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Abstract: This paper presents a framework for engineering resource-adaptive software systems targeted at small 
mobile devices.  The proposed framework empowers users to control tradeoffs among a rich set of service-
specific aspects of quality of service.  After motivating the problem, the paper proposes a model for 
capturing user preferences with respect to quality of service, and illustrates prototype user interfaces to elicit 
such models.  The paper then describes the extensions and integration work made to accommodate the 
proposed framework on top of an existing software infrastructure for ubiquitous computing. 
The research question addressed here is the feasibility of coordinating resource allocation and adaptation 
policies in a way that end-users can understand and control in real time.  The evaluation covered both 
systems and the usability perspectives, the latter by means of a user study.  The contributions of this work 
are: first, a set of design guidelines for resource-adaptive systems, including APIs for integrating new 
applications; second, a concrete infrastructure that implements the guidelines.  And third, a way to model 
quality of service tradeoffs based on utility theory, which our research indicates end-users with diverse 
backgrounds are able to leverage for guiding the adaptive behaviors towards activity-specific quality goals. 

1 INTRODUCTION 

Sophisticated software is increasingly being 
deployed on small mobile devices, taking advantage 
of their growing capabilities and popularity.   Media 
streaming is already found frequently in PDAs and 
high-end cell phones.  Soon, applications such as 
speech recognition, natural language translation, and 
virtual/augmented reality may leap from research 
prototypes to widespread commercial use. 

While software has enjoyed plentiful and stable 
resources in the world of desktops (and to some 
extent, of laptops,) resource variation needs to be 
taken into account in smaller devices.  Despite the 
impressive capabilities of today’s mobile devices, 
user expectations with respect to performance and 
sophistication will continue to be set by the full-size 
versions running on powerful desktops and servers.  

Research in resource-adaptive applications takes 
an important step towards addressing resource 
limitation and variation (De Lara, Wallach, & 
Zwaenepoel, 2001; Flinn & Satyanarayanan, 1999; 
Yuan, Nahrstedt, Adve, Jones, & Kravets, 2006). 

However, existing solutions either enforce 
predetermined policies, or offer limited mechanisms 
to control the application’s policies.  In some cases, 
the adaptation mechanisms focus strictly on network 
conditions, enforcing policies that are established by 
system designers before the system is deployed.  In 
other cases, users are offered limited control over the 
policies, typically focusing on a single aspect of 
quality of service, such as battery duration. 

Unfortunately, those limitations prevent adaptive 
systems from addressing two important issues.  First, 
user goals often entail tradeoffs among different 
aspects of quality.  For example, in the presence of 
limited bandwidth, should a web browser skip 
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loading pictures in order to provide faster load 
times?  For browsing restaurant listings, a user may 
prefer dropping images to improve load times; but 
for browsing online driving directions, the user may 
be willing to wait longer for the full page content. 

Second, user activities may involve more than 
one application, making it desirable to coordinate 
resource usage and adaptation policies across 
applications.  For example, an activity that involves 
simultaneous video streaming and downloading 
email attachments may be best served when video 
streaming consistently uses 80% of the bandwidth 
and email does not attempt to go beyond 20%. 

This paper presents a framework for engineering 
resource-adaptive systems that: (a) empower users to 
control tradeoffs among a rich set of aspects of 
quality, and (b) coordinate resource usage among 
several applications.  To develop such a framework, 
important questions need to be answered:  how to 
represent user preferences in a way that can be used 
to guide adaptation policies? How to elicit such 
preferences?  How to allocate resources among 
applications, and how to coordinate their policies?  
What APIs must applications expose to be amenable 
to such coordination? 

In the remainder of this paper, Section 2 
proposes a model for capturing user preferences with 
respect to quality of service, and illustrates prototype 
user interfaces to elicit such models.  The 
implementation of the proposed framework builds 
on an existing infrastructure for ubiquitous 
computing (Garlan, Siewiorek, Smailagic, & 
Steenkiste, 2002), which is summarized in Section 3. 

Section 4 describes the extensions and integra-
tion work we made to accommodate the proposed 
framework on top of the existing infrastructure.  
Specifically, these extensions include: (a) interaction 
protocols for coordinating resource allocation and 
adaptation policies; and (b) guidelines for the 
integration of adaptive applications into the 
proposed framework. 

