
GOOAL AUTOMATIC DESIGN TOOL 
A Role Posets based Tool to Produce Object Models from Problem Descriptions 

Hector G. Perez-Gonzalez, Sandra Nava-Muñoz, Alberto Nuñez-Varela 
Facultad de Ingenieria,Universidad Autonoma San Luis Potosi, Dr. Manuel Nava # 8, San Luis Potosi, Mexico 

Jugal Kalita 
University of colorado at Colorado Springs, 1420 Auston Bluffs Pkwy, Colorado Springs, CO, U.S.A. 

Keywords: Object Oriented Analysis, Object Oriented Design, Software Engineering Education, Natural language 
Processing. 

Abstract: A number of software analysts may produce different, perhaps all of them correct, solutions from one 
specific software requirement document. This is because natural language understanding is complex and 
because each analyst has distinct design experience. A methodology and approach that can be automated 
and that uses a proposed semi-natural language called 4WL used to accelerate the production of reliable 
accords between different stakeholders. The supporting software tool called GOOAL, Graphic Object 
Oriented Analysis Laboratory automatically produces simple object models (UML diagrams) from English 
or Spanish statements with minimal user participation.  These statements, faithfully describe the original 
problem description sentences. The models are generated analyzing each sentence of the intermediate 4W 
language version of the original sentence set. With this methodology and supporting software tool, students 
of Object Oriented technology can visualize the design decisions being made by the system. This 
methodology and software tool has been used to support the learning process in object Oriented analysis and 
design courses. The original tool was developed to “understand” English and it was validated with design 
artefacts produced by several experts of the University of Colorado. The main results reported by the 
students, are related with the use of good design practices, a better understanding of UML language and a 
major interest in the pre programming process. Its technical contribution is the role posets technique.  

1 INTRODUCTION 

Although Natural Language (NL) processing is a 
very complex task (Allen 1995; McDonald 1992), it 
is possible to extract sufficient meaning from NL 
sentences to produce reliable models.  This research 
proposes the use of a tool-supported methodology 
that helps in object oriented design (OOD) from 
English or Spanish problem sentences.  

Our goal is to take a problem description given 
from the problem domain experts such as the one 
given below and produce the UML (Booch 1997) 
models for it. The following sentences describe a 
problem known as the dining philosophers and the 
second describe the towers of Hanoi problem both as 
shown in Rumbaugh’s book (Rumbaugh et al. 1996). 
 
 

Problem # 1: English Version 

There are five philosophers and five forks around a 
circular table. 
Each philosopher can take two forks on either side 
of him. 
Each fork may be either on the table or used by one 
philosopher. 
A philosopher must take two forks to eat. 

Problem # 2: English Version 

The towers of Hanoi is a game. There is a player 
that moves a stack of disks from one of three long 
pegs. 

The player uses the third peg for manoeuvring. 
Each disk has a different size. 
Disk may be moved from the top of a stack on a 

peg to the top of the stack on other peg. 

200
G. Perez-Gonzalez H., Nava-Muñoz S., Nuñez-Varela A. and Kalita J. (2008).
GOOAL AUTOMATIC DESIGN TOOL - A Role Posets based Tool to Produce Object Models from Problem Descriptions.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 200-205
DOI: 10.5220/0001887002000205
Copyright c© SciTePress



A disk is placed on another disk that is bigger 
than itself. 

The problem description sentences in the 
examples have four and six English sentences 
respectively. We use the first as a running example 
in this paper. The verb forms used in the first 
example are are, can take, may be, used, must take 
and eat.  The nouns are philosopher(s), table, fork(s) 
and side.  The classes corresponded to the first 
example that could be accepted for modellers to 
construct their class diagram are: Application that 
works as main class, Philosopher and Fork. Each 
class abstracts the knowledge and behaviour of its 
corresponding real counterpart. Our challenge in the 
research reported in this paper is to obtain 
descriptive UML diagrams from NL general 
sentences using a systematic methodology and 
minimal user participation 

2 RELATED WORK 

An early paper by Abbot (1983) presented a 
systematic procedure to produce design models from 
NL sentences. This approach produces static or 
structural models obtained with high user 
participation. Saeki, Horai and Enemoto (Saeki et al. 
1989) presented a process to derive incrementally a 
formal specification from natural language. They 
used simple “verb patterns” to identify linguistic 
subjects and objects. The user interactively decided 
which nouns became classes and which verbs 
became methods. 

