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Abstract: In this paper we first present briefly QADPZ, an open source platform for heterogeneous desktop grid 
computing, which enables users from a local network (organization-wide) or Internet (volunteer computing) 
to share their resources. Users of the system can submit compute-intensive applications to the system, which 
are then automatically scheduled for execution. The scheduling is made based on the hardware and software 
requirements of the application. Users can later monitor and control the execution of the applications. Each 
application consists of one or more tasks. Applications can be independent, when the composing tasks do 
not require any interaction, or parallel, when the tasks communicate with each other during the computation. 
QADPZ uses a master worker-model that is improved with some refined capabilities: push of work units, 
pipelining, sending more work-units at a time, adaptive number of workers, adaptive timeout interval for 
work units, and use of multithreading, to be presented further in this paper. These improvements are meant 
to increase the performance and efficiency of such applications. 

1 INTRODUCTION 

Usually, complex computational and visualization 
algorithms require large amounts of computational 
power. The computing power of a single desktop 
computer is insufficient for running such complex 
algorithms, and, usually, large parallel super-
computers or dedicated clusters are used for this job. 
However, very high initial investments and 
maintenance costs limit their availability. A more 
convenient solution is based on the use of non-
dedicated desktop PCs in a Desktop Grid (DG) 
computing environment. Harnessing idle CPU 
cycles, storage space and other resources of 
networked computers to work together on a 
particularly computational intensive application, and 
increasing power and communication bandwidth of 
desktop computers provides for this solution.  

In a DG system, the execution of an application 
is orchestrated by a central scheduler node, which 
distributes the tasks amongst the worker nodes and 
awaits workers' results. It is important to note that an 
application only finishes when all tasks have been 

completed. The attractiveness of exploiting DGs is 
further reinforced by the fact that costs are highly 
distributed: every volunteer supports her resources 
(hardware, power costs and internet connections) 
while the benefited entity provides management 
infrastructures, namely network bandwidth, servers 
and management services, receiving in exchange a 
massive and otherwise unaffordable computing 
power. The usefulness of DG computing is not 
limited to major high throughput public computing 
projects. Many institutions, ranging from academics 
to enterprises, hold vast number of desktop 
machines and could benefit from exploiting the idle 
cycles of their local machines. 

We present briefly here QADPZ, an open source 
platform for heterogeneous desktop grid computing, 
which enables users from a local network (enterprise 
DG) or Internet (volunteer computing) to share their 
resources. The system allows a centralized 
management and use of the computational power of 
idle computers from a network of desktop 
computers. Users of the system can submit compute-
intensive applications to the system, which are then 
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automatically scheduled for execution. The 
scheduling is made based on the application’s 
hardware and software requirements. Users can later 
monitor and control the execution of the 
applications, each of them consisting of one or more 
tasks. Applications can be independent, when the 
composing tasks do not require any interaction, or 
parallel, when the tasks communicate with each 
other during the computation.  

QADPZ has pioneered autonomic computing for 
desktop grids and presents specific self-management 
features: self-knowledge, self-configuration, self-
optimization and self-healing (Constantinescu, 
2003). It is worth to mention that to the present the 
QADPZ has over a thousand users who have 
download it, and many of them use it for their daily 
tasks (SOURCEFORGE, 2008).  

2 MASTER WORKER 
PARADIGM 

The QADPZ framework is based on an extended 
version of the master-worker paradigm. Some of the 
disadvantages in using this model in a heterogeneous 
and dynamic environment are briefly described here. 
The traditional master-worker has the worker nodes 
downloading small tasks from a central master node, 
executing them, and then sending back the results to 
the master. The master-worker computing paradigm 
is built on the observation that many computational 
problems can be broken into smaller pieces that can 
be computed by one or more processes in parallel. 
That is, the computations are fairly simple consisting 
of a loop over a common, usually compute-
intensive, region of code. The size of this loop is 
usually considered to be long.  

