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Abstract: Association rule mining has gathered great attention in recent years due to its broad applications. Some 
influential algorithms have been developed in two categories: (1) candidate-generation-and-test approach 
such as Apriori, (2) pattern-growth approach such as FP-growth. However, they all suffer from the 
problems of multiple database scans and setting minimum support threshold to prune infrequent candidates 
for process efficiency. Reading the database multiple times is a critical problem for distributed data mining. 
Although more new methods are proposed, like the FSE algorithm that still has the problem of taking too 
much space. We propose an efficient approach by using a transformation method to perform support count 
of candidate itemsets. We record all the itemsets which appear at least one time in the transaction database. 
Thus users do not need to determine the minimum support in advance. Our approach can reach the same 
goal as the FSE algorithm does with better space utilization. The experiments show that our approach is 
effective and efficient on various datasets. 

1 INTRODUCTION 

Association rule mining (Wang, 2005) has been 
widely used in the applications of bioinformatics, 
medical diagnosis, Web mining, and various data 
analysis. Association rules represent the relationship 
between attributes in the form of rules that can 
enhance the understanding and application of the 
underlying information for users.  

In traditional methods, the minimum support is a 
very important segment in association rule mining. 
The association rules are generated by using the 
minimum support. If the minimum support is set too 
high, we may lose some useful information. If the 
minimum support is too low, we may produce some 
useless information. How to determine a good 
minimum support is a very important subject. We 
want to develop a novel approach which can 
efficiently mine association rules without the need of 
predetermining the minimum support threshold from 
transaction databases. 

Some influential algorithms have been 
developed in two categories (Hipp, 2000): (1) 
candidate-generation-and-test approach such as the 

Apriori (Agrawal, 1994) and GSP (Srikant, 1996), (2) 
pattern-growth approach such as the FP-growth 
(Han, 2000) and PrefixSpan (Pei, 2004). However, 
they all suffer from the problem of multiple database 
scans and setting minimum support thresholds to 
prune infrequent candidates for process efficiency 
and obtaining useful associate rules with support 
counts above the threshold value.  

To remedy the above problems, our approach has 
the following characteristics: 

1. No multiple database scans. 
2. No need to use previously found frequent 

itemsets for candidate generation when we can 
directly enumerate all candidate items with 
non-zero count. 

3. No predetermination of minimum support. 

In this approach, we can get all the information 
of items from the database. Afterwards, users can set 
the best minimum support after they decide what 
they want. 
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2 RELATED WORK 

To alleviate the problems mentioned in the last 
section, some new methods are devised using 
different approaches. In the following, we examine 
two algorithms belonging to these new approaches, 
on which our proposed algorithm is based. 

2.1 Fast Support Enumeration 
Algorithm: FSE 

To generate association rules without the condition 
of predetermining the minimum support threshold, 
one scan the transaction database once and 
enumerate all candidate itemsets with efficient 
indexing of their support counters. Thus, it can 
produce meaningful rules very easily for any item 
that appears at least once in the transactions. 

The FSE algorithm (Lin, 2006) is such an 
approach that has the following five steps: 

Step 1: Read a transaction T from the 
transaction database D at a time. Here, each item is 
identified with the encoded number. 

Step 2: Enumerate all candidate n-itemsets X 
for the items in each transaction T of the length n. 
There is no need to set the minimum support 
threshold in this step. 

Step 3: Use Pascal triangle to compute the 
indexes of support counters for the generated n-
itemsets X and increase the value of their 
corresponding counters. The counters are stored 
sequentially in n sub-lists where each i-itemset has 
one sub-list, i = 1 to n. Note that each counter must 
have a non-zero value since every candidate itemset 
is generated after examining actual transactions. 
This method is different from joining (i-1)-itemsets 
to get i-itemsets where i > 1. 

Step 4: Repeat the above three steps until the 
last transaction is done. 

Step 5: When the minimum support is decided, 
one can easily visit the list of support counters to 
find all frequent itemsets and generate 
corresponding rules as needed. 