Section 5 summarizes the evaluation of the 
proposed solution from a systems perspective, and 
describes a preliminary evaluation of usability, by 
means of a user study.  The results of the study 
indicate that end-users with diverse backgrounds can 
understand and use the proposed models of quality 
of service to control the adaptive behavior of 
applications towards specific goals. 

Section 6 discusses related work, and Section 7 
summarizes the main points of this paper. 

2 USER PREFERENCES 

Any adaptation or optimization process is guided by 
a goal.  In the case of adapting to resources in small 
mobile devices, the goal is to optimize the quality of 
service (QoS) perceived by the user.  Work in this 
area frequently addresses conserving resources, such 
as battery charge, but that is just one way to 
optimize for service duration, an aspect of QoS. 

The conceptual framework that we adopt takes 
into account that: 
(1) Users may care about tradeoffs between 
different aspects of QoS; e.g., latency vs. accuracy. 
(2) Different services may be characterized by 
different aspects of QoS. For example, for web 
browsing, users may care about load times and 
whether the full content is loaded (e.g., pictures); for 
automatic translation, users may care about the 
response time and accuracy of translation; for 
watching a movie, users may care about the frame 
rate and image quality. 
(3) User preferences for the same service may 
depend on the user’s activity.  For example, a user 
may prefer high frame rate over image quality for 
watching a sports event over a network connection 
with limited bandwidth, but might prefer the 
opposite for watching a show on sculpture. 

 
However, important questions cannot be 

answered with this approach: for instance, how short 
of a response time will satiate the user?  And even if 
accuracy is less important, what if it degrades so 
much that the translations become unusable? 

At the other end of the spectrum, preferences 
may be expressed as an arbitrary function between 
the multivariate quality space and a utility space 
representing user happiness.  For instance, the user 
might indicate that he would be happy with medium 
translation accuracy, as long as latency remains 
under 1 second, and that he will be happy to wait 5 
seconds for highly accurate translations.  Although 
fully expressive, designing mechanisms to elicit this 
form of preferences from end-users is a hard 
problem, and even more so if more than two aspects 
of QoS are involved. 

The model we propose sits between these two 
extremes. User preferences are expressed as 
independent utility functions for each aspect, or 
dimension, of QoS.  Such functions map the possible 
quality levels in the dimension to a normalized 
utility space U Þ [0,1], where the user is happy with 
utility values close to 1, and unhappy with utility 
values close to zero. 
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Figure 1: QoS preferences for a language translation service.

For each continuous QoS dimension the user 
indicates two values: the thresholds of satiation and 
of starvation.  For example, the user might be happy 
with response times anywhere under 3 second, but 
may not accept response times over 20 seconds.  
This is illustrated in Figure 1b, where the thresholds 
of satiation and starvation are represented by the 
green (lighter) and red (darker) lines, respectively.  
Currently, we use sigmoid functions to smoothly 
interpolate between these two zones, the thresholds 
marking the knees of the sigmoid.  The utility 
corresponding to each value of latency is indicated 
by the scale at the top, ranging from a happy face 
( ) for values beyond the satiation threshold, all the 
way down to a cross ( ), representing rejection, for 
values beyond the starvation threshold. 

Preferences for discrete QoS dimensions are 
represented using a discrete mapping to the utility 
space.  Figure 1c shows an example where a table 
indicates the utility of each level of accuracy. 

The functions for each aspect of QoS are then 
combined by multiplication, which corresponds to 
an and semantics: a user is happy with the overall 
result only if he is happy with the quality along each 
and every dimension.  Whenever a user task in-
volves more than one service, the overall utility 
combines the QoS dimensions for all the services. 

The relative importance of each aspect, modeled 
as a weight w∈[0,1], is factored into the combined 
utility.  For example, for two aspects a and b, the 
combined utility function is ba w

b
w
a uu . .  These weights 

take the value 1 by default, but may be altered using 
the slider bars on the right side in Figure 1a-c. 

