
INTEGRATION OF ARCHITECTURAL DESIGN AND
IMPLEMENTATION DECISIONS INTO THE MDA

FRAMEWROK

Alti Adel1 and Smeda Adel2
1Department of Computer Science, Engineering Faculty, University of Setif, P.O. Box 19000, Setif, Algeria

2Department of Data-Analysis, Faculty of Accounting, University of Al-Jabel Al-Gharbi
P.O. Box 64200, Gharian, Libya

Keywords: Software Architecture, ADL, MDA, decision-centric design, decision-centric implementation, DCMDD.

Abstract: Model Driven Development (MDD) is typically based on models which heavily lead the quality production
of application’s architecture. This is because architectural decisions are often implicitly embedded in
software engineering, therefore lacks first-class consideration. Architecture has been established as a key to
develop software systems that meet quality expectations of their stakeholders. The explicit definition of
architectural decisions, aims to well control the quality on the software development process. In this paper,
we propose to extend the MDA framework by integrating decision aspects. We propose also an approach to
use architectural decisions as a meta-model for the MDD process. Integration of architectural decisions
allows architectural design to be defined explicitly and guides architects in creating systems with desirable
qualities; and for MDA it extends the approach by integrating true decisional concerns into MDD process.

1 INTRODUCTION

MDA (Model Driven Architecture) is a recent
initiative of the OMG that supports the definition of
models as first-class elements for the design and
implementation of systems. According to the MDA
approach, the most important activity now is
modelling the different aspects of the system and
then defining the transformations from one model to
another in a way that allows them to be automated
(Fernández and Vallecillo-Moreno, 2004).

MDA is increasingly becoming popular as a
widely accepted standard for software development
process. These have been elaborated in order to
improve the comprehensibility of complex systems,
favourite their portability, their productivity as well
as their maintainability. MDA doesn’t really take
into account the architecture design and
implementation decisions. Architectural decisions
are defined implicitly in software development
process and lack a first class consideration and
therefore the quality control in software
development process is limited. The inclusion of the
architecture design and implementation decisions
into the MDA framework yield two main
advantages. On the one hand, it allows architectural

decisions to benefit from the advantages of the
MDA approach and on the other hand, it introduces
a change in the development process, turning the
MDD approach into a decision-centric MDD
(DCMDD). This aims for controlling quality on
software development process.

In this article, we try to integrate architectural
decisions into a MDA framework. We also discuss
the usefulness and the importance for architectural
design and implementation decisions to use an
appropriate Architecture Description Language
(ADL) that meet quality expectations and an
appropriate MDA platform that meet software
architecture integration. The development process is
supported by the architecture decision. For this
reason this approach is called Decision-Centric
Model-Driven Development (DCMDD). The
proposal approach presented here is the result of our
previous work on using profile transformations for
integrating software architecture concepts into MDA
platform (Alti, Khammaci, Smeda and Bennouar,
2007), we identified the need to specifically consider
architectural decisions concerns. Different ways to
integrate architectural decisions into our model-
driven software architecture have consequently been
tested; in this paper we present the outcome of this
work. We provide also in this paper a description of

366
Adel A. and Adel S. (2008).
INTEGRATION OF ARCHITECTURAL DESIGN AND IMPLEMENTATION DECISIONS INTO THE MDA FRAMEWROK.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 366-371
DOI: 10.5220/0001881403660371
Copyright c© SciTePress

Figure 1: Model-driven software architecture construction and integration (structural view).

a suitable case study, which applies the DCMDD
approach to the model-driven software architecture
design and integration and illustrates its use with the
help of a client/server system.

The remainder of this article is organized as
follows. Section 2 provides a brief overview of the
model-driven software architecture construction and
integration. Section 3 presents the related work.
Section 4 proposes a model-driven for software
architecture construction and integration that
includes the architecture design and implementation
decisions; this new model architecture becomes the
Model Driven Development (MDD) approach in a
Decision-centric Model Driven Development
(ACMDD). As a case study, we use the previous
DCMDD approach to in the development of the
client/server system. Finally, section 5 concludes
this article and presents some future works.

