Here
X = 3 and Y = 20. This indicates that we can
decompose ABCE and obtain a unique
representation of X-column and Y-row.

Our item-transformation method uses the above
concept. In the first step, we define the value of n.
For a two-dimension representation, the length of
the row is 2n. Therefore, the first n items and their
combined itemsets will be placed in the first row
where the remaining items and their combined
itemsets will be placed in the first column in an
ascending order. After we transform the itemsets by
using bit map, their decimal values can be calculated
easily. The first position means 20, the second
position means 21, and the n-th position means 2n-1.
To further simply the representation of an itemset in
the two-dimension table with the index of column
and row, we can separate the itemset into two
independent parts (X.Y) where X and Y start from
the origin. Take itemset ABCE as an example, with
n = 2, we can separate the itemset into two parts
which are AB and CE. For sub-itemset AB, we can
get the bit map of 11 and X=1×20+1×21=1+2=3. For
sub-itemset CE, we can get the bit map of 101 and
Y=1×20+0×21+1×22=1+0+4=5. Therefore the
itemset ABCE can be transformed into another form
of (X.Y) = (3.5). To verify with Table 3, the itemset
ABCE is composed of the third column and the fifth
row. This indicates that each itemset can be
represented by a unique identifier.

3.3 Support Counting after
Item-Transformation

The next step is to process the transformed sub-
itemsets in the form of (X.Y). We add a third
variable of alphabet “Z” to represent the value of
support counting. The expression of an itemset
becomes (X.Y.Z). The value of Z is initialized to
zero. For better storage management, we sort the
itemsets according to their support count Z first and
then X.Y in ascending order. For updates of adding
additional item, we have the following two cases:

EFFICIENT SUPPORT COUNTING OF CANDIDATE ITEMSETS FOR ASSOCIATION RULE MINING

183

Case 1: Adding a brand new sub-itemset.
Insert the sub-itemset into its corresponding

position in the group of one support count with the
index of (X.Y).

Case 2: Adding an existing sub-itemset.
Increase the sub-itemset’s Z value by one and

move it to the corresponding position in the group of
new Z support count with the index (X.Y).

4 EXPERIMENTAL RESULTS

We performed extensive experiments to compare the
performance of our approach with that of Item-
Transformation, FSE, Apriori, and FP-growth.

4.1 Experimental Environment

We have implemented our algorithm in Java. All the
experiments are performed on a 3.6GHz Intel
Pentium 4 PC machine with 2GB DDR400MHz
memory, running on Microsoft Windows XP with
SP2. We use Java with JDK 1.50 for programming
and eclipse is used as a development tool to build
our experimental environment.

We downloaded existing tools from the ARtool
(Cristoforr, 1999), which has a collection of
algorithms and tools for mining association rules in
binary databases. Note that we use the term “run
time” to show the total execution time (i.e., the
period between input and output), instead of the
CPU time measured in the experiments of some
other literature.

The synthetic datasets which we used for our
experiments were generated from the IBM synthetic
data generator (IBM, 2006). Different sets of
parameters are used to generate various datasets for
performance evaluation. The parameters include the
number of transactions D, the average size of transactions
T, the average size of maximal potentially–frequent
itemsets I, the number of potentially-frequent itemsets L,
and the number of items N.

4.2 Comparison Results

We use the dataset T10I4D0.1K to compare the
performance of our approach with FSE, Apriori and
FP-growth algorithms.

To have a more comparative result for our
experiments, we generate the datasets having the
same number of items N=20. Then we set T=10, I=
4, and L=1000.

The result of scalability test is shown in Figure 1.
The performance of our algorithm and FSE does not
have any noticeable changes as the minimum

support decreases from 5% to 1% whereas our
approach always runs faster than FSE. Figure 1 also
shows that the performance of FP-growth and
Apriori is better when the support threshold is
greater than 2% and 3% respectively. The reason is
that we did not apply the minimum support
threshold in FSE and our algorithm since we
generate all itemsets with non-zero support counts.
On the other hand, Apriori and FP-growth are not
able to deal with the thresholds smaller than 2% and
1% respectively.

In Figure 2, we use a database which has the
transactions with more repeated items. We can find
that our approach takes less space. It is because that
FSE and Item-Transformation approach reserve the
space for the itemsets that do not appear at that time
but could show up in the later process. So they
would take up more space.

T10.I4.D0.1K

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5Support threshold(%)

Ru
nt

im
e(

se
c)

Our approach
FSE
Apriori
FP-gorwth

Figure 1: Scalability test for various min_sup thresholds.