The FSE algorithm attempts to solve the 
problems we have discussed previously. However, it 
also has some problems of its own. FSE has a good 
performance when the length of the candidate 
itemset is short. However, it will incur a very high 
cost of storage space when the length of the 
candidate itemset is long. 

2.2 Item-Transformation Approach 

The Item-Transformation algorithm (Chu, 2005) is a 
novel and simple method that does not belong to the 

candidate generation-and-test approach and the 
pattern growth approach. It treats the transaction 
database as a data stream and finds the frequent 
patterns by scanning the database only once. Two 
versions of the approach are provided, Mapping-
table and Transformation-function.  

Every item in a transaction can be combined 
with each other to get all the possible sub-itemsets. 
For example, transaction {a, b, c} can generate all 
the sub-itemsets {a, b, c, ab, ac, bc, abc}. In the 
following, two versions of the Item-Transformation 
approach are introduced. 

(1) Mapping-table approach: it uses a table to 
represent all the sub-itemsets in the transaction by 
using bit-map. Taking a 3-item transaction for 
example, Table 1 shows all of their sub-itemsets 
with a bit map approach. 

(2) Transformation-function approach: it uses 
a transformation function to achieve the same goal. 
The following rules are used to get the Pattern 
Vector (PV) inductively. Some pattern vectors are 
shown in the last column of Table 1. 

Rule 1: The rightmost position of the PV is 
always equal to “1”. 

Rule 2: If the next position of the Transaction 
Vector (TV) has no item, it fills the PV with a “0” in 
the corresponding positions. Some transaction 
vectors are shown in the second column of Table 1. 

Rule 3: If the next position of TV has an item, 
it sets the PV with the value(s) of the previous part. 

Table 1: A corresponding mapping table for 3 items. 

Item
sets 

Transaction 
Vector 

Set of patterns 
(- denotes null) 

Pattern 
Vector 

- 000 0000000,- 0000000
1 

a 001 000000,a,- 0000001
1 

b
a 

011 0000,b,ba,a,- 0000111
1 

b 010 0000,b,0,0,- 0000100
1 

c
b 

110 c,0,0,cb,b,0,0,- 1001100
1 

c
ba 

111 c,ca,cba,cb,b,ba,a,- 1111111
1 

3 OUR PROPOSED METHOD 

Based on the last two approaches in Section 2, we 
take the advantage of candidate enumeration and 
encoding scheme respectively to develop our 
algorithm with the following five steps: 
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Step 1: Read one transaction from the 
transaction database at a time, and use Arabic 
numerals starting from one to encode all the items in 
the transaction if they are not already numbered in 
the previous transaction. From here on, each item is 
identified with an encoded number. 

Step 2: Enumerate all candidate n-itemsets for 
the items in each transaction of the length n. Here n 
is the number of distinct items in the transaction. No 
minimum support is required here. 

Step 3: Use our transformation approach to 
transform these candidate n-itemsets to a form of 
(X.Y) where X and Y are numerals. Then add each 
of them to a new database if it appears the first time. 

Step 4: Repeat the above three steps until the 
last transaction is processed. 

Step 5: When a threshold value of the 
minimum support is specified, one can easily visit 
the list of support counters to find all frequent 
itemsets and generate corresponding rules as needed. 

Since the value of the minimum support is a 
given threshold value and the process of rule 
generation is trivial, we will only describe the 
candidate enumeration and support counting part of 
our approach in the rest of the paper. 

3.1 Main Concept 

To meet the requirement of only one database scan 
in our approach, we need to generate all possible 
candidate n-itemsets after reading each transaction 
t={i1,..,in} from a database D={i1,..,im}. Here 
1≦n≦m and n becomes the maximum length of the 
transactions in D at the end of database scan. 
Without pre-determining the minimum support, our 
approach generates every possible candidate n-
itemsets from all the transaction items. And there is 
no need to specify the minimum support in our 
candidate generation approach. 