2 INTEGRATION OF
SOFTWARE ARCHITECTURE
CONCEPTS INTO MDA: AN
OVERVIEW

In our previous work (Alti, Khammaci, Smeda and
Bennouar, 2007), we integrated software
architecture concepts (e.g. connectors,
configurations...etc) into MDA platform, concepts of
ADLs such as COSA (Oussalah, Smeda and
Khammaci, 2004), ACME (Garlan, 1997) and π-
ADL (Ouquendo, 2004) are considered as PIM and
explored in MDA platform as PSM. We proposed a
strategy for direct transformation using a UML
profile. It represents both software architecture
model (PIM) and MDA platform model (PSM) in
UML meta-model then elaborates transformation
rules between resulted UML meta-models. The goal
is to automate the process of deriving

implementation platform from software concepts
(see Figure 1).

The main problem found when applying this
strategy was that the architecture decision was not
being considered. The software architecture was
designed with an arbitrary ADL and also was
integrated into a given MDA platform.

At PIM level the description of software systems
using an arbitrary ADL; that do not meet quality
design such as resuabilty and extensibility. This is
because various ADLs are based on different
architectural concepts and treated them differently;
each ADL evaluate systems behaviors with its
appropriate method (B method for COSA (Alti,
Khammaci and Smeda, 2007), CSP method for
ACME (Garlan, 1997) and π calculus for π-ADL
(Oquendo, 2006). We need to find a software
architecture model to describe software systems and
we need to find a well MDA platform to integrate
architecture concepts.

When do we use a given ADL? What happens
with the architectural design and implementation
decisions? How does it affect the MDA platform? Is
it easy or difficult to describe a given software
system with a given ADL? Early design decisions
can greatly affect the amount of architecture changes
are required. To be able to answer these questions,
we included architectural decisions in the model-
driven software architecture as configuration inputs.

3 RELATED WORK

Alesseandro and al (Alessendro, Thais, Awais and
Claudio, 2006) handled architectural decisions as
separate architectural aspects, not just simply
symmetric view. They used Aspect-Oriented
Software Development (AOSD) techniques for
capturing widely-scoped architectural decisions and
for compositing them. Their approach allows a well

 S
A

 a
t t

he

 P
IM

 le
ve

l
SA

 a
t t

he

PS
M

 le
ve

l

PIM to PSM

PSM to PSM

 Architecture Model
with COSA

PSM to PSM

 Component model with
COSA UML 2.0 profile

 Component model with
 CORBA UML 1.4 profile

Component model
with EJB UML 2.0

PIM to PSM

PSM to PSM

Architecture Model
with π-ADL

PSM to PSM

Component model with
ACME UML 2.0 profile

 Component model with
 CORBA UML 1.4 profile

Component model
with EJB UML 2.0

….

….

INTEGRATION OF ARCHITECTURAL DESIGN AND IMPLEMENTATION DECISIONS INTO THE MDA
FRAMEWROK

367

separation between different crosscutting decisions,
but disagrees in more representation of architectural
decisions at the ADLs level and in the driving of the
MDD process. Jansen et al (Jansen, Jan ven der,
Avgeriou and Hammer, 2007) treated software
architecture as a composition of a set of architectural
decisions. They supported the definition of design
decisions as first-class elements that guide the
architecture construction process. They proposed a
meta-model for maintaining relationships between
design decisions and software architectures with
support tool. They studied the solutions and their
consequences of Athena system related to some
design decisions into Archium meta-model. They
ended up with one solution for each design decision.
They concluded that even though architectural
decisions are associated with the description of
software architecture, they still have considerable
drawbacks. Our approach shares the elements of the
architectural design decisions model, and differs
since software architecture language is our potential
solutions. In (Capila, Nav and Dueňas, 2007) Capila
et al. turned traditional approach of software
architecture as a set of components and connectors
as the result of a set of design decisions. They
proposed a meta-model and a web-based tool able of
recording, maintaining and managing the decisions
tacking during the architecture construction process.
They define an integrated view for evolving design
decisions. Then describe decisions (architectural
products are defined using PDF documents); this
makes it difficult to promote decisions reuse. The
Architecture-Centric Concern Analysis (ACCA)
method (Wang, Sherdil and Madhavju, 2007)
employs a meta-model for capturing architectural
design decisions which are linked to software
requirements and architectural concerns. The authors
identify the causes of architectural concerns and they
assess the wrong or incorrect decisions that are
taken. Zimmermann et al (Zimmerman, Koehler,
Leymann, 2006), positioned architectural decision
models as the control center of model-driven SOA
construction and followed a transformation approach
on the top of decision models. This approach is
decision-centric because it defines the model-driven
devolvement process on top of a decision meta-
model which provide powerful tool support.

