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Abstract: Application areas like semantic caches or update relevancy checks require query based indexing: They use
an algebra representation of the query tree to identify reusable fragments of former query results. This re-
quires compact query representations, where semantically equivalent (sub-)queries are expressed with iden-
tical terms. It is challenging to obtain such query representations: Attributes and relations can be renamed,
there are numerous ways to formulate equivalent selection predicates, and query languages like SQL allow a
wide range of alternatives for joins and nested queries. In this paper we present our first steps towards op-
timizing SQL-based query trees for indexing. In particular, we use both existing equivalence rules and new
transformations to normalize the sub-tree structure of query trees. We optimize selection and join predicates,
and we present an approach to obtain generic names for attributes and table aliases. Finally, we discuss the
benefits and limitations of our intermediate results and give directions for future research.

1 INTRODUCTION

Nowadays ubiquitous, nomadic, and pervasive com-
puting are not longer visions but realized in vari-
ous scenarios. Devices become smaller and easier
to carry around and wireless links connect to world
wide available information anytime and everywhere.
Due to slow, unreliable and/or energy-intensive wire-
less networks, efficient strategies to retrieve and cache
data from central servers on mobile devices are key
for almost all mobile applications. Related techniques
include hoarding (Kuenning and Popek, 1997), repli-
cation (Gray et al., 1996) or semantic caching (Lee
et al., 1999). For example, semantic caching mate-
rializes query results at the mobile devices and reuse
them for future queries, i.e., the queries are used for
indexing the cached data. Therefore, it is necessary
to find out if (sub-)queries overlap. Figure 1 illus-
trates this idea. The results of three queriesX1, X2,
andX3 were cached and can be reused for answering
the new queriesX4, X5, X6, andX7. Queries are repre-
sented in form of conjunctively linked operator trees.
Hence, the re-usability of the cached data can be ana-
lyzed by traversing the tree (illustrated by dashed and
dotted lines in Figure 1). More details can be seen in
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Figure 1: Query index of a semantic cache (Höpfner and
Sattler, 2003).

(Höpfner and Sattler, 2003).
It is challenging to realize query indexing on the

basis of current SQL-based DBMS. SQL allows to
formulate semantically equivalent queries in syntac-
tically different ways. Even the straightforward Ex-
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ample 1 might result in two different representations
for the equivalent queriesQ1 andQ2. Furthermore,
current DBMS transform queries solely according to
the execution time. In contrast, semantic caches re-
quire

• minimal query representations that do not exhaust
the resources of mobile devices,

• identical representations of semantically equiva-
lent sub-trees in the query tree, and

• representations without contradictory renaming
operations that complicate the detection of seman-
tically overlapping (sub-)queries.

Example 1:Semantically but not syntactically equivalent

Q1 : SELECT * FROM TABLE1 AS T1
WHERE B=5 AND A=4

Q2 : SELECT * FROM (SELECT * FROM TABLE1
WHERE A=4 and B=5) AS T1

In this paper, we describe our first steps towards
transforming SQL into a compact query representa-
tion that is optimized for indexing purposes. There-
fore, we use existing equivalence transformations,
and we devise new transformations that adapt syntac-
tical properties of queries. This comprises:

1. We introduce rules to reduce the complexity of
query trees. Our rules utilize overwriting effects
and interdependencies between operators to re-
move or merge certain operations.

2. We rewrite logical expressions to represent se-
mantically equivalent terms as similar as possible
while considering existing decision problems.

3. We normalize the aliases in the query tree to
obtain identical representations for (sub-)queries
that are semantically equivalent but contain dif-
ferent renaming operations.

Paper Structure. Section 2 defines query trees and
specifies the set of operators that we support at the
moment. Section 3 discusses our approach to unify
the query representation, and Section 4 concludes.

2 QUERIES AND QUERY TREES

In this paper we focus on transforming SQL queries
for indexing purposes. As a starting point we as-
sume that the the SQL query has been translated into
a canonical query tree of relational algebra operators.
We focus on a relational complete set of algebra op-
erators (Elmasri and Navathe, 2007) consisting of se-
lectionσ, projectionπ, set union∪, set difference−,

and Cartesian product×. In addition, we consider re-
naming of attributes, renaming of relationsρ and set
intersection∩. Operators like aggregations or group-
ings will be part of our future work.