Although some (infrequent) itemsets cannot be 
pruned during candidate generation, our method 
requires only one database scan and allows users to 
find association rules satisfying any non-zero 
support count. Our challenge has twofold: 

1. Find an effective way to enumerate all 
possible candidate n-itemsets for each input 
transaction. Next, the support count of each 
n-itemset is recorded and then retrieved 
efficiently later on for frequent itemset 
verification to generate interesting rules. 

2. Use the most efficient data structure and 
indexes to store and access these support 
counters. 

3.2 Bit Map and Item-Transformation 

We adapt the bit map (Dunkel, 1999) approach to 
express each transaction in the database. In every 
transaction, if an item appears, its corresponding 
position (from left to right) will be marked as “1”, 
otherwise it is encoded as “0.” Then, we transform 
the binary coding system into decimal coding 
system.  

To illustrate the process, an item showing in the 
first position will be displayed as 20 and the second 
will be 21, the n-th item is 2n-1 and so on. Under this 
mechanism, we can transform each of the items into 
a decimal number and sum up their decimal values 
for the itemset. For example, we assume a 
transaction includes two items A and C. By using 
the transformation approach we can obtain a bit map 
of 101 and a decimal number of 1×20+0×21+1×
22=1+0+4=5. It is a step by step transformation. 
Different items will be transformed into different 
numbers. The number is unique for every itemset. 

Table 2 shows all the bit map expressions for 
items A, B, C, and D in the order of the decimal 
system, i.e., decimal numbers from 1 to 31. In Table 
2, there are 31 sub-itemsets generated from the 
itemset ABCDE. This is the one-dimension case 
where a linear expression is used. 

Table 2: A mapping table from binary to decimal. 

Item 
sets 

 

Bit 
map 
 

Deci
-mal 
value 

Item 
sets 

Bit 
map 
 

Deci 
-mal 
value 

A 1 1 E 00001 16 
B 01 2 AE 10001 17 

AB 11 3 BE 01001 18 
C 001 4 ABE 11001 19 

AC 101 5 CE 00101 20 
BC 011 6 ACE 10101 21 

ABC 111 7 BCE 01101 22 
D 0001 8 ABCE 11101 23 

AD 1001 9 DE 00011 24 
BD 0101 10 ADE 10011 25 

ABD 1101 11 BDE 01011 26 
CD 0011 12 ABDE 11011 27 

ACD 1011 13 CDE 00111 28 
BCD 0111 14 ACDE 10111 29 

ABCD 1111 15 BCDE 01111 30 
   ABCDE 11111 31 

In the two-dimension case, each row can have 2n 
itemsets. Choosing a proper n=2, it becomes a two-
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dimension array consisting of 4 itemsets in each 
row. If n=3, each row will have 8 itemsets. The 
itemsets are placed from left to right and from top to 
bottom. The first itemset in each row and column is 
called the leading itemset. Otherwise, it is called a 
non-leading itemset. The only exception is the upper 
leftmost entry 0(0) which is treated as null. For 
example, A(1) is the leading itemset of the second 
column and D(8) is the leading itemset of the third 
row. The number in the parentheses is the 
corresponding decimal number of the itemset. The 
value of n can be defined by the user. Table 3 shows 
the result of transforming the representation from 
one-dimension to two-dimension.  

Table 3: A two-dimension list of itemsets. 

0(0) A(1) B(2) AB(3) 

C(4) AC(5) BC(6) ABC(7) 
D(8) AD(9) BD(10) ABD(11) 
CD(12) ACD(13) BCD(14) ABCD(15) 
E(16) AE(17) BE(18) ABE(19) 
CE(20) ACE(21) BCE(22) ABCE(23) 
DE(24) ADE(25) BDE(26) ABDE(27) 
CDE(28) ACDE(29) BCDE(30) ABCDE(31) 

In Table 3 we can observe that each non-leading 
itemset is composed of leading itemsets from its 
corresponding row and column. Take itemset BCE 
for example, it is a combination of the leading 
column itemset B and the leading row itemset CE. 
The other non-leading itemsets can be verified in the 
same way easily. This is a case when the length of 
the row or column is 2n. 