Our approach is similar but different. In our
proposal, decision is on top of the systems which
drives the rest of the development process, and play
the central role that defines the structure of our
concrete model architecture, and decides which
architecture models are considered and which are
not. Since decision is in charge of controlling the
development process. That is the reason why our

approach is a DCMDD process. In our approach,
decisions can be seen as a meta-model for the
Decision-Centric Model Driven Developement
(DCMDD) itself. In fact, it shows which of software
architecture languages instantiated for the
representing software systems, which technologies
are instantiated during the decision-centric MDD
process, and in which of them are not. This quality is
missing in the other models.

4 INTEGRATING OF
ARCHITECTURAL DECISIONS
INTO THE MDA FRAMEWORK

We think that the best way to build an architecture is
to quantify the metrics of the decision binding
software architecture design with a given ADL.
Based on the ADL quality characteristics
(extensibility, portability, reusability, etc.), design
decisions give us a best architecture model that
better represent our software architecture needs. In
order to build a system that fulfil the expectations, it
is essential to systematically take decisions and their
rationales into account in architecture design step
and not as an afterthought during transformation.
From this point of view, we can not describe
software systems with an arbitrary ADL but we need
to justify our choice. Of course, architecture is an
abstraction of the structure of a system, provided in
terms of ADL, but what benefits gained by the
software systems? Such ADL answer the
architecture design needs or not? Therefore, we
suggest placing architectural decisions as a control-
centre for designing software architecture systems.

On the other hand, we think that the best way to
integrate software architecture into the MDA
platform is to quantify the decision binding software
architecture integration with a given MDA platform.
Based on the MDA platform quality metrics (facile
integration of software architecture concepts and
supportability), implementation decisions gives us a
best implementation model that better represents our
software implementation needs. From this point of
view, we can not integrate software concepts with an
arbitrary MDA platform but we must justify our
choice.

4.1 Decision Models as a New
Dimension in the Model-driven for
Software Architecture

After different attempts to include architectural
decisions in the model-driven software architecture

ICSOFT 2008 - International Conference on Software and Data Technologies

368

Figure 2: Model-driven software architecture, including the architecture decision model (structural view).

integration, we decided finally that the architecture
decision has to be a different view, but in a new
dimension. This new dimension will be orthogonal
to the level of abstraction and to the aspects (see
Fig.2). This is because architecture design decisions
are related to the other system aspects (structure and
behavior). Moreover, architectural design decisions
will determine which software architecture models
of each aspect we’ll need for better describing
software architecture from a conceptual point of
view, allowing an architectural design decisions to
be free from the technological constraints. Next,
after some design decisions, all the required
components of software systems can be
implemented by specific technologies depending on
specific needs, available technologies, etc. at PSM
level.

We propose to consider software quality
attributes (Jansen et al, 2007) of the link binding
software system with a given ADL as a primary
input before the design phase. Next, we propose to
consider software quality attributes of the link
binding software architecture integration with a
given MDA platform before the implementing
phase. In fact, it is recommendable in the MDA
framework, to select an adequate software
architecture model and to drive the transformation
between software architecture models and the
implementation models.

4.2 Improving the Development
Process using DCMDD

To illustrate how our approach can be used, we
apply it to the well known client/server system.
Section 4.2.1 introduces the design decisions at the
PIM level and Section 4.2.2 introduces the
implementation decisions at the PSM level.

4.2.1 Design Decisions at PIM Level

4.2.1.1 Problem

It is indispensable to reason about and to explore, in
architectural level (PIM), the completeness and
quality attributes of the final product resulting from
the architecture. In order to determine whether the
client/server system fulfills non-functional
properties as security, a powerful ADL is needed.

Motivations. Modeling and formally specifying
architectural components of the client/server system
using appropriate ADL and a specific technique is
considered as an important factor that helps in the
construction phase especially in terms of flexibility.
Other properties like security and reusability are
needed.

Cause. Divers ADLs (Medvidovic and Taylor,
2000) are available for describing software
architecture systems, which makes it difficult to
select an appropriate ADL for a given system.

Context. The client/server system.

