
WORKING TIME USAGE AND TRACKING IN A SMALL
SOFTWARE DEVELOPMENT ORGANIZATION

Lasse Harjumaa, Tytti Pokka, Heidi Moisanen and Jukka Sirviö
Department of Information Processing Science, University of Oulu, P.O. Box 3000, Oulun Yliopisto, Finland

Keywords: Software engineering, Effort estimation, Project management, case study.

Abstract: This paper represents a study of working time usage in a small software development organization. The
purpose of the study was twofold. First, we wanted to understand how software developers in the
organization work and second, we wanted to explore the attitudes they had toward different types of time
tracking approaches. The aim was to provide practical suggestions of appropriate methods and tools for
monitoring the developers’ time. According to the results, working with computer tools occupies the
overwhelming majority of the working time although manual tasks and interruptions take some of the time.
Even though the developers in the case company do not feel threatened by time monitoring, they do not
either feel that monitoring is necessary, which is interesting and challenging from the project management
viewpoint. We suggest that the case company should establish a lightweight, tool-based time tracking
process and trains the developers to use the system and report their working time accurately.

1 INTRODUCTION

Software development is an activity mainly based on
human effort. For this reason, costs highly depend
on the time software developers spend doing each
software development activity. Tracking the time
spent in each activity is useful for efficient
accounting. Reliable estimations on costs and
schedules of software development are the key
element of efficient project management. (Boehm et
al., 1995; Sillitti et al., 2003)

The first phase of a software development
process is planning. A project plan should be based
on estimates of the size and duration of the activities
that are needed to produce the software product.
(Ching-Seh & Simmons, 2000). Thus, historical time
tracking data have significant value when making
schedule estimations to the customers, for example.

It is important to understand, which software
development activities occupy the developers’ time
most in order to make estimations of project length
and costs. Even more important is that identifying
the most time-consuming activities helps the
organization to improve the development process by
providing support for the laborious tasks.

This paper describes a case study within a small
Finnish software organization that aims at increasing
their development efficiency by improving their

time tracking and effort estimation practices. Before
introducing procedures for the development time
management, analysis and supporting tools, it is
necessary to investigate the current situation in the
organization and identify the activities that require
developers’ working time. Based on the findings, we
will give the organization some suggestions for the
effort estimation process and tool implementation.

The rest of the paper is structured as follows.
Section two gives an overview to research related to
working habits of software developers. Section three
describes possibilities for tracking developers’ time.
Section four describes the research carried out in this
study and section five lists the main results of the
case study. Finally, section six concludes the work.

2 WORKING HABITS OF
SOFTWARE DEVELOPERS

Perry et al. (1995) have investigated the feasibility
of different techniques for collecting working time
data and carried out experiments to find out where
the developers’ time goes during the software
development. They conclude that the total effort of
system development is affected by the technology
used, but also by the social environment and the

168
Harjumaa L., Pokka T., Moisanen H. and Sirviö J. (2008).
WORKING TIME USAGE AND TRACKING IN A SMALL SOFTWARE DEVELOPMENT ORGANIZATION.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 168-173
DOI: 10.5220/0001886701680173
Copyright c© SciTePress

development process. Thus, the organizational
structure and culture, as well as communication
between developers all have an effect on the time
utilization. Perry et al. (1995) claim that some of the
non-technical elements can even have greater
significance than the technological issues in terms of
explaining the time usage. Especially inter-personal
contacts that developers make during a working day
take time.

LaToza et al. (2006) present have studied typical
tools and activities of software developers and found
out that recovering and managing implicit
knowledge related to the development require great
effort. They also state that software development is a
highly social process that involves a great deal of
task switching between tools, several
communication channels and interruptions.
According to LaToza et al. (2006), Interruptions are
the major factor that reduces working effectiveness.

Singer et al. (1997) present empirical data of
software engineers’ daily work practices from a
large software engineering organization. The
research focuses on tool support for software
development and the authors conclude that it is
necessary that tools are consistent with the work
practices. They also observed that designing and
writing code are not the only tasks that developers
do. A great deal of the working time is spent on
consulting, reading documentation and learning, for
example.

There are also some ethnographic studies
available relating to the issue. For example,
Newman (1998) reports a study of a large
middleware development project, in which each
stakeholder has his own concerns. Consecutively,
the design process in reality is not a simple linear
flow of tasks, starting from requirements and
resulting in a complete software product. Instead,
software design involves lots of activities that are
needed to negotiate commitments, communicate
requirements and make decisions. Another example
of the social aspects of software development is
reported by Suchman et al. (1999). Results of their
studies suggest that technologies are tightly
connected to the environment in which they are used
and the success of software work depends on how
well these are integrated.