In order to meet the SQL semantics, we distin-
guish between set and multi-set operators. It is well-
known that multi-set relational algebras have nearly
the same properties as set based approaches. Thus,
we briefly introduce our notation and refer to liter-
ature (Dayal et al., 1982; Grefen and de By, 1994)
for further reading on relational algebra semantics.
A multi-set projection (SELECT) is denoted with an
enhanced relational projection operatorπa, while the
projection operatorπ corresponds to the set seman-
tics (SELECT DISTINCT). We ease our presentation
by supposing that each query contains one projec-
tion operatorπ or πa. We implicitly assume multi-
set semantics for the Cartesian product, the set opera-
tors and the selection operator. If necessary, duplicate
elimination can be done by the projection operatorπ.
Assuming that the “*” means all attributes of relations
used by a query, translating the two SQL queries from
Example 1 could result in the relation algebra ex-
pressionQ1 = πa

∗(ρT1(σB=5∧A=4(TABLE1))) andQ2 =
πa
∗(ρT1(πa

∗(σA=4∧B=5(TABLE1)))). Formally, a query
q can have the following recursive structure:

q : {π|πa}([σ]([ρ](R)))

q : {π|πa}([σ](ρ(q)))

q : {π|πa}([σ](cp))

cp : {[ρ](R)|ρ(q)}×{[ρ](S)|ρ(q)|cp}

q : {π|πa}(q{∪|− |∩}q)

Operators in square brackets encapsulate optional
operators. R and S are relations, and braces
mark alternatives. This structure spans a query
tree where leafs represent the relations and inner
nodes store query operators. The query tree is
processed by starting on the leaves and follow-
ing the edges of the tree. After performing the
operation in the root, the query is completely
answered. Sub-queries are boxed, i.e., they form self-
contained queries that are sub-trees of the query tree.

Example 2:

Q3 : SELECT DISTINCT B FROM TABLE1, TABLE2
WHERE TABLE2.B>TABLE1.A

Figure 2 shows the query trees for the queriesQ1,
Q2 andQ3, which will be used as examples through-
out the paper. Operators of the sub-query inQ2 are
highlighted by a gray box. The algebraic expression
of Q3 is πa

B(σTABLE2.B>TABLE1.A(TABLE1×TABLE2)).
We start our transformations with the canonical
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Figure 2: Query trees for the example queries (Q1 left, Q2 middle,Q3 right).

query tree (Elmasri and Navathe, 2007). Thus, the
query tree is normalized so that a projection consti-
tutes the root of each (sub-)query, followed by an op-
tional selection, an optional renaming operation, and
either a Cartesian product, a relation name or another
boxed sub-query. Note that sub-queries in SQL must
have an unique name, i.e., if a query contains a sub-
query then the renaming operator of the including
(outer) query becomes mandatory.

3 COMPLEXITY REDUCING
QUERY REWRITING

In this section we describe our approach towards
less complex query representations for query index-
ing. We introduce three steps to rewrite the canoni-
cal query tree: (1) The removal of unnecessary sub-
trees, (2) the equivalence transformation of predicate
expressions and (3) a normalization of renaming oper-
ations. These steps can be implemented in the seman-
tic cache on the mobile client, on a mobility support-
ing middle-ware (Höpfner, 2007), or in the back-end.

3.1 Sub-Tree Optimization

As Figure 2 shows, queries with a different sub-tree
structure can have the same semantics. In order to
assign equivalent queries with the same entry in a se-
mantic cache, the sub-tree structure has to be normal-
ized. Therefore, we reduce the number of unneces-
sary sub-trees in our first rewriting step. The result-
ing query is semantically equivalent to the initial one.
Since this paper describes our ongoing work, there
are still cases where two different but semantically
equivalent queries result in different representation af-
ter normalization. Thus, there is high potential for
future research. Different sub-trees can handle dupli-
cates differently. For this reason, we have to consider
duplicate elimination first.

