
A COMPONENT-BASED SOFTWARE ARCHITECTURE
Reconfigurable Software for Ambient Intelligent Networked Services

Environments

Michael Berger, Lars Dittmann
COM·DTU, Technical University of Denmark, Oersteds Plads Bldg 343, DK-2800, Lyngby, Denmark

Michael Caragiozidis, Nikos Mouratidis
APEX AG, Bundesgasse 16, CH-3011, Bern, Switzerland

Christoforos Kavadias
TELETEL SA, 124, Kifissias Avenue, 115 26 Athens, Greece

Michael Loupis
SOLINET GmbH, Mittlerer Pfad 26, 70499 Stuttgart, Germany

Keywords: Component-based Software, Ambient Intelligence, Reconfigurable Software, SDL, UML, OSGi.

Abstract: This paper describes a component-based software architecture and design methodology, which will enable
efficient engineering, deployment, and run-time management of reconfigurable ambient intelligent services.
A specific application of a media player is taken as an example to show the development of software
bundles according to the proposed methodology. Furthermore, a software tool has been developed to
facilitate composition and graphical representation of component based services. The tool will provide a
model of a generic reusable component, and the user of the tool will be able to instantiate reusable
components using this model implementation. The work has been carried out within the European project
COMANCHE that will utilize component models to support Software Configuration Management.

1 INTRODUCTION

The main objective of COMANCHE
(COMANCHE, 2008) is to develop and validate a
generic framework for Software Configuration
Management (SCM), which will pave the way to the
realization of technically and commercially viable
private spaces incorporating ambient intelligence
features. For this purpose the project will specify
and develop the COMANCHE modular and scalable
architecture targeting the provision of consistent,
secure, low-cost (low-effort) SCM services across
today’s heterogeneous, and multi-vendor
environments. The realization of the COMANCHE
SCM services framework will be built on an
adequate software engineering and knowledge
management infrastructure that the project will

deliver. The main components of this infrastructure
will be the following:

i) The COMANCHE Knowledge Management
Framework, which will provide the means for
effectively conceptualizing, organizing, discovering,
and exploiting the tremendous amounts of attribute
information, pertaining to SCM

ii) A modular component-based software
architecture and an adequate design methodology
and tool, which will effectively address the
engineering and run-time management of
reconfigurable software for ambient intelligent
networked services environments.

iii) A formal modelling methodology and a
consistency validation framework for capturing and
analyzing the structure and run-time behavior of
distributed software systems.

174
Berger M., Dittmann L., Caragiozidis M., Mouratidis N., Kavadias C. and Loupis M. (2008).
A COMPONENT-BASED SOFTWARE ARCHITECTURE - Reconfigurable Software for Ambient Intelligent Networked Services Environments.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 174-179
DOI: 10.5220/0001883901740179
Copyright c© SciTePress

This paper will mainly focus on ii) Component
based software architecture and furthermore it will
present a methodology for a Model driven design
tool that will provide the means for efficiently
mapping target applications on the component-based
architecture. In this paper we adopt and apply in the
field of pervasive (ambient intelligent) services
techniques and practices on software
reconfigurability presently applied in the field of
industrial automation applications (Endsley, 2000),
(Wang, 2002), (Whisnant, 2003). The main
contribution here is the mapping to adopted
standards (OSGi, 2008), (SDL, 2008), (UML, 2008)
and the related tool. The organization of the paper is
as follows: In the following section 2, a sample
COMANCHE application is provided as an example
of an OSGi based Implementation of a composite
SW Component. Following this, section 3 presents
the component based architecture and section 4
describes the design of OSGi compatible SW
components on an OSGi Service Platform including
properties of the COMANCHE design tool. Finally,
section 5 is the conclusion.

2 SAMPLE COMANCHE
APPLICATION

We assume the existence of a media player device
equipped with the appropriate drives and interfaces
so that multimedia content can be acquired from
storage media as well as a network interface through
which all the communications are taking place. On
the device an OSGi Service Platform is deployed.
There is need for having the multimedia contents,
which are accessible by the device, streamed over
the network under various schemes (encoding,
broadcast or unicast, scaling, etc). Towards this
direction a special bundle that will become the
central part of the streaming service is installed and
activated.