In this model, a number of worker processes are 
available, each can perform any one of the steps in a 
particular computation. The computation is divided 
into a set of mutually independent work units by a 
master node. Worker nodes then execute these work 
units in parallel. A worker repeatedly gets a work 
unit from its master, carries it out and sends back the 
result. The master keeps a record of all the work 
units of the computation it is designed to perform. 
As each work unit is completed by one of the 
workers, the master records the result. Finally, when 
all the work units have been completed, the master 
produces the complete result. The program works in 
the same way irrespective of the number of workers 
available - the master just gives out a new work unit 
to any worker who has completed the previous one. 

Whereas the master worker model is easily 
programmed to run on a single parallel platform, 
running such a model for a single application across 
distributed machines presents interesting challenges. 
On a parallel platform, the processors are always 
considered identical in performance. In a distributed 
environment, and especially in a heterogeneous one, 
processors usually have different types and 
performance. This raises the problem of load 
balancing of work-units between the workers in such 
a way to minimize the total computing time of the 
application. The ideal application is coarse-grain and 
embarrassingly parallel. Granularity is defined as the 
computation-to-communication ration, with coarse 
grain applications involving small communication 
time compared to computation time, and fine 
grained application requiring much more time for 
communication than computation.  

Coarse-grain applications are ideal for DG 
computing because most DG systems employ 
commodity network links, which have limited 
bandwidth and high latencies. Embarrassingly 
parallel applications are those problems that easily 
decompose into a collection of completely 
independent tasks. Examples of such scientific 
problems are: genetic and evolutionary algorithms, 
Monte Carlo simulations, distributed web crawling, 
image processing, image rendering. 

In a heterogeneous environment, scheduling, 
which includes both problem decomposition and 
work-unit distribution (placement to workers), has a 
dramatic effect on the program's performance. An 
inappropriate decision regarding decomposition or 
distribution can result in poor performance, due to 
load imbalance. Effective scheduling in such 
environments is a difficult problem. 

This problem can be overcome by using 
relatively simple heuristics, if appropriate 
mechanisms are provided to the scheduler to 
determine the complexity of the problem wrt. 
computation and communication. This information 
is then used to decompose the problem and schedule 
the work-units in a manner that provides good load 
balance, and thus good performance. The idea of 
using dynamic creation of subtasks is also presented. 
Subtasks are generated according to the 
requirements of the problem, by taking into 
consideration the available performance parameters 
of the system (network bandwidth, latency, CPU 
availability and performance). 
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3 IMPROVED MASTER 
WORKER MODEL 

We present in this section an improved version of 
the master-worker model, which is based on an 
algorithm with dynamic decomposition of the 
problem and dynamic number of workers. The 
improvements regard the performance of the original 
model, by increasing the time workers are doing 
computations, and decreasing the time used for 
communication delays. This is achieved by using 
different techniques, such as pipelining of the work-
units at the worker, redundant computation of the 
last work-units to decrease the time to finish, 
overlapped communication and computation at the 
workers and the master, use of compression to 
reduce the size of messages. We will describe in the 
following subsections each of these techniques. 

3.1 Pull vs. Push for Work-Units 

In the original master-worker model, each time a 
worker finishes a work-unit, it has to wait until it 
receives the next work-unit for processing. If this 
communication time is comparable with the time 
needed for executing a work-unit, the efficiency of 
the worker is reduced very much. The time intervals 
used for communication and computation 
(processing) are described in Figure 1. 

The master-worker model uses the pull 
technology, which is based on the request/response 
paradigm. This is typically used to perform data 
polling. The user (in our case the worker) is 
requesting data from the publisher (in our case the 
master). The user is the initiator of the transaction. 
In contrast, a push technology relies on the 
publish/subscribe/distribute paradigm. The user 
subscribes once to the publisher, and the publisher 
will initiate all further data transfers to the user. This 
is better suited in certain situations. 

 
Figure 1: Worker timeline in execution. 

We first extend the master-worker model by 
replacing the pull technology with the push 
technology, as it is illustrated in Figure 2.  

 
Figure 2: Pull vs. Push technology. 

In this model, the worker doesn't send any more 
requests for work-units. Instead, it first announces its 
availability to the master when it starts, and the 
master is responsible for sending further work-units. 
The workers just wait for work-units, and process 
them when received. At the end of each work-unit, it 
sends back the results to the master. The master will 
further send more work-units to the worker. This 
moves all decisions about initiating work-units 
transfers to the master, allowing a better control and 
monitoring of the overall computation.  