πa-π-Optimization. Observe that duplicate elimi-
nation at the (sub-)root node of a certain sub-tree
implicitly holds for all of it’s sub-trees, too. In
other words, all sub-queries of aSELECT DISTINCT-
query can be written asSELECT DISTINCT-sub-
queries. The proof (Gupta et al., 1995) of this
observation is thatSELECT DISTINCT D FROM R ≡
SELECT D FROM R GROUP BY D, while groupings
can be pushed down and pulled up under certain con-
ditions. Hence, we traverse the query tree and replace
all duplicate preserving projectionsπa below a dupli-
cate eliminatingπ-operator byπ. Note that this pa-
per leaves aside aggregations. Since the correctness
of some aggregates depend on duplicates, such oper-
ations constitute exceptions for this step.

Sub-Queries without Set Operations and Carte-
sian Products. Nested sub-queries of the formQ :
Qout(Qin1(Qin2 . . .(Qinmost))) can be reduced if the in-
ner queries containneitherset-operationsnor Carte-
sian products. Following the formal query represen-
tation in Section 2, the inmost sub-queryQinmost must
have the following structure:

Qinmost : {π|πa}([σ]([ρ](R))).

The handling of duplicates in nested sub-queries with-
out Cartesian products is comparable to ourπa-π-
optimization: the projections in all sub-queriesQ∗ can
be unified toπ if at least one sub-query removes du-
plicates. Otherwise, all projections inQ∗ areπa. For
simplification purposes we considerπ only. The same
transformations can be applied forπa.

Remember that SQL requires the renaming of sub-
queries. As shown in Section 2 the inmost operator of
the outer query has to be aρ. In our canonical query
tree structure,ρ is the parent of the projection node of
an inner sub-query. Our sub-tree optimization starts
at the inmost nested sub-query and is used bottom-up
until a set operation, a Cartesian product or the root-
node is reached. We combine a boxed sub-query with
its nesting query by merging the projections and se-
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lection predicates, and by unifying all relation names
and attribute names which have been renamed in the
nesting query. Therefore, we distinguish two cases:

Case 1. Outer (sub-)query uses projection and re-
naming:

πplo(ρalo
︸ ︷︷ ︸

outer sub-query

(Qinmost))

πplo overwrites the projection of the inner querybut is
based on the renamingρalo. Furthermore,ρalo over-
writes a potential renaming withinQinmost. So, both
queries are merged as follows:

1. Remove the projection of the inner query if it it
covers more attributes than the projection of the
outer query. Otherwise, replace the outer projec-
tion by the inner one.

2. If the inner query does neither contain a renaming
nor a selection, both queries have been merged:
Stop rewriting.

3. If the inner query contains a selectionσsci , change
the order ofσsci andρalo.

If the inner query contains a renamingρali (R),
merge the set of aliases in the inner (ali =
RAi(AAi)) and outer (alo = RAo(AAo)) query, i.e.,

(a) Merge and reduce the attribute-name-aliases
set:AAm = reduce(AAi ∪AAo).

(b) For all relations in nested renaming sequences
R→ RAi → RAo: Replaceρali (R) by ρalm(R)
wherealm = RAo(AAm).

(c) For all inner attribute aliasesali ← a with a∈
Randali ∈AAi that are overwritten by the outer
renamingalo← ali , alo ∈ AAo: Replaceali ←
a by alo← a.

(d) Removealo← ali from AAi ∪AAo.

(e) Replace the outer renamingρalo by the
merged renamingρalm, and removeρali .

4. If the inner query contains a selectionσsci , adapt
the selection conditionssci to the new aliases, i.e.,

(a) Replace all relation names ofRandRAi in sci
by RAo.

(b) Replace an attribute namea in sci by al
with al← a∈ AAm, if it has been renamed by
ρRAm(AAm).

Note that Step 3 is not an equivalence transforma-
tion, becauseρalo might rename attributes or relations
needed forσsci . Step 4 corrects this. Methodreduce
replaces transitive aliases similar to the table aliases.