1) By default, the bundle, when activated,
searches for services that provide access to
multimedia content (access to the disc drive(s), USB
stick or internal hard-disk). These services are
offered by other bundles already activated on the
platform. While this location of services is
attempted, filtering aspects can be enforced to lead
to the most appropriate selection. For example, there
must be a requirement for locating a service that
allows for concurrent sessions over the medium
under their control and/or on demand navigation in
the content.

2) Once the available multimedia sources have
been enumerated there is need for obtaining
information regarding the format of the content. This
might not be performed by the orchestrating code
but by services contained either in the central bundle
or being active on the platform.

3) Once the multimedia sources and the
corresponding information have been initialised,
media encoding/decoding services are located.
Again filtering parameters are enforced according to
the setup of the component.

4) Finally, services for providing the final
encapsulation and streaming of the encoded media
are “integrated”.

5) Thereafter, the SW component that has been
synthesized from the services deployed on the
platform under the control of the orchestrator is
ready to operate and provide the application for
which it is designed.

6) Throughout its operation, service
modifications may occur. These may regard
additions or removal of bundles that offer
functionality that can be or already utilised.

7) Similarly, the SW component may receive
configuration updates that can trigger the
reestablishment of its structure.

SW Component for Media Streaming

Bundle Listener

Service Listener

Framework Listener

FSM
Driver

Managed Services
com.apex.media.streaming.server.rtp.Unicast

Configuration

Platform Events

OSGi Platform Resources

Event
Handler

USB Access

Bundle
Services

HDisk Access BluRay Access

DVD Access

Media Info

RTP

MPEG4
Encoder

H.263
Encoder

RTSP

Figure 1: Example of an OSGi based Implementation of a
composite SW Component.

A graphical representation of such a synthesis
can be seen in Figure 1. The rectangle at the top
encloses the components of a management
(orchestrator) OSGi bundle (SW component) that is
capable of making use of the bundles (service
objects) enclosed by the rectangle at the bottom of
the Figure. The red line presents a setup that
provides an application that streams, via unicast
RTP, media stored on a USB stick encoded by an
MPEG4 encoder. In the chain presented below
additional decoders may be used to produce content
that can be used by the selected encoder.

A COMPONENT-BASED SOFTWARE ARCHITECTURE - Reconfigurable Software for Ambient Intelligent Networked
Services Environments

175

3 GENERIC
COMPONENT-BASED
ARCHITECTURE

Components are pre-implemented software modules
(or already instantiated but customizable objects
within an object-oriented model) and are used as
building blocks to construct the controller software.

E
vent-based external

interface

E
vent-m

apping function

C o n f ig u r a t io n in te r f a c e

F in i t e S ta t e
M a c h in e D r iv e r

(C o n f ig u r a b le S W
b e h a v io u r)

S e r v ic e s
O b j e c t s

S e r v ic e s I n t e r f a c e s

P la t f o r m
(o p e r a t in g s y s t e m /n e tw o r k)

R e c o n f ig u r a b le
S W C o m p o n e n t

Figure 2: Component structure.

A component defines the functionality of a device
or subsystem, which can be as simple as an I/O
device like a position sensor, or a control algorithm
like proportional-integral-derivative (PID) control,
or as complex as a composed subsystem like
coordinated axes. The structure of a software
component includes a set of event-based external
interfaces with registration and mapping
mechanisms, communication ports, a control logic
driver, and service protocols, as shown in Figure 2.

3.1 Finite State Machine Driver &
Configuration Interface

The finite-state machine (FSM) driver, is designed
to separate function definitions from control logic
specifications and to support control logic
reconfiguration at executable code level. The finite-
state machine driver can be viewed as an interface to
access and modify the control logic inside a
component, which is traditionally hard coded in the
component implementation. Every component that
executes some control logic should have such a
driver inside itself. The control logic of a component
can then be fully specified as a state table for
execution. A finite-state machine driver will
generate commands to invoke operations of the

services objects at run time according to its state
table and received events. State tables can also be
packed as data and passed to another component to
reconfigure the receiver component’s behavior
remotely.