To make it easier to use this model, we include 
the notion of preference templates.  This decision is 
based on the principle of offering incremental 
benefit for incremental effort, also known as gentle 
slope systems (Myers, Smith, & Horn, 1992).  Figure 

1a shows an example with two templates, fast and 
accurate.  If a template is selected, the associated 
preferences are shown.  In case a user wishes to fine-
tune these preferences, he may do so after selecting 
the custom checkbox (Figure 1b-c). 

3 ARCHITECTURE BASELINE 

The models of preferred QoS tradeoffs described in 
Section 2 can be leveraged using two alternative 
architectural strategies.  Either individual applica-
tions are responsible for capturing and managing the 
models, or the features required to do so are factored 
out into a common infrastructure.  

The latter approach has significant advantages in 
terms of reuse.  In addition to promoting the reuse 
(avoiding replication) of code to support those 
features across applications, there is also the reuse of 
the knowledge about user preferences.  For example, 
once the preferred QoS tradeoffs for watching a 
specific video stream are elicited from the user, that 
knowledge resides with the infrastructure and can be 
passed to the streaming application running on the 
device that happens to be convenient to the user at 
each moment: a cell phone, a laptop, etc. 

Therefore, the architectural strategy we adopted 
is to define a software infrastructure that: (a) 
captures models of QoS tradeoffs, (b) coordinates 
the resource usage across the applications supporting 
the user’s activity, if more than one is involved, and 
(c) enables those applications to dynamically adjust 
their adaptation policies based on the QoS models. 

Rather than building such an infrastructure from 
scratch, we extended an existing infrastructure 
developed at Carnegie Mellon’s Project Aura, which 
targets user mobility in ubiquitous computing 
environments (Sousa, 2005). The remainder of this 

 

  

(a) (b) (c) 
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section summarizes the Aura infrastructure, as well 
as an existing library for resource adaptation, 
Chroma, also related to Project Aura (Balan, Gergle, 
Satyanarayanan, & Herbsleb, 2005). 

Figure 2: The Aura infrastructure. 

Aura supports a high-level notion of user 
activities, such as preparing presentations or writing 
film reviews.  Such tasks may involve several 
services.  For instance, for preparing a presentation, 
a user may edit slides, refer to a couple of papers on 
the topic, check previous related presentations, and 
browse the web for new developments. 

Figure 2 shows a component and connector view 
of the Aura infrastructure.  The Prism component 
captures and maintains models of user activities.  
Specifically, each model enumerates the services 
required to support the activity, how those services 
are interconnected, if at all, preferences with the 
respect to the kinds of applications to provide each 
service (e.g., Emacs as opposed to vi for editing 
text,) and service-specific settings. 

The Environment Manager (EM) component 
keeps track of the availability of services within an 
environment.  An environment in Aura refers to the 
set of devices, software components and other 
resources accessible to a user at a particular location. 

Whenever a user indicates that he or she whishes 
to start or resume an activity, Prism communicates 
the corresponding activity model to the EM using 
the service request protocol (SRP), and the two 
components negotiate the configuration that best 
supports the user’s needs and preferences.  Once an 
agreement is reached, the EM communicates with 
the applications using the service announcement and 
activation protocol (SAAP) to activate the services 
and make the required interconnections, if any. After 
that it passes a model of the concrete configuration 
up to Prism (SRP).  Prism uses this model to 
communicate with the applications using the service 
use protocol (SUP) and recover the preferred 
settings for the activity; for example, the point at 
which the user was previously watching a video. 

The Aura connectors (SAAP, SRP, and SUP), 
support the asynchronous exchange of XML 

messages over TCP/IP.  These are peer-to-peer 
protocols, where each component may initiate 
communication, as needed. 

 
 
 
 
 
 

Figure 3: Integration of Chroma. 

 
Figure 3: Integration of Chroma. 

Chroma enables conventional applications to be 
enhanced for adaptation, provided the applications 
can carry out their operations using different tactics.  
For example, a speech recognizer may have more 
costly algorithms that deliver better results, or 
simpler algorithms that demand fewer resources.  
Additionally, Chroma supports the partitioning of 
applications, shipping and running heavy 
computations in remote servers when the available 
resources, such as bandwidth, favor that option. 