Case 2. Outer (sub-)query uses projection, selection
and renaming:

πplo(σsco(ρalo
︸ ︷︷ ︸

outer sub-query

(Qinmost)))

The difference to Case 1 is that the outer selection
σsco and the inner selectionσsci have to be merged
after the other steps. Therefore,σsci is removed from
from the sub-tree and andσsco is replaced by a new
selectionσscm wherescm = sco∧sci holds.

Example 3:Sub-query optimization
The initial tree representation ofQ2 is

πa
∗−ρT1− πa

∗−σA=4∧B=5−TABLE1

In the first step the outer projection is replaced by
the inner one. The resulting tree is:

πa
∗−ρT1− σA=4∧B=5−TABLE1

The remaining inner sub-query contains a selection.
Therefore, we have to continue with step 3. The
result of step 3 is:

πa
∗− σA=4∧B=5−ρT1−TABLE1

Since the inner sub-query does not contain a re-
naming,ρT1 becomes the final renaming operator.
σA=4∧B=5 does not use the renamed relation name
and the attributes were not renamed. Therefore, the
select condition does not have to be changed.

3.2 Where-Condition Optimization

Our second optimization targets at selection and join
predicates. As semantically equivalent predicates can
be expressed in numerous ways, the usage of query
representations for indexing calls for normalization of
predicates. The equivalency problem of logical ex-
pressions is undecidable in the general case. How-
ever, when considering SQL, where-conditions are
first-order predicate logic expressions which do not
contain quantifiers and correspond to propositional
logic expressions. Thus, we can conduct a large num-
ber of equivalence transformations on such expres-
sions. We optimize the predicates in two phases:

Phase 1: Lexicographical Sorting. One difference
between two predicates can result from the order
of conjuncts. For example, the where-conditions
of Q1 : B = 5∧ A = 4 andQ2 : A = 4∧ B = 5 are
equivalent. Thus, the first phase orders the conjuncts
lexicographically. The following rules hold:
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B < A≡ A > B B> A≡ A < B
B≤ A≡ A≤ B B≥ A≡ A≤ B
B = A≡ A = B B 6= A≡ A 6= B

In particular, we rewrite all attribute-attribute-
comparisons (AAC) so that the first attribute is lex-
icographically smaller than the second one.

Example 4:Ordering of conjuncts
Given the AAC TABLE2.B>TABLE1.A of Q3 we
force a lexicographic order by exchanging the at-
tributes and substituting the comparison operator.
The result isTABLE1.A<TABLE2.B.

Phase 2: Term Minimization. In the second phase
we analyze the attribute-value-comparisons (AVC).
AVCs might form an unnecessarily complex propo-
sitional logic expression. There exist algorithms for
transforming an arbitrary logical expression to a con-
junctive normal form (Russell and Norvig, 2002)
and to minimize this expression (Quine, 1952; Kar-
naugh, 1953; McCluskey, 1956; Biswas, 1984). How-
ever, all those algorithms findone minimal expres-
sion, but cannot exclude that there are other mini-
mal expressions as well. Hence, it cannot be guar-
anteed that equivalent expressions are reduced to the
same minimal expression. However, for the time be-
ing we take the algorithmically found term and order
it lexicographically. More specifically, we represent
each where-condition in a minimal conjunctive nor-
mal form where the atomic terms of each conjunct
are ordered lexicographically. After ordering the con-
juncts, we order the entire expression. The resulting
example query trees are shown in Figure 3.

TABLE1

TABLE1

TABLE1

TABLE2

πa
∗

ρT1

σA=4∧B=5

πa
∗

ρT1

σA=4∧B=5

×

σTABLE1.A<TABLE2.B

πa
B

Figure 3: Query trees for the example queries (Q1 top left,
Q2 top right, Q3 bottom) after the where-condition opti-
mization.

3.3 Harmonizing Aliases

SQL queries can specify aliases for tables, views,
attributes etc. Since SQL allows many kinds of
nested queries, the SQL parser automatically inserts
renaming operations into query trees, too. However,
renamed attributes or relations can result in differ-
ent representations of semantically equivalent (sub-
)queries. Thus, it is important to normalize names in
query trees. Therefore, we replace aliases by generic
names. This requires:

P1 The alias substitution must be deterministic.