Cockburn (1992) presented a detailed analysis 
where he related relational nouns with objects, 
adverbs with polymorphism and the roles of objects. 
In a high level abstraction, Obsborne and MacNish 
(1996) eliminated ambiguity in NL requirements by 
the use of a Controlled language (CL) called 
Newspeak.  Da Silva (1996) suggested an object 
oriented model and presented a formal diagrammatic 
notation (Object-Z) and a set of rules to transform 
semiformal sentences into formal.  Burg and Van de 
Riet (1996) tried to minimize the participation of the 
user in the job of class and relationships extraction 
from the text. They used a very large lexicon to aid 
in semantic model validation and provide a new 
modelling language to illustrate results.  

Hars and Marchewka (1997)  presented an effort 
to produce dynamic analysis using a dictionary of 
about 23,000 single root words. Each word belonged 
to a concept category such as event, person, and 
location.  The dictionary also contained word 
frequency information computed from a year’s 
volume of Time magazine. The process transformed 
the textual sentences into an internal representation, 

and constructed   a tree structure. A separate 
algorithm resolved compound words such as chicken 
nuggets. This technique asked the user to resolve 
ambiguities not just at syntactic level but at semantic 
level also. Boyd (1999) discussed the linguistic 
metaphors in software design and analyzed 
prepositions, articles and interjections in addition to 
nouns and verbs. He used a process of syntactic 
normalization to produce a more precise sentence 
through two manual steps: syntax normalization and 
semantic exploration.  

Borstler, Cordes and Carver (Borstler el al. 1992) 
presented a prototype that accepted well formed NL 
textual use cases and produces, with minimal user 
participation, UML static diagrams: classes, objects 
and simple relationships. A valuable feature of their 
work is the final traceability supported by hypertext 
technology. Overmyer, Lavoie and Rambow 
(Overmyer et al. 2001) presented a complete 
interactive methodology and a prototype tool that 
produced a subset of UML. However, the text 
analysis remained in good part a manual process. 

We presented our seminal work at OOPSLA 
2002 (Pérez-González & Kalita 2002) showing our 
initial results with just two simple examples and 
using just an English version tool. At OOPSLA 2005 
(Pérez-González et al. 2005) we showed our Spanish 
version tool with an educational approach. Polajnar 
(Polajnar et al. 2006) presented CLIE (controlled 
language for information extraction) based in 
predicate logic. Zapata (Zapata et al. 2006) 
presented UN-Lencep a controlled language using 
the notion of pre-conceptual schema (Zapata et al. 
2006b). They proposed a simple framework used by 
their automatic tool to produce classes, 
communication and state machine diagrams. 

Our methodology accelerates the early software 
development process through the use of a software 
tool. The supporting software tool called Graphic 
Object Oriented Analysis Laboratory produces an 
intermediate representation of the original Natural 
Language sentences describing customers’ problem 
description sentences.  It then analyzes them and 
proposes object oriented (OO) models (Booch 1997)  
thorough an iterative process. The value of our 
methodology consist of the use of a systematic 
process, and the value of our tool and its underlying 
techniques is the production of diagrams non just 
from a controlled language but from a free version 
of the problem sentences. That can be achieved 
because of the iterative participation of stakeholders 
even thinking that those interventions are not 
intensive. Particular difference of our techniques is 
the prediction of the probabilities every element has 
to become a class depending on the discourse.  

GOOAL AUTOMATIC DESIGN TOOL -  A Role Posets based Tool to Produce Object Models from Problem
Descriptions

201



3 METHODOLOGY 

In order to build successful software products in a 
professional Software Engineering environment we 
have to define what success is. A software 
development project or product is considered 
successful if it meets the solicitor’s requirements 
respecting the original schedule and budget. 