As a summary, it can be stated that software
developers’ working time is occupied by a) doing
the actual development work; b) activities that are
needed to follow certain process, c) activities that
are related to the organizational and social
environment and d) interruptions. This is a rough
classification and each of these categories could be

decomposed into much more detailed subcategories.
However, it is important to understand that the
actual design and coding work is just a part of a
developer’s time usage.

3 TRACKING THE WORKING
TIME

Time tracking is essential for meaningful software
development effort estimation, and tool support or
automation of time tracking activities can improve
the accuracy and quantity of the working time data
(Johnson et al. 2000). Well-situated and adequate
tools can provide a lightweight approach for starting
and establishing software measurement and process
improvement. Tools for automatic data collection
and use of persistent measures database are often
listed among the essential success factors of
measurement framework implementation. Examples
of the articles and studies highlighting the
importance of correct tools include (Fenton&Neil,
2000; Offen&Jeffery, 1997).

A number of comprehensive time tracking tool
implementations exist. Hackystat (Johnson, 2002) is
a fully automated tool that records developers’
actions with different types of sensors. Especially
the Personal Software Process (PSP) approach
(Humphrey, 1997) has given inspiration to many
time tracking tools, as in PSP measurement and
analysis of historical data is in key role in making
estimates of effort and product quality. PROM
(Sillitti et al., 2003) and Jasmine (Shin et al., 2007)
are other examples of time tracking tools.

Academic research, empirical studies and
available tool implementations concerning time
tracking issues suggest that there are at least the
following four different levels of time tracking
approaches or systems. 1) Manual tracking, 2)
System-based tracking, 3) Recording-based tracking
and 4) Fully automatic tracking. The pros and cons
of each of these approaches are discussed in the
following.

Manual tracking is the simplest form of time
management. The software developers collect their
working hours manually either into a plain file or a
personal datasheet and deliver the timesheets to the
project manager by email, for example. This
approach is inexpensive to implement and easy to
learn as individual developers can use tools he or she
is already familiar with. However, consistency and
integrity of data from different developers is a
problem. Reporting scale, structure and terminology

WORKING TIME USAGE AND TRACKING IN A SMALL SOFTWARE DEVELOPMENT ORGANIZATION

169

can vary and combining data into a meaningful
summary can become impossible. Templates,
datasheets and guidelines can formalize the process
to some extent, but this approach is still probably
suitable only for very small organizations.

In system-based tracking, the developers insert
their working time into a time management system
and the project manager can compile reports directly
from the system. This partly automated process
provides almost real-time data, as the project
manager sees the data in specified format as soon as
the developer has inserted data into the system.
Furthermore, the structure and terminology of the
data is consistent and reports can be generated
automatically. On the other hand, integration into
other development software and developers’
motivation to use the system may cause problems.

Recording-based tracking can also be called
start-pause-stop (SPS) tracking, as the recording is
typically done by pressing stopwatch-style buttons.
Thus, a developer uses the SPS user interface to
clock time spent in different activities, and the
system records and stores recorded data. Usually
these types of systems offer manual data
manipulation and insertion option, as well.
Stopwatch-style recording ensures that data is
accurate and available for project managers real-
time. The user interfaces of SPS tools are
moderately easy to use and there are also a number
of freeware implementations available. The main
disadvantages of this approach are related to the
clocking. Developers do not necessarily remember
to start and stop the recording and monitoring work
that is done away from the computer is difficult. In
addition, distraction problems may arise as
interruptions may affect on the reliability of the
recorded data.

Finally, fully automated time tracking tools are
based on the idea of minimum (or even zero-level)
involvement from the user. The recording is started
automatically when certain system is used. This
eliminates human-related problems of data accuracy,
user motivation and data format. However, even in
this approach distraction problems remain, as the
effect of interruptions to standard workflow cannot
be automatically detected. Furthermore,
compatibility with the other development tools and
methods in use has to be ensured.

In practice, time tracking is often neglected. The
biggest obstacle for that is that measuring where
developers’ time goes is not considered crucial. As
software development projects are typically very
strictly scheduled and budgeted, there is no time to
spend in activities that do not produce immediate
payback. (Sillitti et al., 2003.)

4 RESEARCH SETTING

The research was done in a division of a large
international software company. The primary
products of the company are embedded systems used
in telecommunication. However, the quantity of
software within the products is continuously and
rapidly growing. The software development unit that
this study was carried out in is located in Finland
and has about 20 software engineers.