4.2.1.2 Potential Architectural Descriptions

 π-ADL
π-ADL (Oquendo, 2006) is an ADL based on π-
calculus for modeling behavioral aspects. π-ADL
supports formal architecture-centric model-driven
development and semantics checking. It has been
applied in several realistic case studies.

Design Rules. For each connection of the
client/server system provided by a port of a
component is attached to a connection provided by a
port of a connector by unification or value passing.

Design Constraints. We must ensure that the given
model complies with the semantic constraints
defined by the π-ADL.

 S
A

 a
t t

he

 P
IM

 le
ve

l
SA

 a
t t

he

PS
M

 le
ve

l
PIM to PSM

PSM to PSM

 Architecture Model
with COSA

PSM to PSM

 Component model with
COSA UML 2.0 profile

 Component model with
CORBA UML 1.4 profile

Component model
with EJB UML 2.0

PIM to PSM

PSM to PSM

Architecture Model
with π-ADL

PSM to PSM

Component model with
ACME UML 2.0 profile

 Component model with
CORBA UML 1.4 profile

Component model
with EJB UML 2.0

….

….

A
R

C
H

IT
E

C
T

U
R

A
L

 D
E

C
IS

IO
N

S

INTEGRATION OF ARCHITECTURAL DESIGN AND IMPLEMENTATION DECISIONS INTO THE MDA
FRAMEWROK

369

Consequences. The client/server system becomes
dependent on the π-ADL.

Pros. (+) flexibility (+) Achieving a comfortable
system (+) better manageability and administration
(+) multi-layered architecture specifications.

Cons. (-) doses not ensure security and extensibility.

 COSA
COSA (Oussalah, Smeda and Khammaci, 2004) is
hybrid model, based on both object and component
modeling to describe software systems. The basic
principal of this model is to define architectural
concepts extended with object-oriented concepts and
mechanisms to specify software architectures. For
behavioral view, a B formal method given in (Alti,
Khammaci and Smeda, 2007) need to be used.

Design Rules. For each connection of the
client/server system provided by a port of a
component is attached to a connection provided by a
port of a connector by unification or value passing.

Design Constraints. We must ensure that the given
model complies to the semantic constraints defined
by the COSA approach

Consequences. The client/server system becomes
dependent on the COSA language.

Pros. (+) more simplicity and genericity (+) facile
construction (+) satisfy the more specific system
security by using component redefinition (+) assist
the configuration management (+) more reusability
and extensibility (+) B formal method applied in
several industrial cases.

Cons. (-) has not been used yet for industrial cases.

4.2.1.3 Decision

The decision is made to use COSA software
architecture for modeling the client/server system. It
allows more simplicity, extensibility, and genericity.
It satisfies reusability with object-oriented
mechanisms and security with B formal method.

4.2.2 Implementation Decisions at PSM
Level

4.2.2.1 Problem

Actually, there are several middleware platforms
(CORBA, J2EE, .Net, etc.) that focus on developing
component-based systems. Which of them is
appropriate platform to provide increased
performance and can easily map COSA concepts?

Motivations. It is indispensable to explore, in
implementation level (PSM), the integration of
COSA software architecture concepts (components,
connectors, configurations, etc.) in order to explicit
the communications and the coordination of
distributed components by mapping COSA
connectors.

Cause. Various MDA platforms available for system
implementation.

Context. Client/server system with COSA-UML.

4.2.2.2 Potential MDA Platforms

 CORBA Platform
CORBA is an international standard middleware
platform that provides simplicity for development by
report to other platforms.

Mapping Rules. We must define how the
transformation rules map COSA concepts into
CORBA.

Implementation Constraints. The CORBA model
must be evaluated by the CORBA UML profile.

Consequences. The client/server system becomes
dependent on the CORBA.

Pros. (+) solving the problem of interaction in
CORBA components by mapping COSA connectors
(+) simplicity of development (+) integrating COSA
concepts can be achieved easily.

Cons. (-) has not been used yet for industrial cases.

 J2EE Platform
EJB is the core component model of the J2EE
platform developed by sun Microsystems for full
support of distributed operations/services.

Mapping Rules. We must define how the
transformation rules map COSA concepts into EJB.

Implementation Constraints. The EJB model must
be evaluated by the EJB UML 2.0 profile.

Consequences. The client/server system becomes
dependent on the EJB.

Pros. (+) achieve a higher level of abstraction (+)
solving the problem of interactions among EJB
components by mapping COSA connectors into EJB

Cons. (-) has not been used yet for industrial cases.