The single biggest cause of software project 
failure is deficient requirements definition (Hofman 
& Lener 2001); specifically, inconsistencies and 
misunderstandings in the early stage of the process 
produce unpredictable consequences. The other 
important success factor is software architecture and 
design decisions. Good design decisions lead to a 
more maintainable product. Improving requirement 
definitions and software design practices will allow 
high-quality Software Engineering to become more 
to a reality. This section presents a methodology to 
maximize software reliability through automatic 
modelling techniques from natural language problem 
statements. This tool-supported methodology aims 
to facilitate stakeholders’ communication by 
reducing early misunderstandings and promoting 
good design practices using the supporting tool for 
software design practice. 

The analysis/design step generally takes a 
problem statement written in English, follows an 
object oriented methodology and produces a set of 
UML diagrams representing the proposed solution.  

A number n of software (SW) analysts may 
produce n different (perhaps all of them correct) 
solutions from one specific SW requirement 
document. This happens because Natural Language 
(NL) understanding involves syntactic, semantic and 
pragmatic issues, (different backgrounds in persons 
produce different interpretations) and because of 
distinct design experiences. 

We are proposing a methodology with a 
technique called role posets (Pérez-González & 
Kalita 2002)  that will enable the early modelling of 
SW to be automated and a semi-natural Language 
called 4WL (Pérez-González & Kalita 2002) that are 
used as the main vehicles of the methodology to 
accelerate the production of reliable accords 
between different stakeholders. Figure 1 shows this 
process.  

The supporting software tool (GOOAL: Graphic 
Object Oriented Analysis Laboratory) automatically 
produces object models from a natural language 
(English or Spanish) statements describing software 
requirements. Those models are generated by 
analyzing sentence-by-sentence an intermediate 
language (4W) version of the original sentence set.  
 

3.1 4W Language 

A 4WL sentence is composed of four general parts 
(Pérez-González & Kalita 2002): (W parts). They try 
to respond the questions: Who is the semantic 
subject?, What is happening?, Who is the receiver of 
the action? and Who is the indirect semantic object?.  
The subject is mandatory in every 4WL sentence.  
The last two parts are optional. Every 4WL sentence 
has an object that corresponds to the action referred 
to in the sentence. In linguistic terms, this is the 
noun of the subject.  The presence of this part is 
mandatory in every English sentence we can 
process, and in a 4WL sentence also. From the OO 
point of view, this object cold be an instance of 
some class. When we use the term noun in this 
paper, in addition to a single noun, it could be a 
group of nouns (chicken nuggets) or a sequence of 
adjectives and a final noun (small blue birds). 

EXAMPLE: DINNING PHILOSOPHERS 
The five dinning philosophers’ problem (Hofman 

& Lener 2001) is used here to illustrate the use of 
4WL language. The English statements of the 
problem are given in the beginning of the paper and 
are repeated below. English sentences are 
automatically translated to 4WL. The English 
sentences in the specification are shown first in bold. 
The 4WL sentence(s) that correspond(s) to a single 
English sentence follow(s) in italics. Note that one 
English sentence can result in one or more 4WL 
sentences.  

There are Five Philosophers and Five Forks 
around a Circular Table. 

1.-Five forks are around a circular table. 
2.-Five philosophers are around a circular table. 

Each Philosopher can take Two Forks on either 
Side of Him. 

3.-Each philosopher can take two forks on the side 
of each philosopher.  
4.-A philosopher has side. 

Each Fork may be either on the Table or used by 
One Philosopher. 

5.-Each fork may be on the table. 
6.-One philosopher may use each fork. 

A Philosopher must take Two Forks to Eat. 

7.-A philosopher must take two forks. 
8.-<When preceding sentence> a philosopher eats. 

The Software Tool called GOOAL developed to 
support this work automatically translates from 

ICSOFT 2008 - International Conference on Software and Data Technologies

202



English to 4WL with little user participation The 4W 
grammar is not detailed here.  