The main objective of the study was to find out
what tasks occupy software developers’ working
time and to investigate feasibility of different time
tracking methods and tools to follow the time usage.
New tools are needed, as the case organization wants
to forecast the durations and costs of their future
projects as accurately as possible. The products of
the company are getting more software intensive and
more attention has to be paid to the efficiency of
software development activities than before.

The current time management system does not
support task-specific reporting of working time.
Recording and reporting can be done only on
project-basis. More detailed information is necessary
in order to monitor the development effort and
identifying possible problems in the development
process. For example, distinguishing design,
implementation and testing efforts from each other is
essential for evaluating the quality of both product
and process. The case organization wishes to
establish an estimation database with the new time
tracking system.

The time tracking is currently done manually.
Project planning is done with Microsoft Project, but
task lists created with the project planning tool are
not utilized in time tracking. Thus, categorization of
the activities and reporting formats of the working
time data vary. Before suggestions for selecting and
implementing time tracking tools could be made, it
was considered necessary to look into the activities
that developers perform in the organization. For that,
the developers were asked what tasks and activities
they use their working time to.

The observations from academic research
described in chapter two are utilized in the empirical
study of the case company. The factors affecting
time usage that have been identified in previous
research are included in the questionnaire and
analyzed in the case company context.

Data gathering was conducted with a
questionnaire consisting of 25 multiple-choice
questions and one open question. The questionnaire
questions were partially based on the questionnaire
used by LaToza et al. (2006). The questionnaire

ICSOFT 2008 - International Conference on Software and Data Technologies

170

included sections for issues concerning demographic
information, iterative development process in use in
the organization, usage of the working time,
interruptions to work, and feelings toward time
tracking systems. The main part of the questionnaire
is presented in Table 1. For clarity, demographic
questions (1-8) are omitted in the table.

For questions concerning working time,
categorizations that can be found in LaToza et al.
(2006) were used. Descriptions for each task in the
categorization were also presented to the
respondents. In addition, the meaning of time
tracking was explained in further concerning
questions 19-27.

Table 1: Questions presented to the developers.

Iterative development process questions:

9. The system development process is iterative. Is it easy to you
distinguishing different tasks from each others?
Easy | 1 | 2 | 3 | 4 | 5 | Difficult

10. Do you think it is easy clearly distinguish your work to
different tasks? Easy | 1 | 2 | 3 | 4 | 5 | Difficult

Working time questions:

11. What proportion of your working time you usually spend in
each system development task? (The sum must be 100 %)
Designing __ % Writing __ % Understanding __ %
Editing __ % Unit testing __ % Communicating __ %
Overhead __ % Non code __ %

12. What proportion of communicating time you usually spend
in different communication methods? (The sum must be 100 %)
Face-to-face _____ % Meetings _____ % Email _____ %
Phone _____ % Other _____ %, what?

13. What proportion of understanding time you usually spend in
different communication methods? (The sum must be 100 %)
Source code editor _____ % Whiteboard _____ %
Paper ___% Visual designers __ % Other __ %, what?

14. What proportion of your working time you usually work
with and without the computer? (The sum must be 100 %)
With computer _____ % Without computer _____ %

Interruptions questions:

15. What is the mean number of interruptions of
a) your typical work day? ____ times
b) one typical work hour? ____ times

16. What is the mean duration of interruptions in minutes? ____
minutes

17. What are the proportions of reasons of interruptions?
Visits _____ % Meetings _____ % Email _____ %
Phone _____ % Other _____ %, what?

Table 1: Questions presented to the developers (cont.).

18. What is the mean recovering time after interruptions? ____
minutes

Time tracking questions:

19. Are you tracking your working at the moment?
____ No ____ Yes (Answer to questions 20 & 21, if you
answered yes to question 19.)

20. How you track your working time now?
• Manually (paper, excel, etc.)
• Using system, what system

21. Do you think that your present system of time tracking is
effective enough?
Very effective | 1 | 2 | 3 | 4 | 5 | Not effective

22. How would you feel about monitoring your working time?
Choose one number from scale 1-5.
Important | 1 | 2 | 3 | 4 | 5 | Not necessary
Effective | 1 | 2 | 3 | 4 | 5 | Time demanding
Easy | 1 | 2 | 3 | 4 | 5 | Difficult
Pleasant | 1 | 2 | 3 | 4 | 5 | Annoying
Feels like my work is interesting |1|2|3|4|5| Feels like “spying”

23. What do you prefer to be the best way to track system
developers (SD) working time?
Rank to different ways by numbers 1-4 (1 = best, …, 4 = worst).

• Manually (paper, excel, etc.)
• Clicking ” START, PAUSE, STOP” system
• System, which automatically records the working time
• Other way, what?