3.2 Pipelining of Work-Units 

The worker efficiency increases if we reduce the 
total time spent in waiting for communication. One 
way to do that is to use work-units pipelining at the 
worker, thus making sure that the worker has a new 
work-unit available when it finishes the processing 
of the current work-unit. Pipelining is achieved by 
sending more that one work-unit to the workers, as 
shown in Figure 3. Each worker will have at least 
one more work-unit in addition to the one being 
processed at that worker. This is done so that the 
worker, after finishing a work-unit, will have ready 
the next one for processing. In the beginning, the 
master sends more than one work-units to the 
worker, then after each received result, sends 
another work-unit to be queued on the worker. The 
worker does not need to wait again for a new work-
unit from the master after sending the result, the next 
work-unit being already available for processing. 
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Figure 3: Pipelining of worker tasks. 

The immediate advantage of pipelining is that the 
waiting time for a new work-unit is eliminated. This 
is described in Figure 4. While the worker is 
processing the next work-unit, a new work-unit is 
sent by the master and is queued in the operating 
system. When using non-blocking communication, 
the waiting time for sending the result to the master 
after finishing a computation can be also eliminated. 

 

Figure 4: Worker timeline for unit pipeline. 

Keeping one new work-unit available at the worker 
seems to be enough to reduce the waiting time for 
communication. However, there is a situation when 
this is not adequate. It can happen that the execution 
time of a work-unit is much shorter than the 
communication time (consisting of sending back the 
result and receiving the new work-unit). In this case, 
the worker finishes the current work-unit, but the 
new one is not yet received. Thus, a certain waiting 
time is involved for receiving it (see Figure 5). 

 

Figure 5: Unit pipeline - worst case. 

If there are many work-units with short execution 
times, than the overall waiting time can increase 

significantly, reducing the efficiency of the worker. 
The condition for this not to happen is the following: 

 execreswu ttt ≤+  for the average 
time values, or 

(1) ( )∑ ∑
− −

≤+
unitswork unitswork

execreswu ttt  for the 
individual 
time values 

This situation can be improved by pipelining more 
than two work-units at the worker, thus using a 
larger pipeline. The master starts by sending out a 
number of work-units to the worker to fill the 
pipeline. Each time a result is received back from 
the worker, the master sends a new work-unit, thus 
keeping the pipeline full. This algorithm works as 
long as the average execution time for a work-unit is 
larger than the average communication time for 
sending a result and a new work-unit between the 
worker and the master. If the communication time is 
too large, the pipeline will eventually become empty 
and the worker will need to wait for new work-units. 

3.3 Sending More Work-Units at a 
Time 

To overcome this situation, the master needs to send 
more than one work-units per each message. The 
master starts by sending a message containing more 
than one work-unit, and then keeps sending as long 
as the pipeline is not full. Each time it receives a 
result, it sends another work-unit, to compensate the 
decreasing number of work-units from the pipe. If 
the worker sends only one result per message back 
to the master, and the master sends only one new 
work-unit, then, eventually the pipeline will become 
empty. In order to prevent that, the worker will need 
to send back more results at a time.  

We could consider, for example, that the number 
of results per message is equal to the number of 
work-units per message sent from the master. In this 
case, all results from the work-units, which came in 
one message, are sent back to the master the same 
way in one message after all of them were 
successfully computed. 

 
Figure 6: More work-units per message. 
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This would solve the previous problem if the time to 
send a larger message (more work-units) were much 
smaller than the time to send the individual 
messages (one work-unit). This is usually possible if 
the data required to describe one work-unit is small 
enough, so the messages are kept short. However, it 
could still happen that communication time is larger 
than the execution time, so that the worker will end 
up waiting for new work-units. The condition for 
this not to happen is the following: 

nexecmresnwu ttt ,,, ≤+  for the average time 
values of multiple work-units per message 
and execution. 