4 ROLE POSETS 

We use the notion of partially ordered set of roles 
(Role Posets) (Pérez-González & Kalita 2002) to 
emulate the reasoning analysts perform when they 
model a problem. Software models are the product 
of a sequence of decisions taken. Different 
modellers can produce different models for a given 
problem depending on the decisions they make. The 
decisions can be influenced by different factors such 
as the design priorities and previous experience of 
the modeller, the nature of the problem itself and the 
priorities and expectations of the consumer. Role 
Posets are based on the mathematical concept of 
poset (Partially ordered set) and the thematic (theta) 
roles due to Chomsky (Chomsky 1965) and are used 
widely in many linguistics formalisms. We use Role 
Posets to construct the structures to model a 
problem. The decision that makes a noun becomes a 
class depends on the analysis of the complete 
problem, the potential future additions to the system 
and the perception, experience and motivation of the 
analyst. Some automatic methodologies (Borstler el 
al. 1992, see also Mich & Garigliano 1997) make 
class identification using the frequencies of all the 
nouns in the requirements text. We propose a 
heuristic algorithm to identify classes considering 
also the roles that the nouns play in every sentence: 

The probability that a noun becomes a class 
varies proportionally to its importance or value in a 
text: 

probToClass(NounX) = value t (NounX) (1) 
The importance of a noun in a text is computed 

as the sum of the importance of that noun in every 
sentence. We write it as: 

valuet  (NounX)  =  ∑i=m
i=1  value i (NounX) (2) 

Where m is the number of sentences in the text 
and i is the index of the particular sentence. 

The importance of a noun in a sentence S 
depends on the role it plays in this sentence. We 
write it as: 

valuei (NounX) = role i (NounX) (3) 
Where i is the index of the particular sentence. 
According to Chomsky (Chomsky 1965): “The 

role a noun plays in a sentence depends on the 
relative position it has in the sentence and on the 
semantics of the main verb of that sentence”. We 
express Chomsky’s statement as:  

rolei(NounX)=pos(NounX)i +semantics (V) I (4) 

Where i is the index of the particular sentence. 
According to Haegeman (1991) “There is no 

agreement about how many such specific thematic 
roles (Θ Theory) there are and what their labels are. 
Some types are quite generally distinguished”. The 
selection of the roles is frequently a semantic 
intuition that is difficult to automate. Some types are 
quite generally distinguished”. According to 
Chomsky’s Government and Binding theory there 
are restrictions called the Theta Criterion on the Θ 
roles: “Each Argument is assigned one and only one 
theta role. Each theta role is assigned to one and 
only one argument”. Of course, we follow 
Chomsky’s ideas as just guidance in formulating our 
algorithms. Details of calculating the significance of 
roles for a specific piece of requirements text are not 
discussed here. Once the potential classes have been 
analyzed, their calculated probabilities are used to 
decide which ones deserve the class category. All of 
this are based on our proposed role machines and 
verb families (Pérez-González et al. 2005) explained 
below. We propose a universal partially ordered set 
of roles composed by:  Agent (Ag), User (Ur), 
Modified (Mr), Used (Ud), Whole (Wh), Part (Pt), 
General (Gl), Special (Sp), Theme, LSP (Location, 
situation or position) and attribute (At).  

Our prototype tool internally labels every noun 
in the text with the particular role it plays according 
to its associated verb and its relation with it.  

At the end of this automated analysis, there is a 
list of nouns (and adjectivally qualified nouns), 
every one of them associated with a list of roles it 
plays.  

4.1 Results and Evaluation 

In our example we have the following nouns: 
Na=Philosopher, Nb=Fork, Nc=Table, Nd=Side.  
Table 1 shows results of the automatic generation of 
roles. 

Table 1: Roles results for the five Philosophers problem. 

Na  = {User, User, Whole, Theme} 
Nb = {Used, Used, Theme, Theme} 

Nc  = {LSP, LSP} 
Nd  = {Attribute, LSP} 

From this, the universal role poset is 
reconstructed: {Agent ( ), User (N1,N1), Modified ( ), 
Used (N2,N2), Whole (N1), Part (),  General   ( ), Special ( 
), Theme (N1,N2,N2,), LSP (N3,N3,N4), Attribute (N4) }. 

The reason because N1, for example is 
associated with that particular list of roles, involves 
the use of a proposed state machine we called Role 
Machine.  