The reason for the case of the length 2n is due to 
the use of bit map and the binary system. We can 
find that after we present the itemsets with bit map 
and the row has the length of 2n, the first row 
contains a null and the first n items along with their 
combinations. And the first column contains a null 
and the remaining items along with their 
combinations. For n = 2, we can see that the first 
row contains the leading itemsets of the first n items 
A and B. And the first column contains the leading 
itemsets of the rest of items C, D, and E.  

Another interesting characteristic of Table 3 is 
that the items in the first column can be added 
incrementally along with the composed itemsets to 
become the leading itemsets. While adding a new 
item, it will append its combinations with the 
previous results at the end of the table.  

For example, the upper half of Table 3 is the list 
of itemsets for items {A, B, C, D} in a two-
dimension representation. The corresponding 

decimal numbers are from 0 to 15. When we add a 
new item E, it will combine with the existing 
itemsets of {A, B, C, D} and form the lower part of 
Table 3. The corresponding decimal numbers are 
from 16 to 31. The newly formed table with the 
decimal numbers from 0 to 31 is exactly the same as 
Table 3 for itemsets {A, B, C, D, E}. This means 
that we can deal with item updates in our approach. 

To simply our process, each itemset will be 
represented by its corresponding column and row. 
We denote their decimal values as X and Y 
respectively. Take ABCE (23) for instance, it can be 
taken apart as ABCE (23) = AB (3) + CE (20). Here 
X = 3 and Y = 20. This indicates that we can 
decompose ABCE and obtain a unique 
representation of X-column and Y-row.  

Our item-transformation method uses the above 
concept. In the first step, we define the value of n. 
For a two-dimension representation, the length of 
the row is 2n. Therefore, the first n items and their 
combined itemsets will be placed in the first row 
where the remaining items and their combined 
itemsets will be placed in the first column in an 
ascending order. After we transform the itemsets by 
using bit map, their decimal values can be calculated 
easily. The first position means 20, the second 
position means 21, and the n-th position means 2n-1. 
To further simply the representation of an itemset in 
the two-dimension table with the index of column 
and row, we can separate the itemset into two 
independent parts (X.Y) where X and Y start from 
the origin. Take itemset ABCE as an example, with 
n = 2, we can separate the itemset into two parts 
which are AB and CE. For sub-itemset AB, we can 
get the bit map of 11 and X=1×20+1×21=1+2=3. For 
sub-itemset CE, we can get the bit map of 101 and 
Y=1×20+0×21+1×22=1+0+4=5. Therefore the 
itemset ABCE can be transformed into another form 
of (X.Y) = (3.5). To verify with Table 3, the itemset 
ABCE is composed of the third column and the fifth 
row. This indicates that each itemset can be 
represented by a unique identifier. 

3.3 Support Counting after  
Item-Transformation 

The next step is to process the transformed sub-
itemsets in the form of (X.Y). We add a third 
variable of alphabet “Z” to represent the value of 
support counting. The expression of an itemset 
becomes (X.Y.Z). The value of Z is initialized to 
zero. For better storage management, we sort the 
itemsets according to their support count Z first and 
then X.Y in ascending order. For updates of adding 
additional item, we have the following two cases: 
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Case 1: Adding a brand new sub-itemset. 
Insert the sub-itemset into its corresponding 

position in the group of one support count with the 
index of (X.Y). 

Case 2: Adding an existing sub-itemset. 
Increase the sub-itemset’s Z value by one and 

move it to the corresponding position in the group of 
new Z support count with the index (X.Y). 

4 EXPERIMENTAL RESULTS 

We performed extensive experiments to compare the 
performance of our approach with that of Item-
Transformation, FSE, Apriori, and FP-growth. 