23. What do you prefer to be the best way to track system
developers (SD) working time?
Rank to different ways by numbers 1-4 (1 = best, …, 4 = worst).

<Same options as in previous questions>

24. What's the probability (0-100 % to each point) of you
tracking the work time?

<Same options as in previous questions>

25. What's the probability (0-100 % to each point) that you
mark/track the time accurately?

<Same options as in previous questions>

26. How valid you consider each method measure system
development process time (0-100 % to each point)?

<Same options as in previous questions>

27. Why do you consider the time tracking method you selected
to be the best?

The questionnaire was delivered to the contact

person, who in turn delivered it to the individual
developers. This method of collecting data increases
some risks concerning interpretation of the questions
and negligence of the answers, as the respondents
are not personally contacted by the researcher. We

WORKING TIME USAGE AND TRACKING IN A SMALL SOFTWARE DEVELOPMENT ORGANIZATION

171

have tried to mitigate these risks by designing the
questionnaire to be easy to fill in and unambiguous.

5 RESULTS

Based on the results of the questionnaire, we have
made some suggestions for the case company in
order to enable efficient and practical time tracking
approach.

Nine people answered the questionnaire. The
respondents seem to be quite experienced. On
average, they had almost eight years working
experience. However, the deviation is broad: the
most experienced developer has been in the field for
18 years and the least experienced for only one year.
Five developers are working on one project and four
developers have several projects going on at the
same time. When working on several projects
concurrently, the number of projects is 2-3. The
durations of the projects are widely spread between
one to nine months. Questions 9 and 10 considered
distinguishing different tasks from each other. Even
though the developers do not think it is difficult to
switch projects and distinguish different tasks (the
mean of the answers was 2 on scale 1-easy to 5-
difficult), it is important to notice that the
development work is not “like in books”. Usually it
is assumed that a developer focuses on one project at
a time. This sets additional requirements for time
tracking tools. Table 2 summarizes the portions of
time that developers spend in system development
tasks and in understanding the problem. Numbers in
the table are percentages spent in specific tasks.

Table 2: Work structure of the respondents.

Task < 5
Mean

≥ 5
Mean

Mean
diff.

Development tasks
Designing 27 26 1
Writing 23 17 6
Understanding 15 12 3
Editing 11 9 2
Unit testing 7 22 -15
Communicating 5.8 5.5 0.3
Overhead 6.3 4.5 1.8
Non code 6.3 6.4 -0.2

Understanding time
Source code editor 68 48 20
Whiteboard 0 15 -15
Paper 22 29 7
Visual designer 10 8 2

The results are categorized according to the
developer experience. There were four respondents
that had less than five years experience and five

respondents with five or more years of working
experience. It seems that there are some differences
in writing and unit testing tasks. The experienced
developers spend less time in writing and more time
in unit testing than the less experienced developers.
Furthermore, there seems to be a difference between
experienced and less experienced developers in the
terms of source code editor and whiteboard usage.
Younger developers perhaps are more used to work
on computerized tools than older colleagues.

In order to understand the nature of developers'
working habits, interruptions are an important factor.
The developers estimate that they have
approximately five interruptions during the day and
one interruption typically lasts about 10 minutes.
They inform that it takes usually almost 5 minutes
extra just to recover from the interruption. This gives
a rough estimation that 5*15 minutes (1.25 hours) is
used daily for interruptions or recovering from them.

Questions 20 and 21 considered time tracking
tools and methods in use. Four respondents did not
track the development time at all. Four recorded
hours manually and only one developer used a
system for that purpose. Interestingly, the developer
that used a system to track his or her time considered
time tracking less effective than those who recorded
their time usage manually.

Questions 23 and 24 related to the preferred
ways of tracking time. Based on the answers, it
seems that developers that currently use manual time
tracking system prefer to stay in manual system and
developers that do not use any system prefer
automatic and SPS tracking. When comparing the
probability estimations of using a time tracking
system, there seems to be some difference between
non-trackers and manual-trackers: 1) the non-
trackers evaluate their probability to use certain
tracking method in every case much lower than the
manual-trackers and 2) the non-trackers give a
highest percentage to the SPS tracking while manual
trackers score the SPS second lowest in terms of
probability.

Table 3 shows developers’ feelings toward
monitoring working time in general (question 22).
The scale is shown on the top row of the table and
answering options are shown on the left. Each
column shows the number of respondents and the
percentage in parenthesis. Even five respondents out
of nine think that monitoring working time is not
necessary at all and additional three respondents are
“in-the-middle”. Still, the majority think that it is
effective and easy. Attitudes in the pleasant-
annoying and interesting-spying lines are very
neutral.