The finite-state machine driver of a component is
a center piece to enable post-implementation
reconfiguration of component behaviour. It invokes
the service object functions based on current
component state and incoming events to
communication ports, which are specified by state
table entries. Function calls are statically bound to
internal events at implementation time, and the
finite-state machine driver invokes the service object
functions by generating internal events for the
corresponding services objects. For each component,
multiple state tables can be designed to specify
different desired behaviors in different system
modes. However, only one state table for a
component can be active at a time.

Although the finite-state machine driver
introduces additional overhead to the system as a
component has to go through more steps to invoke
an operation, such processing and related bindings
are statically configured before normal execution.
Therefore, the overhead introduced by the finite-
state machine driver should be negligible to the
application-level performance; it may be significant
at low level due to frequent long jumps and pipeline
flushes caused by the sequence of function calls to
process state transitions. On the other hand, efforts
and costs for software reconfiguration when
application requirements change, overweigh
performance for resource-rich systems such as PC-
based controllers.

The component state table is configured
(changed) through the configuration interface. The
mechanism is detailed in section 4. If we consider
the case of the sample application described in
section 2, we may consider a system comprising the
following four components:
• An Orchestrator component that is able to

make use of the OSGi platform services, and its
FSM driver realises the media streaming
application logic. The Orchestrator software
component contains the following three
software components each of which makes use
of the service objects enclosed by the rectangle
at the bottom of Figure 3.

• A GetMedia component that is capable of
retrieving the media content from a variety of
interfaces (USB, HDrive, BlueRay, DVD, etc).

• An Encoding component that is capable of
encoding the retrieved media in different

ICSOFT 2008 - International Conference on Software and Data Technologies

176

formats (e.g. MPEG-4, H.263, etc) in
consistence with the application needs.

• A Streaming component that is responsible for
handling encoded media streaming.

The logic of the above-mentioned SW
components is illustrated in Figure 3. In this Figure,
the rectangles represent SW components, and the
ellipses represent service objects. For instance the
Orchestrator SW Component makes use of the
GetMedia, Encoding, and Streaming SW
Components, as well as of the Init and Stop Service
Objects. The arrows in Figure 3 represent function
calls invoked by the FSM Driver of the Orchestrator
SW component.

Init

Stop

stop

Encode_Media

Stream_Media

Stream_Media

reset
Get_Media

GetMedia

Streaming

Encoding

Logic of Orchestrator SW component

Logic of GetMedia SW component

Figure 3: Logic of Orchestrator and GetMedia, SW
components.

3.2 Event-based External Interfaces &
Event Mapping Function

Event-Based External Interfaces are designed to
expose component functionalities to the external
world, i.e., define operations that can be invoked
from other components.

External interfaces in the COMANCHE
architecture are represented as a set of acceptable
global (external) events with designated parameters.
Event-based interfaces enable operations to be
scheduled and ordered adaptively in distributed and
parallel environments and allow components to be
integrated, at executable code level, into the system.

A customizable event-mapping mechanism is
present in each component to achieve the translation
between global events and the component’s internal

representations. Such a mapping separates a
component implementation from its interfaces, thus
making multiple implementations of one operation
possible. And so, it allows flexibility and code reuse
during component development. Since the mapping
is internal, it can be customized without having to
know interactions with other components.

The control software constructed with the
COMANCHE component model consumes less
computation resources and supports more
predictable execution.

3.3 Services Interfaces

Service Interfaces define execution environments of
a component and so make components adaptive to
different platforms. The Service Interfaces are used
to communicate with the service platform and
network (rather than other components). Thus,
COMANCHE components implementing network
drivers, user interfaces, etc, will use the service
interfaces. Examples of Service Interfaces include
scheduling policies, inter-process communication
mechanisms, and network protocols.