GOOAL AUTOMATIC DESIGN TOOL -  A Role Posets based Tool to Produce Object Models from Problem
Descriptions

203



We have designed a role machine for every one 
of a group of verb families. 

We have identified 13 semantic families of 
verbs. Figure 1 shows the role machine 
corresponding to the be verb family with the slots 
being occupied by the words of our first 4W 
sentence:  The machine shows the Noun fork (Nb) 
playing the role of Theme (Th) two times because 
the state the sentence follows denotes the state Th-  
meaning that the noun in the left side of the verb is a 
theme  The verb take used in the second sentence 
belongs to the di-transitive modifier family of verbs. 

 
Figure 1: Role Machine for the be verb family using the 
sentence: Five forks are around a circular table. 

We don’t present more details of this technique 
due to lack space. After following the technique, we 
obtain the probabilities every noun (N) has to 
become a Class. Results of our example are shown 
in table 2.  

Table 2: Result of analysis of nouns. Five Philosophers 
problem. 

Noun Noun´s name Probability to be a class 
Na Philosopher 100% 
Nb Fork  61% 
Nc Table  15% 
Nd Side    5% 

Figure 2 shows a simple class diagram obtained 
from our example. The vertical axis shows the 
probability a noun element has to become a class.  

 
Figure 2: Final class diagram. Five Philosophers problem. 

The tool can produce general static and dynamic 
UML diagrams. These diagrams and the 4W 
sentences may be used to detect and solve 
ambiguity.Class, These diagrams are based on the 
analysis of every one of the 4WL sentences.   

5 EVALUATION 

In order to prove the results obtained by the tool-
supported methodology presented in this paper, we 
tested 82 undergraduate software engineering 
students. Each student was asked to evaluate both 
problems presented in this paper (philosophers and 
Towers of Hanoi). The students followed our 
methodology to identify the nouns in the text and 
assign them a probability that the noun or noun 
construction will become a class according to his 
level of knowledge and experience. Table 3 shows 
the test results for the Philosophers problem. 

Table 3: Philosphers test results. 

  Students GOOAL 
Philosopher 92,10% 100,00% 

Fork 75,52% 64,00% 
Side 23,42% 15,00% 
Table 35,28% 2,00% 

Table 4 shows the test results for the Hanoi 
problem. 

Table 4: Towers of Hanoi test results. 

 Students GOOAL 
Player 83,91% 100,00% 
Disk 70,65% 99,00% 

Stack 70,21% 67,00% 
Top 28,52% 24,00% 

Collection 25,00% 10,00% 
Size 17,78% 10,00% 

Note: the students’ column is the students’ average. 

As we can see in the tables, all decisions taken 
by the systems are closely related with the ones 
taken by the students following the methodology 
The results are very promising and we can say that 
the tool will help in the use of good design practices 
and a better understanding of UML language. 

 

 

ICSOFT 2008 - International Conference on Software and Data Technologies

204



6 CONCLUSIONS AND FURTHER 
WORK 

The present paper has described a tool that supports 
a methodology that aims to accelerate the production 
of analysis and early design models. This 
methodology is based on semantic abstraction of 
linguistic elements and involves the use of the 
semantic role theory and a semi-natural language. 
The prototype tools have produced good results with 
problems described in no more than eight sentences 
and 100 words on an average. Observed advantages 
of the use of this tool are formalization, standard 
notation, validation, traceability, efficiency and early 
identification of misunderstood requirements.  
Individuals using it, will see how a group of 
sentences describing a problem are handled by 
GOOAL. The system takes decisions with minimal 
user participation, shows its interpretation in 4WL 
and produces model views of the problem. Unique 
features of this tool are the underlying methodology 
and the production of dynamic models. Although the 
tool, methodology and techniques expounded here 
are far from perfection, results using simple 
sentences are promising. Better results are expected 
if a more complete general dictionary is used as well 
as finer refinements in semantic classification of 
verbs into families. With the comparison of results 
between both GOOAL tool and the tests we are 
running with the students, it can be conclude that we 
can use this program as an educative tool. 