ICSOFT 2008 - International Conference on Software and Data Technologies

172

Table 3: Opinions on monitoring working time.

Feels about
monitoring working
time

1 2 3 4 5

1-Important
5-Not necessary

2(22) 1(11) 3(22) 4(44) 1(11)

1-Effective
5-Time demanding

0 5(56) 3(33) 1(11) 0

1-Easy 5-Difficult 2(22) 4(44) 3(33) 0 0
1-Pleasant
5-Annoying

0 3(33) 5(56) 1(11) 0

1-Feels … interesting
5-Feels like “spying”

3(33) 0 6(67) 0 0

According to the answers to questions 25 and 26,

the probability to use a system is highest for SPS
type of systems. The probability of using automatic
system is almost as high, but there is wider variety in
opinions. The most surprising observation is that
manual tracking is evaluated to have the highest
validity, even though all the three approaches are
considered to be quite similar in terms of accuracy.

The last question was open. The thoughts of the
best ways to track time are very different between
the developers in the case company. Two things
seem to be the most important when determining the
best time tracking method: ease of use and accuracy.
However, the answers show that the developers
recognize these two criteria to be controversial: if
the method used is easy, it is not automatically
accurate and vice versa. Some of the respondents
also emphasize the accuracy of the user and others
mention that the accuracy of the system is crucial.

The sample size was small. However, we believe
that the main trends that we have observed in this
study are correct. The results are not contradictory to
previous researches, even though there were some
surprising issues in our case.

6 CONCLUSIONS

Resource estimation is one of the first key elements
to implement when establishing a predictable
software development process. Surprisingly,
software developers do not automatically consider
time tracking useful. Developers need training and
motivation for monitoring their working time.
Benefits of time tracking have to be clearly visible.

Attitudes toward time tracking in general were
quite neutral. However, developers were not willing
to adopt new repertoire of tools for that purpose.
Those who already kept record on their working
time manually wanted to stay with the manual
system. Automated tools were considered useful by

those who did not track their working hours at all.
In order to gain wider view on developers’

working habits, a wider study with more respondents
should be done, preferably from several companies.

REFERENCES

Boehm, B., Clark, B., Horowitz, E., Westland, C.,
Madachy, R. & Selby, R.. (1995) Cost models for
future software lifecycles: COCOMO 2.0. Annals of
Software Engineering, vol 1, 57-94.

Ching-Seh W. & Simmons, D. (2000). Software Project
Planning Associate (SPPA): a knowledge-based
approach for dynamic software project planning and
tracking. Proceedings of the 24th International
Computer Software and Applications Conference
(COMPSAC), 305-310.

Fenton, N. & Neil, M. (2000) Software metrics: roadmap.
In proceedings of the ICSE - Future of Software
Engineering Track 2000, 357-370.

Humphrey, W. S. (1997) Introduction to the Personal
Software Process. Addison-Wesley: Reading, MA.

Johnson, P.M., Moore, C., Dane, J.A. & Brewer, R. S.
(2000) Empirically guided software effort
guesstimation. IEEE Software. Vol 17, no 6, 51-56.

Johnson, P. (2002) Supporting development of highly
dependable system through continuous, automated, in-
process, and individualized system measurement
validation. University of Hawaii, technical report.

LaToza, Thomas D., Venolia, G. & DeLine, R. (2006)
Maintaining Mental Models: A Study of Developer
Work Habits. Proceedings of the International
Conference on Software Engineering, 492-501.

Newman, S. (1998) Here, there and nowhere at all:
Distribution, negotiation, and virtuality in post-
mortem ethnography and engineering. Knowledge and
Society 11, 235-267.

Offen, R.J. & Jeffery, R. (1997) Establishing software
measurement programs, IEEE Software. vol 14, no 2,
45-53.

Perry D. E., Staudenmayerand, N. A. & Votta, L.G. Jr.
(1995) Understanding and Improving Time Usage in
System Development.

Shin, H., Choi, H. & Baik, J. (2007) Jasmine: A PSP
supporting tool. Proceedings of the International
Conference on SP, 73-83.

Sillitti, A., Janes, A, Succi, G. & Vernazza, T. (2003)
Collecting, integrating and analyzing software metrics
and personal software process data. Proceedings of the
29th Euromicro Conference, 336 - 342.

Suchman, L., Blomberg, J., Orr J.E. & Trigg R. (1999)
Reconstructing technologies as social practice. The
American Behavioral Scientist. Nov/Dec 1999; vol 43,
no 3, 392-408.

WORKING TIME USAGE AND TRACKING IN A SMALL SOFTWARE DEVELOPMENT ORGANIZATION

173