Service Interfaces are implemented as a set of
attributes of a component. Selection of services is
implemented by assigning the desired values for the
service attributes. Such selection is based on the
mechanisms available on a given platform and
performance (such as timing and resource)
constraints of a system. The selected services will be
bound to the corresponding function calls provided
by the infrastructures either statically or during the
software initialization.

4 DESIGN OF OSGI-BASED
CONFIGURABLE SW
FRAMEWORK

The implementation of a component based software
architecture compliant with OSGi implies the
deployment of a Service Platform (a Java VM in
which an OSGi Framework operates) on a Service
Platform Server (a device). In this configuration,
bundles can be installed and activated as well as
deactivated and removed within the execution
context of the Service Platform. From the OSGi
perspective the bundles and the services they
provide within one running Service Platform should
realise the software components in the
COMANCHE architecture by implementing the
following interfaces:

A COMPONENT-BASED SOFTWARE ARCHITECTURE - Reconfigurable Software for Ambient Intelligent Networked
Services Environments

177

1. An interface (configuration) through which
configuration can be achieved regarding both
the behaviour and structure

2. An interface (external) that makes available
the services implemented by the component
towards other entities inside the execution
environment

3. An interface (platform/device) through which
all the transactions with respect to utilisation
of the device hardware resources are
performed

4.1 Definition of Structural
Configuration and Generic Design
Principles

The structural definition of the component consists
of a sufficient orchestration of the available
resources so that the outcome of the assembly of the
software modules, when operating, provides the
envisaged functionality that is described in Figure 2.
This pattern of organisation should be maintained
from the simplest to the more complex form of
resource orchestration so that it can be inherently
supported at any level of component integration.

According to the above, the borders of the
elementary component can be defined as the
minimum integration of resources that can operate as
an entity that:

1. its behaviour can be configured,
2. provides an external interface through

which it can serve requests from other
resources, and

3. if possible interacts with physical resources
of the hosting platform.

This structural model may be applied to all Java
classes that are contained in a bundle, installed on a
Service Platform, so that each of them constitutes a
clearly defined software component or cumulatively
to any number of Java packages contained in a
bundle so that all together can be used as a single
software component. In the latter case the borders of
that component enclose all the required resources
and each of the characteristics of the software
component may be provided by different Java
classes. Increasing the complexity, a software
component may span the limits of a single bundle by
accumulating resources, through OSGi compliant
service registration and utilisation operations,
contained in several ones. In this case the need for
structural configuration arises, since the selection of
the proper services for usage should follow the
corresponding rules that in our case can constitute
the structural configuration of the software

component. Mapping, therefore, the COMANCHE
concepts on the OSGi principles we conclude that a
COMANCHE software component can be provided
as an OSGi Service Application that is “a set of
bundles that collectively implement a specific
function used within a Service Platform”.

According to the principles described above, a
Software Component being able to be reconfigured
with respect to both structure and behaviour and
function in the context of COMANCHE architecture
can be instantiated as a proper orchestration of OSGi
resources.

4.2 Control Structure of a Software
Component

For every synthesis of OSGi resources aiming at the
composition of a COMANCHE Software
Component a special bundle in the role of the
orchestrator is activated. This bundle contains a
package of Java Classes that will be responsible for
organising the service resources on the same OSGi
platform. The bundle registers a number of Managed
Services, following the above described PID
convention, with the Framework so that the proper
configuration can be submitted to the Software
Component. Upon receiving configuration
dictionaries, these services perform the proper
translation of the content in the following ways:
(a) assign values to parameters that regard
functionality and services contained in the same
bundle, (b) maintain filters to be used during service
resolution, (c) modify their own registered
parameters so that other services may utilise these
according to the matching achieved between
registered and filtering parameters.

Since the operation of a Software Component is
based on the loose coupling among available
services there is a constant need for maintaining the
references to the available service providers so that
new registrations of services that fit better specific
needs or de-registration of previously located ones
can be imminently detected and handled
accordingly. For this purpose the bundle in the role
of the orchestrator registers the corresponding
Service, Bundle and Framework Listeners so that all
the relevant events can be monitored and handled
according to the needs of the Software Component
that is synthesized under the control of this bundle.
Handling of events is related mainly with updating
the service references in case an event indicates any
changes in the synthesis of the Software Component.