(2) 

3.4 Adaptive Number of Workers 

As mentioned before, in a heterogeneous 
environment based on idle desktop computers, the 
total number of workers available could be changing 
during the computation. New workers can register to 
the master, and other can become temporarily 
unavailable. The master controls the total number of 
workers used for computation, since he is the one 
sending out work-units to the workers. If necessary, 
the master can choose not to use all the available 
workers for computation, only a few of them. This 
might be for different reasons, as described further. 

In the master-worker model, the master can 
become a bottleneck, especially when there are a lot 
of workers, which connect to get work-units and 
send results back. Overloading the master could 
cause the bottleneck. Because the master has also to 
do a small amount of processing each time when it 
receives results from the workers, if too many 
workers connect to the master, the processing 
resource available might not be enough and the 
request will be delayed. There is an upper limit on 
the number of workers that can connect to the master 
without overloading it. Finding out this number is 
not easy and it depends on a variety of parameters 
from the entire system: computational capabilities of 
workers and master, communication delays, the 
amount of processing involved for each results, etc.  

Another bottleneck could be caused by too much 
communication. Considering that there is enough 
computational power on the master to serve a large 
number of workers, it could happen that there are 
too many messages exchanged between the master 
and workers, thus communication delays can occur. 
This might happen either because there are too many 
messages per time unit, or because the amount of 
data transferred is too high, exceeding thus the 
available network bandwidth. On the contrary, if 

there is too few workers used, then the total time of 
the computation will be too large, not exploiting all 
the resources available. This suggests that there is 
some optimum for the number of workers, which 
can increase the overall efficiency of the whole 
computation, and reduce the time to complete it.  

We define the overall efficiency of the 
computation as being the ratio between the total 
amount of time since the beginning of the 
computation (ttotal) and the sum of execution times 
for all completed work-units on all workers: 

∑
−

==

unitswork
exec

total

serial

parallel
system t

t
t

t
E  (3) 

We propose an adaptive algorithm to choose the 
number of workers, based on performance measures 
and estimates of execution times for work-units and 
communication times for sending and receiving 
messages. The number of workers is automatically 
reduced if the efficiency of the computation 
decreases. We employ a heuristic-based method that 
uses historical data about the behavior of the 
application. It dynamically collects statistical data 
about the average execution times on each worker. 

3.5 Use of Multithreading 

The multithreaded programming paradigm allows 
the programmer to indicate to the run-time system, 
which portions of an application can occur 
concurrently. Synchronization variables control the 
access to shared resources and allow different 
threads to coordinate during execution. The 
paradigm has been successfully used to introduce 
latency hiding in distributed systems or in a single 
system where different components operate at 
different speeds. 

The paradigm of multithreading can provide 
many benefits for the applications. In our situation, 
it can provide good runtime concurrency, while 
parallel programming techniques can be easier 
implemented. The most interesting and probably 
most important advantages are performance gains 
and reduced resource consumption. 

Operating system kernels supporting 
multithreaded application perform thread switching 
to keep the system reactive while waiting on slow 
I/O services, including networks. In this way, the 
system continues to perform useful work while the 
network or other hardware is transmitting or 
receiving information at a relatively slow rate. 

Another benefit of multithreaded programming is 
in the simplification of the application structure. 
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Threads can be used to simplify the structure of 
complex, server-type applications. Simple routines 
can be written for each activity (thread), making 
complex programs easier to design and code, and 
more adaptive to a wide variation in user demands. 
This has further advantages in the maintainability of 
the application and future extensions. 

The multithreaded paradigm can also improve 
server responsiveness. Complex requests or slow 
clients do not block other requests for service, the 
overall throughput of the server being increased. 

4 CONCLUSIONS 

We have presented here our extended master-worker 
model, which has been used in the QADPZ 
development. Our model includes some refined 
capabilities that are meant to increase the 
performance and efficiency of the computation: push 
of work units, pipelining, sending more work-units 
at a time, adaptive number of workers, adaptive 
timeout interval for work units, and use of 
multithreading. Further measurements need to be 
made in order to sustain our preliminary benchmark 
tests that suggest significant improvements 
regarding efficiency of the computation. 
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