0

50

100

150

200

250

100 200 300 400 500
Number of transactions

Sp
ac

e(
K.

B.
)

Our approach
FSE
Item-Transformation Approach

Figure 2: Space test for different number of transactions.

In Figure 3, it shows that Item-Transformation
approach can deal with the length of transaction less
than 20 and FSE can deal with the length of
transaction less than 25. Our approach can deal with
longer length of transactions with less time. Since

ICSOFT 2008 - International Conference on Software and Data Technologies

184

our approach divides the transaction into smaller
parts, it can solve the problem of long transactions.

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40
The length of transaction

Ru
nt

im
e(

se
c)

Our approach
FSE
Item-Transformation Approach

Figure 3: Runtime test for different length of transactions.

5 CONCLUSIONS AND FUTURE
WORK

Here are the advantages of our approach:
(1) Scan the database only once.
(2) No generation of candidates from

previously found frequent itemsets since
our approach directly enumerates all
candidates with efficient indexing for
support counting.

(3) No need to set support thresholds in
advance because we keep support counts
for all possible interesting itemsets.

(4) The result generated by our approach is
sorted by the support count such that
users can find what they want easily.

(5) No candidate itemset is generated if it
does not appear in the transactions.

(6) Our method has the same degree of
complexity as the FSE. However, the
processing cost is not proportional to the
length of the itemset.

(7) Our method is an incremental mining
approach. New items can be processed
in a regular manner.

We have implemented our algorithm and studied
its performance in comparison with other algorithms
for various sizes of databases. Our approach
outperforms the other algorithms.

In the future, we plan to improve the efficiency
of processing and retrieving the support counters of
the candidate itemsets with more direct access
approach. We will also apply our approach in the
parallel frequent pattern mining (Agrawal, 1996) and
sequential patterns mining (Srikant, 1996; Pei, 2004).

ACKNOWLEDGEMENTS

This work was supported in part by the National
Science Council, Taiwan, under Grants NSC96-
2218-E-007-007 and NSC95-2221-E-035-068-MY3.

REFERENCES

Agrawal, R. & Srikant, R., 1994. Fast Algorithms for
Mining Association Rules. Proc. of the 20th Intl. Conf.
on Very Large Data Bases, 487-499.

Agrawal, R., & Shafer, J. C., 1996. Parallel mining of
association rules. IEEE Transactions on Knowledge
and Data Engineering, 8, 6, 962-969.

Chu, T. P., Wu, F., & Chiang, S. W., 2005. Mining
Frequent Pattern Using Item-Transformation Method.
Fourth Annual ACIS Intl. Conf. on Computer and
Information Science, 698-706.

Cristoforr, L., 2008. ARtool Project. URL:
http://www.cs.umb.edu/~laur/ARtool/.

Dunkel, B., & Soparkar, N., 1999. Data Organization and
Access for Efficient Data Mining. Proc. of the 15th
Intl. Conf. on Data Engineering. 522-529.

Han, J. W., Pei, J., & Yin, Y. W. 2000. Mining frequent
patterns without candidate generation. SIGMOD
Record, 29, 1-12.

Hipp, J., Güntzer, U., Nakhaeizadeh, G., 2000. Algorithms
for Association Rule Mining - A General Survey and
Comparison. SIGKDD Explorations, 2, 1, 58-64.

IBM Almaden Research Center, 2006. Synthetic Data
Generator.URL:http://www.almaden.ibm.com/softwar
e/quest/

Lin, H. W., Yang, D. L., Liao, W. C., & Wu, J., 2007.
Efficient Support Counting of Candidate Itemsets for
Association Rule Mining. Proc. of the 2nd Intl.
Workshop on Chance Discovery and Data Mining,
190-196.

Pei, J., Han, J. W., Mortazavi-Asl, B., Wang, J. Y., Pinto,
H., Chen, Q. M., Dayal, U., & Hsu, M. C., 2004.
Mining sequential patterns by pattern-growth: The
PrefixSpan approach. IEEE Transactions on
Knowledge and Data Engineering, 16, 1424-1440.

Srikant, R., & Agrawal, R., 1996. Mining Sequential
Patterns: Generalization and Performance
Improvements. In Proc. of EDBT’96, 3–17.

Wang, J. Y., Han, J. W., Lu, Y., & Tzvetkov, P., 2005.
TFP: An efficient algorithm for mining top-K frequent
closed itemsets. IEEE Transactions on Knowledge and
Data Engineering, 17, 652-664.

EFFICIENT SUPPORT COUNTING OF CANDIDATE ITEMSETS FOR ASSOCIATION RULE MINING

185