REFERENCES 

Abbott, R.,1983. Program Design by informal English  
Descriptions. In Communications of the ACM, 26(11). 
Allen, J.,1995. Natural Language Understanding,  
Benjamin/Cummins Publishing Co. 
Booch, G.,1997. The unified Modeling Language User  
guide. Addison-Wesley.  
Borstler, Jurgen, Cordes, Carver. 1992. An Object-Based  
Requirements Modeling Method. Journal of the American 

Society for Inf. Science 43(1):62-71. 
Boyd, N., 1999. Using Natural Language in Software  
Development. Journal Of Object Oriented Progr. 
Burg, J.,  Van De Riet, R., 1996. Analyzing Informal  
Requirements Specifications: A first Step   towards 

conceptual modeling. Proceedings of the 2th  
International workshop on  applications of natural 
language to information systems, Amsterdam, The 
Netherlands, IOS Press. 

Chomsky, N., 1965. Aspect of the theory of syntax. MIT Pr 
Cockburn, A., 1992. Using Natural Language as a  

metaphorical Basis for Object Oriented Modeling and 
Programming. In IBM Technical Report  TR-36.0002. 

Da Silva, J.,1996.  Metamorphosis: An Integrated Object  
Oriented Requirements Analysis and Specification.  

Lancaster University. 
Haegeman, L., 1991. Introduction to government and  
binding theory.  Wiley. 
Hars, A., Marchewka, J.,1997. The Application of Natural  
Language Proc. requirements Analysis. Journal of 

Management Information Systems. 
Hofmann, H., Lener, F.,2001. Requirements Engineering  
as a Success Factor in Software Projects. IEEE Software, 

(pp 58) 
McDonald, D.,1992. Robust Partial-Parsing Through  
Incremental Multi- Algorithm Processing. In Lawrence, 

E., Text Based intelligent systems. (pp 83-100).  
Associates Publishers.  

Mich, L., Garigliano, R., 1997. NL-OOPS A Tool for  
Object Oriented Requirements Analysis. In The LOLITA 

Project: The First Ten Years, Vol.2 Applications, 
Springer-Verlag. 

Osborne, M., MacNish, K., 1996.  Processing Natural  
Language Software Requirement Specifications IEEE 

Computer Society DL. (pp 229-237). 
Overmyer, S., Lavoie, V., Rambow, O., 2001.  Conceptual  
Modeling through Linguistics Analysis Using  LIDA. 23rd 

International Conference on Software engineering. 
Pérez-González, H., Kalita, J., 2002.  Automatically  
Generating Object Models from Natural Language 

Analysis, Companion OOPSLA 2002. 
Pérez-González, H., Kalita, J., Nunez-Varela A. Wiener,  
R., 2005.  GOOAL: An educational Object Oriented 

analysis Laboratory, Companion OOPSLA 2005. 
Polajnar, T., Cunningham, H., Tablan, V.,  Bontcheva,  
K.,2006. Controlled language IE Components Version 1. 

EU-IST Integrated Project (IP) IST-2003-506826 
SEKT, D2.2.1 Report Sheffield. 

Rumbaugh, J.,  Blaha, M.,  Lorensen, W., Eddy, F.,  
Premerlani, W. ,1996. Object Oriented Modeling and 
 Design. Prentice Hall.  
Saeki, Horai, M., Enemoto, H.,1989. Software  
Development Process from Natural Language 

Specification. In Proceedings of the 11th International 
conference on SW Engineering  IEEE, Computer 
Society Press. 

Zapata, C., Gelbukh, A., Arango, F.,2006. UN-Lencep  
Obtencion Automatica de Diagramas UML a partir de un 

leguaje controlado. Avances en ciencias de la 
computación VII Encuentro Internacional de 
Computacion ENC 2006, ISBN 968-5733-06-6.   

Zapata, C., Gelbukh, A., Arango, F., 2006. Pre-conceptual  
schema: a UML isomorphism for automatically Obtaining 

UML Conceptual Schemas. Research in computing 
Science: Advances in Computer Science and 
Engineering. Vol 19, (pp 3-13). 

GOOAL AUTOMATIC DESIGN TOOL -  A Role Posets based Tool to Produce Object Models from Problem
Descriptions

205