Chroma includes generic, application-independ-
ent parts: a Solver, a resource demand predictor, and 
a number of resource monitors.  The latter include 
history-based monitors of available bandwidth, 
battery charge, CPU and memory, both on the local 
device and on remote servers (Narayanan, Flinn, & 
Satyanarayanan, 2000).  The resource demand 
predictor forecasts the resource demand of each 
tactic based on historical averages of actual demand.  

The Solver determines the tactic with the highest 
utility, given the available resources, by exhaustive 
evaluation of all the tactics defined for the 
application.  The Solver is invoked by the applica-
tion before carrying out each unit of work; for 
example, before recognizing each utterance, in the 
case of speech recognition, or before rendering each 
frame, in the case of virtual reality applications. 

Figure 3 shows these parts and their interactions: 
the thin arrows within Chroma represent information 
flow as a result of method calls. 

4 IMPLEMENTATION 

The research in this paper involved extending the 
Prism and EM components in Aura, as well as 
integrating Chroma with the Aura protocols and with 
the QoS models described in Section 2. 
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Figure 6: Example resource allocation. 

The Aura protocols were also extended to 
include the flow of QoS models to the EM, over the 
SRP, and to Chroma, over the SUP; as well as the 
flow of resource information between the EM and 
Chroma, over the SAAP.  These flows are 
represented as thicker arrows in Figure 3, 
corresponding to the protocols in Figure 2. 

Prism is now in charge of capturing and 
disseminating QoS models.  Figure 1 illustrates the 
interfaces for eliciting user preferences for a service 
with two aspects of QoS: latency (response time) 
and accuracy.  These models are disseminated to 
other components in the format illustrated in Figure .  
The use of XML as opposed to language-specific 
data structures makes the models easier to exchange 
between components written in different languages. 
Prism creates user interfaces like the one in Figure 1 
dynamically, based on the QoS dimensions and 
values in the XML representation of a model. 

The EM is now in charge of determining and 
disseminating the optimal resource allocations 

among the applications supporting the user’s 
activity.  Figure 6 shows an example of resource 
constraints that the EM may send to one application 
via the SAAP.  To determine those, the EM receives 
(a) resource profiles via the SAAP, Figure , relating 
the quality levels that each application can operate at 
with the corresponding resource demands. (b) QoS 
models via the SRP, Figure ; and (c) forecasts of 
resource availability, which, unlike fine-grained 
forecasts for adaptive applications, contain averages 
over a large number of historical samples.  Optimal 
allocation uses an efficient global optimization 
algorithm, which was published as a separate 
research result (Anonymous, 2006).   

Chroma is in charge of supporting the adaptation 
policies within each application. Architecturally, 
adaptive applications are built on top of the Chroma 
library, and there is one instance of Chroma, 
customized with application-specific tactics, 
deployed with each application.  Integrating such 
applications involved wrapping them to mediate 
between the Aura protocols and the Chroma APIs. 
Since Chroma expects a generic utility function for 
the Solver, plugging in a function that interprets the 
QoS models passed via the SUP (Figure ) was fairly 
straightforward. 

5 EVALUATION 

The proposed framework was evaluated both from 
the systems and from the usability perspectives. 

From the systems perspective, we verified that 
the proposed solution makes optimal adaptation 
decisions, and that it does so efficiently, that is, 
quickly and without consuming significant resources 
itself.  (Balan, Satyanarayanan, Park, & Okoshi, 
2003) tested Chroma running language translation 
and speech and face recognition applications on a 
PDA under a wide range both of available resources 
and of user preferences.  These tests verified that the 
Solver consistently picks the tactic that delivers the 
highest utility under the available resources.   

In (Anonymous, 2006) we evaluated the 
efficiency of EM’s resource allocation running on a 
1.6 GHz CPU with 512 MB of RAM.  The latency 
of finding the optimal allocation is 200 ms on 
average (standard deviation 50 ms) for configura-
tions requiring from 1 to 4 services, when 4 to 24 
alternative suites of application are available to 
provide those services, and when the search space of 
combined QoS levels reaches up to 15,000 points.  
Reevaluating the resource allocation every 5s, the 

<utility combine="product"> 
  <QoSdimension name="latency" type="int"> 
    <function type="sigmoid" weight="1"> 
      <thresholds good="3" bad="20" 
                  unit="second"/> 
    </function> 
  </QoSdimension> 
  <QoSdimension name="accuracy" type="enum">
    <function type="table" weight="1"> 
      <entry x="high" f_x="1"/> 
      <entry x="medium" f_x="1"/> 
      <entry x="low" f_x="0.3"/> 
    </function> 
  </QoSdimension> 
</utility> 

Figure 4: Representation of the preferences in Figure 1. 