P2 The aliases must not be identifiers in used in the
base relations.

P3 The mapping must be isomorphic and complete.

When leaving aside SQL view definitions, the
deepest alias in a query tree always renames the orig-
inal relation; the second alias renames the first alias,
etc. Thus, we can guarantee a deterministic substitu-
tion (P1) by using the md5-Algorithm (Rivest, 1992)
on the renamed table/alias to compute generic names.
A sequence of renaming operationstable→alias1→
··· →aliasn is substituted bytable→md5(table)→
··· →md5(. . . md5(table)). In order to avoid valid
SQL table names (P2), we propose to use special pre-
fix characters in aliases that are not allowed in SQL
names, such as “@”. An isomorphic and complete
mapping (P3) can be ensured by traversing the whole
query tree in a defined order. To distinguish base re-
lations used more than once in a query (e.g. in case of
self-joins), we maintain a counter tableCT that stores
whether and how often a base relation is used. The
following algorithm does this for table aliases:

1. Traverse the query tree in a post-order manner.

2. For each renaming operation at each node,

(a) if its a renaming of a base relation
i. if base relations name is in theCT then in-
crease and fetch its counterc

ii. else insert the base relations name intoCT
and set its counterc to 1

(b) substitutesource→aliasby
source→@ md5(source)c, and

(c) replace all appearances ofalias as table alias
in all parent nodes by@ md5(target)c.

The same algorithm can be applied for attribute
aliases. However, attribute aliases and table aliases
must not be mixed, e.g., by using different prefix char-
acters. Table aliases can appear in other renaming op-
eration or as prefixTABLE ALIAS.ATTRIBUTE of at-
tributes in selections and projections. Attribute aliases
might also appear in further renaming operations or
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as suffix of attribute names. Example 5 illustrates the
harmonizing of aliases.

Example 5:Alias harmonization
Before performing the alias harmonization, the
query trees ofQ2 andQ4 are:

Q2 : πa
∗−σA=4∧B=5−ρT1−TABLE1

Q4 : πa
∗−σA=4∧B=5−ρT2−TABLE1

Both queries contain only one renaming opera-
tion each (Q2 : TABLE1→ T1, Q2 : TABLE1→ T2).
They renameTABLE1 but do not use the alias in
any other operation. The md5-hash ofTABLE1 is
d20a1138c815109c831e910488ebf146. Hence, the
modified trees are:

Q2 : πa
∗−σA=4∧B=5−ρ@ d20a...bf146 1−TABLE1

Q4 : πa
∗−σA=4∧B=5−ρ@ d20a...bf146 1−TABLE1

Q2 andQ4 are now syntactically equivalent.

4 SUMMARY AND OUTLOOK

Due to the increasing complexity of mobile applica-
tions, query indexing is an emerging topic in research
and practice. In this paper we presented first ideas
towards finding a compact representation of semanti-
cally equivalent database queries. Our approach re-
duces the syntactical complexity of database queries
(1) by applying well known and proofed transfor-
mation rules, (2) by forcing an order within logi-
cal expressions, and (3) by normalizing the names
of attributes and relations. All algorithms are of
a deterministic nature, except the optimization of
the where-condition. For this reason, we can not
guarantee to transform all semantically equivalent
queries to the same index entry. This might re-
sult in some duplicates in the query index, which
might be acceptable for semantic caching and many
other application areas. Thus, we can already de-
clare success if we find rules that are applicable
to the majority of real-world queries. As part of
our ongoing research we plan to address further
cases of semantic equivalence. Examples include
self-joins like SELECT * FROM T1 AS A, T2 AS B
WHERE A.a = B.b and SELECT * FROM T1 AS B,
T2 AS A WHERE A.a = B.b. Both are equivalent
but represented in a different way. A solution could be
to order the From-list lexicographically. Furthermore,
we intend to evaluate our approach by implementing
a prototype that can be tested with well-known query
mixes, e.g., the TCP-H benchmark.
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Höpfner, H. (2007). Query Based Client Indexing in
Client/Server Information Systems.Journal of Com-
puter Science, 3(10):773–779.
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