4.2.2.3 Decision

The decision is made to use CORBA, which hides
the complexity of distributed processing systems and

ICSOFT 2008 - International Conference on Software and Data Technologies

370

therefore help in integrating COSA concepts. The
COSA-CORBA transformation (Alti, Khammaci
and Smeda, Bennouar, 2007) is applied to the COSA
model for elaborating its correspondent CORBA
model for the Client-Server system.

4.3 Implementing the DCMDD
Approach

We have developed a plug-in in Eclipse to
implement the DCMDD approach. The DCMDD
tool provides a more pragmatic approach to the
usage of architectural decisions: it links the
architecting process with the system implementation
through transformation.

The Plug-In is developed in four steps: 1) the
metamodels of Pi-ADL (COSA, CORBA and EJB)
with all tagged values and OCL constraints is
defined by the UML 2.0 profile 2) the architecture
decisions and its consequences are expressed using
Java 3) The architectural description language
(MDA platform) is selected and the model is
elaborated through its transformation 4) the
elaborated model is evaluated by its profile.

Figure 3 shows the applied CORBA model of
Client-Server system after deciding to apply COSA
to CORBA transformation.

Figure 3: The DCMDD Eclipse Plugin.

5 CONCLUSIONS

In this paper we have showed how to include the
architecture design and implementation decisions as
a new aspect in the MDA architecture. We have also
illustrated the usefulness and importance of
architectural decisions in the context of MDA

platform. Architectural decisions will play an
important role as they promise to explicit and
guidance to an architect in creating systems with
desirable qualities. However, our approach does not
include the description of architectural styles. In our
future works we will apply DCMDD in the other
SA-based and on top of a Grid architectured.

REFERENCES

Alti, A., Khammaci, T., and Smeda, A., 2007. Using B
Forma method to Define Software Architecture
Behavioral Concepts, IRECOS Review, Vol. 2, No 1,
pp. 510-519, ISSN: 1828-6003.

Alti, A., Khammaci, T., Smeda, A., Bennouar, D., 2007.
Integrating Software Architecture Concepts into the
MDA platform, In ICSOFT’2007, 2nd Int. Conf. on
Software and Technologies.

Alessandro G., Thais, A.B., Awais, R.S., 2006. Driving
and managing architectural decisions with aspects,
ACM SIGSOFT Software Engineering Notes, Vol.31
No 5, pp. 30-37.

Capila, R., Nava, F., and Dueňas, J.C., 2007. Modeling
and Documenting the Evolution of Architectural
Decisions, 6th IEEE/IFIP Working Conference on
Software Architecture (WICSA’07).

Fuentes-Fernández, L., Vallecillo-Moreno, A., 2004. An
Introduction to UML Profiles. The European Journal
for the Informatics Professional, 7(2), pp. 6-13.

Garlan, D., 1997. ACME: An Architecture Description
Interchange Language, In CASCON’97.

Jansen, A., Jan ven der, J., Avgeriou, P., and Hammer,
D.K, 2007. Tool Support for Architectural Decisions”,
Proceedings of the 2nd Workshop on Sharing and
Reusing Architectural Knowledge, ICSE Workshop,
IEEE DL.

Medvidovic, N., Taylor, R. N., 2000. A classification and
comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, 26(1), pp. 2–57.

Oquendo, F., 2004. Formally Describing Software
Architecture with π-ADL, World Scientific and
Engineering Transactions on Systems, Vol. 3. N°.8,
pp. 673-679.

Oussalah, M., Smeda, A., Khammaci, T., 2004. An
explicit definition of connectors for component based
software architecture. In ECBS’2004, the 11th IEEE
Conference Engineering of Computer Based Systems,
Czech Republic.

Zimmerman, O., Koehler, J., and Leymann, F., 2006. The
Role of Architectural Decisions in Model-Driven SOA
Construction, In Best Practice and Methodologies in
SOA, OOPSLA’06.

Wang, A., Sherdil, K., Madhavju, N.H., 2005. An
Architecture-centric concern analysis method, In
WICSA’05, the 5th IEEE/IFIP Working Conference on
Software Architecture.

INTEGRATION OF ARCHITECTURAL DESIGN AND IMPLEMENTATION DECISIONS INTO THE MDA
FRAMEWROK

371