<service type="speechRecognition”> 
  <QoSprofile> 
    <QoSdim name="latency" type="float"/> 
    <QoSdim name="accuracy" type="enum"/> 
    <head>latency accuracy cpu bdwdth</head>
    <units>second none      %   Kbps</units>
    <point> 0.05  low      30    250</point>
    <point> 0.05  high     80    250</point>
    <point> 0.1   low      20    200</point>
    <point> 0.1   high     75    200</point>
  </QoSprofile> 
</service> 

Figure 5: Example QoS profile. 

<constraints> 
  <rsrc id="cpu" avg="30" var="10" u="%"/> 
  <rsrc id="bdwdth" avg="800" var="100" 
        u="Kbps"/> 
</constraints> 
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EM uses on average 3% of CPU cycles.  The 
optimality of decisions was verified analytically. 

The remainder of this section focuses on the 
evaluation of usability.  For that, three criteria were 
considered: the expressiveness of the QoS models, 
the ease of eliciting them, and the ease of using them 
to control adaptation.  With respect to expressive-
ness, our experience with multiple examples, some 
illustrated in the user study described below, 
indicate that the proposed models are expressive 
enough for a wide range of practical situations. 

A user study investigated whether end-users can 
express their preferences and control adaptation 
using the proposed QoS models. 

This study consists of using a natural language 
translator running on a mobile device.  The quality 
of translation observed by users varies, since the 
translator runs either simple algorithms locally, or 
more sophisticated ones on a remote server, 
depending on the availability of bandwidth and of 
capacity in the server.  To prevent limitations in the 
capabilities of the actual translation application 
(limited dictionaries, etc.) from affecting the results 
of the study, we replaced a human for the remote 
translation server.   This technique is well accepted 
and known as a Wizard of Oz experiment. 

The study focused on answering the following 
questions:  first, can users understand and use 
templates to achieve a goal?  Second, can users think 
of and manipulate preferences in terms of 
thresholds?  Third, do they find it easy?  And fourth, 
can users interpret the effects of specifying different 
preferences in the application’s adaptive behavior? 

The participants were drawn from a population 
with homogeneous education level and age group, 
but diverse technical background.  Ten students in 
the age group 18-29 were drawn among the 
respondents to a posting, 5 of which from 
computing-related fields (computer science, 
electrical and computer engineering, logic) and the 
remaining 5 from other fields (business, physics, 
literature).  Incidentally, 6 were male and 4 female. 

Participants individually performed an 
experiment that lasted 30 minutes, after being given 
a 30 minute introduction to the experiment, 
methodology and tools. Participants were asked to 
follow the think aloud protocol (Steinberg, 1991), 
and their voice and actions on the screen were 
recorded using video capturing software 
(TechSmith).  After the experiment, the participants 
completed a short questionnaire. 

The scenario for the experiment revolved around 
a conversation with a foreign language speaker 
(Spanish in this case) aided by translation software.   

To prevent serious misunderstandings in a real 
situation, users of the translation software would be 
able to check the accuracy of translation by having 
the Spanish translation translated back to English 
and spoken (using speech synthesis) on the user’s 
earphones.  Users would press a go-ahead button to 
synthesize the Spanish translation only if they were 
happy with the accuracy of translation.   

During the experiment, participants were asked 
to input sentences of their own making, listen to the 
output of the double translation, and rate the 
accuracy.  The training included calibrating the 
participants' rating of accuracy using the following 
scale: high, if the meaning is fully preserved; 
medium, if the meaning is roughly preserved; and 
low, if the meaning is seriously distorted. 

Participants were asked to pursue different QoS 
goals during each part of a three-part experiment.  
Within each part, we simulated resource variation 
and asked the participants to evaluate the changes 
both in latency and accuracy of translation.  During 
the first two parts, the QoS goals could be satisfied 
by preference templates.  During the third part, the 
specific goal could only be achieved by customized 
preferences.  The participants were not directed as to 
whether or not to use templates in any case. 