The overall structure with respect to the
controlling part of a Software Component that has
been presented above is presented in Figure 4.

ICSOFT 2008 - International Conference on Software and Data Technologies

178

OSGi Compliant Structure of the control part of a SW Component

Bundle Listener

Service Listener

Framework Listener

FSM
DriverManaged Services

PID#0
...

PID#N

Configuration Platform Events

OSGi Platform Resources

Event
Handler

Service #0 Service #1 Service #N. . .

Bundle
Services

Figure 4: SW Component Control Structure.

Once the orchestrator bundle has registered and
activated the listeners and the managed services, the
SW component can be configured with respect to
both its behaviour as this is reflected by the FSM
adjustments and its structure with respect to the
loose coupling with the potential service resources
residing on the same platform.

4.3 COMANCHE Design Tool

The COMANCHE Design tool has the following
properties:

1) Support the graphical representation of software
systems making use of widely adopted
standards as SDL (Simple Declarative
Language), UML (Unified Modeling
Language)

2) Support the composition of systems through the
use and customisation of available software
components.

3) provide a model (a template with no
implemented functionality) of the generic
reusable SW component.

4) Allow the creation and maintenance of a
repository of reusable SW components to be
used for the synthesis of services software. The
user of the tool is able to instantiate reusable
SW components using the above mentioned
model implementation

5) Enable the mapping of component-based
UML/SDL specifications to reconfigurable
object-oriented services implementations.

6) Enable the mapping of component-based
UML/SDL specifications to OWL
instantiations.

The development of the COMANCHE design
tool will not start from scratch, as it will exploit the
implementation mapping capabilities (generation of
C++/JAVA implementation code from UML/SDL
specifications) of the existing development
environment from the IST REMUNE project. The
existing features has been complemented with
innovative work on the development of techniques
for (a) mapping abstract UML/SDL application
specifications on component-based UML/SDL
specifications, (b) mapping component-based

UML/SDL specifications to efficient (in terms of
performance and security), reconfigurable object-
oriented (JAVA, C++) services implementations.

5 CONCLUSIONS

Based on the COMANCHE specification of a
reconfigurable component-based architecture, an
OSGi based configurable SW framework has been
designed. The FSM Driver is a centrepiece to enable
post-implementation reconfiguration of component
behaviour. It invokes the object functions based on
current component state and incoming events to
external interfaces. This is achieved through the
definition of customisable State Table entries that
will be used for controlling the logic of the services
exposed by the component. Development of the
COMANCHE tools included techniques for
mapping abstract UML/SDL application
specifications on component-based UML/SDL
specifications, and mapping component-based
UML/SDL specifications to efficient, reconfigurable
object-oriented services implementations.

ACKNOWLEDGEMENTS

This work has been performed in the framework of
the IST-034909 project COMANCHE, which is
partly funded by the European Commission.

REFERENCES

The COMANCHE project, www.ist-comanche.eu, 2008
E.W. Endsley, M. R. Lucas, and D. M. Tilbury. Software

tools for verification of modular FSM based logic
control for use in reconfigurable machining systems.
in Proc. 2000 Japan-USA Symp. Flexible Automation,
Ann Arbor, MI, July 23–26, 2000, pp. 565–568.

S. Wang, K.G Shin. Constructing reconfigurable software
for machine control systems. Robotics and
Automation, IEEE Transactions on Volume 18, Issue
4, Aug 2002 Page(s): 475 – 486

K. Whisnant, Z. T. Kalbarczyk, R. K. Iyer. A system
model for dynamically reconfigurable software. IBM
Systems Journal Volume 42 , Issue 1 (January 2003)
table of contents Pages: 45 - 59

The OSGi Alliance, www.osgi.org, 2008
Simple Declarative Language (SDL), sdl.ikayzo.org, 2008
Unified Modeling Language (UML), www.uml.org, 2008

A COMPONENT-BASED SOFTWARE ARCHITECTURE - Reconfigurable Software for Ambient Intelligent Networked
Services Environments

179