4.1 Experimental Environment 

We have implemented our algorithm in Java. All the 
experiments are performed on a 3.6GHz Intel 
Pentium 4 PC machine with 2GB DDR400MHz 
memory, running on Microsoft Windows XP with 
SP2. We use Java with JDK 1.50 for programming 
and eclipse is used as a development tool to build 
our experimental environment. 

We downloaded existing tools from the ARtool 
(Cristoforr, 1999), which has a collection of 
algorithms and tools for mining association rules in 
binary databases. Note that we use the term “run 
time” to show the total execution time (i.e., the 
period between input and output), instead of the 
CPU time measured in the experiments of some 
other literature. 

The synthetic datasets which we used for our 
experiments were generated from the IBM synthetic 
data generator (IBM, 2006). Different sets of 
parameters are used to generate various datasets for 
performance evaluation. The parameters include the 
number of transactions D, the average size of transactions 
T, the average size of maximal potentially–frequent 
itemsets I, the number of potentially-frequent itemsets L, 
and the number of items N. 

4.2 Comparison Results 

We use the dataset T10I4D0.1K to compare the 
performance of our approach with FSE, Apriori and 
FP-growth algorithms. 

To have a more comparative result for our 
experiments, we generate the datasets having the 
same number of items N=20. Then we set T=10, I= 
4, and L=1000. 

The result of scalability test is shown in Figure 1. 
The performance of our algorithm and FSE does not 
have any noticeable changes as the minimum 

support decreases from 5% to 1% whereas our 
approach always runs faster than FSE. Figure 1 also 
shows that the performance of FP-growth and 
Apriori is better when the support threshold is 
greater than 2% and 3% respectively. The reason is 
that we did not apply the minimum support 
threshold in FSE and our algorithm since we 
generate all itemsets with non-zero support counts. 
On the other hand, Apriori and FP-growth are not 
able to deal with the thresholds smaller than 2% and 
1% respectively. 

In Figure 2, we use a database which has the 
transactions with more repeated items. We can find 
that our approach takes less space. It is because that 
FSE and Item-Transformation approach reserve the 
space for the itemsets that do not appear at that time 
but could show up in the later process. So they 
would take up more space. 

T10.I4.D0.1K
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Figure 1: Scalability test for various min_sup thresholds. 
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Figure 2: Space test for different number of transactions. 

In Figure 3, it shows that Item-Transformation 
approach can deal with the length of transaction less 
than 20 and FSE can deal with the length of 
transaction less than 25. Our approach can deal with 
longer length of transactions with less time. Since 
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our approach divides the transaction into smaller 
parts, it can solve the problem of long transactions. 
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Figure 3: Runtime test for different length of transactions. 

5 CONCLUSIONS AND FUTURE 
WORK 

Here are the advantages of our approach: 
(1) Scan the database only once. 
(2) No generation of candidates from 

previously found frequent itemsets since 
our approach directly enumerates all 
candidates with efficient indexing for 
support counting. 

(3) No need to set support thresholds in 
advance because we keep support counts 
for all possible interesting itemsets. 

(4) The result generated by our approach is 
sorted by the support count such that 
users can find what they want easily. 

(5) No candidate itemset is generated if it 
does not appear in the transactions. 

(6) Our method has the same degree of 
complexity as the FSE. However, the 
processing cost is not proportional to the 
length of the itemset. 

(7) Our method is an incremental mining 
approach. New items can be processed 
in a regular manner. 

We have implemented our algorithm and studied 
its performance in comparison with other algorithms 
for various sizes of databases. Our approach 
outperforms the other algorithms.  

In the future, we plan to improve the efficiency 
of processing and retrieving the support counters of 
the candidate itemsets with more direct access 
approach. We will also apply our approach in the 
parallel frequent pattern mining (Agrawal, 1996) and 
sequential patterns mining (Srikant, 1996; Pei, 2004). 
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