0
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(a) Templates (b) Thresholds 

Figure 7: Likert scale evaluation of preferences’ 
specification (5-fully favorable, to 1-unfavorable). 

Whenever the QoS goals could be met by a 
template, the participants did use templates in 17 out 
of 20 cases.  In the remaining 3 instances, the 
participants were still able to achieve the goals using 
customized preferences.  When asked about the 
clarity and usefulness of templates, 8 participants 
were fully favorable, while 2 didn’t recognize a 
benefit in having templates – see Figure 7a. 

All 10 participants were able to manipulate the 
thresholds in customized preferences for achieving 
the required QoS goals.  Specifically, the experiment 
was set in such a way that the thresholds in one 
dimension needed to be made stricter, while relaxing 
the other dimension, under penalty of the goal not 
being achievable. 

When asked about the clarity of using thresholds 
to specify preferences, 8 participants were fully 
favorable, while 2 thought some alternative strategy 
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could be preferable – see Figure 7b.  One of these 
participants suggested that an X-Y representation the 
tradeoff might be clearer.  However, there are two 
reasons why that may not be such a good idea.  First, 
it would be hard to show and manipulate tradeoffs 
with more than two aspects of QoS.  Second, the 
actual tradeoff changes with the availability of 
resources: with plentiful resources, high levels may 
be attainable along all aspects; but with low 
resources, to privilege one aspect may have a severe 
impact on others. 

The participants were able to interpret the effects 
of different preferences in the application’s adaptive 
behavior.  To verify this, we tested the hypothesis 
that when resources change participants perceive a 
change in the QoS, with a greater impact along the 
QoS dimension for which the preferences are laxer.  
For that, after each translation the participants 
evaluated which QoS dimension changed the most 
relative to the previous translation:  a noticeable 
change in accuracy with similar latencies, a 
noticeable change in latency with similar accuracies, 
no noticeable changes, etc.  Participants then related 
those changes with the strictness or laxness of the 
preferences along each QoS dimension.  The 
participants were not informed of when or in which 
direction resources would change.  

Figure 8: Regression performed on experiment data. 

Figure 8 shows the results of correlating which 
dimension had stricter preferences with which 

dimension was perceived to have changed the most.  
The correlation coefficient is negative, meaning that 
whenever user preferences were stricter along one 
dimension, the participants perceived a greater 
fluctuation on the other dimension (caused by 
underlying resource fluctuations).  When asked 
about how easy it was to use the interfaces in Figure 
1 to customize preferences, 5 participants were fully 
favorable while the other 5 thought the interfaces 
could be improved. 

This user study demonstrates that end-users can 
both define their preferences, and interpret the 
results of such definitions in the system’s adaptive 
behavior.  A control loop is therefore formed, 
enabling users to pursue concrete QoS goals.  The 
practicality of the control loop is confirmed by the 
fact that all participants were easily able to achieve 
concrete QoS goals. 

6 RELATED WORK 

Similarly to the proposed framework, others have 
leveraged techniques from microeconomics to elicit 
utility with respect to multiple attributes.  In the 
Security Attribute Evaluation Method (SAEM), the 
aggregate threat index and the losses from successful 
attacks are computed using utility functions (Butler, 
2002).  The Cost Benefit Analysis Method (CBAM) 
uses a multidimensional utility function with respect 
to QoS for evaluating software architecture alterna-
tives (Moore, Kazman, Klein, & Asundi, 2003).  Our 
work is different from SAEM and CBAM in that it 
is geared towards mobile computing. 

A body of work addressed battery duration in 
mobile devices. For example (Yuan et al., 2006), 
presented OS extensions that coordinate CPU 
operation, OS scheduling, and media rendering, to 
optimize device performance, given user preferences 
concerning battery duration.  The QoS models in our 
framework are significantly more expressive, since 
they support a rich vocabulary of service-specific 
aspects of QoS. 

User studies done in mid-to-late 1990s have 
demonstrated that stability (e.g., absence of jitter) is 
more important than improvement for certain 
aspects of QoS (Wijesekera, Varadarajan, Parikh, 
Srivastava, & Nerode, 1998).  Our framework recog-
nizes the importance of these results and ensures, by 
explicit resource allocation, that adequate resources 
are available for applications to provide service 
while maximizing the overall utility. 

Dynamic resolution of resource allocation policy 
conflicts involving multiple mobile users is 

Correlation Coefficient t-value Significant at 95% 
 -0.6 -4.27 Yes 
How to interpret a correlation: the correlation 
coefficient denotes the slope of the line that best fits the 
data.  A positive/negative coefficient means that an 
increase in the x-axis corresponds to an increase/decrease 
in the y-axis.  If the coefficient is zero, the data cannot be 
approximated by a straight line (there is no correlation 
between the x values and the y values). 

Student's t-test of significance: indicates the 
likelihood that the correlation in the data sample 
corresponds to a real correlation in the general 
population.  A commonly accepted threshold is 95% 
confidence.  Statistics manuals contain tables of t-
statistics for each size of the data sample.  The t-test 
consists of comparing the t-value calculated for the 
correlation with the lookup t-statistic.  If the absolute t-
value is larger than the t-statistic, then the correlation is 
significant with 95% certainty. 

Sample: 40 data points relating two variables (38 
degrees of freedom), for which the t-statistic is 2.024 for a 
95% confidence. 
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addressed in (Capra, Emmerich, & Mascolo, 2003) 
using sealed bid auctions.  While this work shares 
utility-theoretic concepts with our configuration 
mechanisms, the problem we solve is different.  Our 
work has no game-theoretic aspects and addresses 
resource contention by multiple applications 
working for the same user on a small mobile device. 

From an analytical point of view, closest to our 
resource allocation algorithm are Q-RAM (Lee, 
Lehoczky, Siewiorek, Rajkumar, & Hansen, 1999), 
Knapsack algorithms, and winner determination in 
combinatorial auctions.  By integrating with generic 
service discovery mechanisms in the EM, our work 
provides an integrated framework for service 
discovery, resource allocation and adaptation.   

7 CONCLUSIONS 

Resource adaptation can play an important role in 
improving user satisfaction with respect to running 
sophisticated software on small mobile devices. 

However, today, many applications implement 
limited solutions for resource adaptation, or none at 
all.  The primary reasons for that are: (a) the cost of 
creating ad-hoc adaptation solutions from scratch for 
each application; and (b) the difficulty of 
coordinating resource usage among the applications. 
Because it is hard for an individual application to 
even know which other applications are actively 
involved in supporting a user activity, individual 
applications frequently trample each other in their 
quest for resources. 

This paper proposes a framework for resource 
adaptation where a number of features are factored 
out of applications into a common infrastructure. 

First, user preferences with respect to overall 
QoS tradeoffs are elicited by an infrastructural 
component such as Prism.  These models are 
expressed using a rich vocabulary of service-specific 
QoS aspects.  Furthermore, a preliminary user study 
indicates that end-users can understand and leverage 
these models to pursue concrete QoS goals. 

Second, resource allocation among applications 
is coordinated by another infrastructural component 
such as the EM.  This component receives QoS 
profiles from applications, and efficiently computes 
the resource allocations that optimally support the 
QoS goals, given forecasts of available resources for 
the next few seconds. 

Third, adaptation to resource variations at a time 
granularity of milliseconds is facilitated by a 
common library, such as Chroma.  This library saves 
application development costs by providing common 

mechanisms for (a) monitoring available resources, 
(b) profiling the resource demands of alternative 
computation tactics, and (c) deciding dynamically 
which tactic best supports the QoS goals, given 
resource forecasts for the next few milliseconds. 

Additionally, this paper clarifies concrete APIs 
that adaptive applications need to support for being 
integrated into the framework.  These APIs are 
realized as XML messages, which may be 
exchanged within the mobile device, or across the 
network, if the infrastructural components are 
deployed remotely. 

In summary, the proposed framework makes it 
easier to develop and integrate applications into 
coordinated, resource-adaptive systems. 

Furthermore, our research indicates that end-
users with diverse backgrounds are able to control 
the behavior of such systems to achieve activity-
specific QoS goals. 
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