
INTERTRASM
A Depth First Search Algorithm for Mining Intertransaction Association Rules

Dan Ungureanu and Alexandru Boicea
Faculty of Automation and Computer Science, Politehnica University of Bucharest, Romania

Keywords: Intertransaction association rule mining, MFI.

Abstract: In this paper we propose an efficient method for mining frequent intertransaction itemsets. Our approach
consists in mining maximal frequent itemsets (MFI) by extending the SmartMiner algorithm for the
intertransaction case. We have called the new algorithm InterTraSM (Inter Transaction Smart Miner).
Because it uses depth first search the memory needed by the algorithm is reduced; a strategy for passing tail
information for a node combined with a dynamic reordering heuristic lead to improved speed. Experiments
comparing InterTraSM to other existing algorithms for mining frequent intertransaction itemsets have
revealed a significant gain in performance. Further development ideas are also discussed.

1 INTRODUCTION

Association rule mining is a field of the data mining
domain that has developed extensively in the last
years. After the problem was introduced in
(Agrawal, Imielinski and Swami, 1993) and the A-
Priori algorithm was introduced in (Agrawal and
Srikant, 1994), the research expanded into a vast
number of directions. There have been proposed
other algorithms for the original problem, either
Apriori-like or with a new structure. Also new
algorithms have appeared for mining episodes and
sequential patterns, mining correlations, mining
generalized, multilevel or quantitative association
rules. Our algorithm contributes to another of these
new directions, mining intertransaction association
rules.

The initial association rule mining problem
ignored any correlation between the transactions and
searched for associations only between items inside
a transaction – we call this case intratransaction
analysis. To search for associations between items
across several transactions ordered on a dimension
(usually time or space), intertransaction association
rule mining has been used.

We use the stock market database example to
differentiate between intra- and inter- transaction
analysis. If the database contains the price for each
stock at the end of the trading day, an
intratransaction association rule might be “If stock
prices for companies A and B go up for one day,

there is a probability of over c% that the price for
company C will also go up the same day”. However,
analysts might be more interested in rules like “If
stock prices for companies A and B go up for one
day, there is a probability of over c% that the price
for company C will go up two days later.” This rule
describes a relationship between items from
different transactions, and it can be discovered only
by using intertransaction analysis.

Several algorithms for intertransactional
association rule mining have been introduced.

The E-Apriori (Extended Apriori) and EH-
Apriori (Extended Hash Apriori) algorithms have
been proposed by (Lu, Feng and Han, 2000). They
use the Apriori algorithm for mining frequent inter-
transaction itemsets. The EH-Apriori algorithm also
uses a hash in order to reduce the number of
candidate intertransaction itemsets with two
elements.

(Tung et al., 2003) developed FITI – an
algorithm that discovers first the frequent
intratransaction itemsets and then uses them to
generate the frequent inter-transaction itemsets.

The ITP-Miner algorithm from (Lee and Wang,
2007) uses a structure called dat-list to store item
information and an ITP-tree to store discovered
frequent inter-transaction patterns.

The EFP-Tree algorithm presented in (Luhr,
West and Venkatesh, 2007) is an extension of the
FP-Tree (Frequent Pattern Tree) algorithm for the

148
Ungureanu D. and Boicea A. (2008).
INTERTRASM - A Depth First Search Algorithm for Mining Intertransaction Association Rules.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 148-153
DOI: 10.5220/0001880701480153
Copyright c© SciTePress

intertransaction case. It uses a divide-and-conquer
approach to avoid candidate generation.

In this paper we propose a new method for
mining frequent intertransaction itemsets called
InterTraSM. This algorithm is an extension for the
intertransactional case of the SmartMiner algorithm
presented in (Zou, Chu and Lu, 2002).

As the authors remark in the above mentioned
paper, mining frequent itemsets is infeasible when
the frequent patterns are long because of the
exponential number of frequent itemsets. An
alternative is mining maximal frequent itemsets
(MFI) – itemsets that are not a subset of any other
frequent itemset. Once we have obtained the MFI we
can easily obtain all the frequent itemsets, who can
then be counted for support in a single scan of the
database.

Like SmartMiner, InterTraSM uses a depth first
search (DFS) to determine maximal frequent
itemsets. It also uses a strategy for passing tail
information for a node combined with a dynamic
reordering heuristic that improve the speed of
execution.

The remainder of this paper is organized as
follows: in Section 2 we will give a formal definition
for the problem of intertransaction association rules
mining. In Section 3 we will describe our proposed
algorithm, InterTraSM. In Section 4 we will present
the experimental results we have obtained so far, and
we will present the conclusions and plans for future
work in Section 5.

2 PROBLEM DESCRIPTION

In this section we introduce some notations and we
present a formal definition for the problem of
mining intertransaction association rules.

Definition 2.1. Let I = {e 1 , e 2 , …, e n } be a set of
items and let D be an attribute with values within the
domain Dom(D). We call a transactional database a
database with transactions (records) of the form (d,
S), where d ∈ dom(D) and S ⊂ I.

We restrict our search for associations to a
maximum span of transactions, given as an input
parameter.

Definition 2.2. A sliding window W in a
transactional database T represents a set of
continuous intervals from the domain D, such that
there exists in T a transaction associated to the first
interval from W. Each interval from W is called a
subwindow of W, and they are numbered

corresponding to their temporal order d 0 , d 1 , ...,

d m . We also use the notation W[0], W[1], ..., W[m].

Definition 2.3. Let T be a transactional database, let
I be the set of items with n = | I| and let W be a
sliding window with w intervals. A megatransaction
M associated with W is the set

M = {e i (j) | e i ∈W[j], 1 ≤ i ≤ n, 0 ≤ j ≤ w-1}.

Items from a megatransaction will be called from
now on extended items.

Let E be the set of all possible extended items
E = {e 1 (0), e 1 (1), …, e 1 (w-1), e 2 (0), …,

e n (w-1)}
We call an intratransaction itemset a set of items

A ⊂ I. We call an intertransaction itemset a set of
extended items B ⊂ E that contains at least an
extended item e i (0), with 1 ≤ i ≤ n.

Definition 2.4. An inter-transaction association rule
has the form X -> Y, where:

i) X, Y ⊂ E
ii) There is at least one element e i (0)

in X, 1 ≤ i ≤ n
iii) There is at least one element e i (j)

in Y, 1 ≤ i ≤ n, 1 ≤ j ≤ w-1
iv) X and Y are disjoint

Let T XY be the set of megatransactions that

contain the set X ∪ Y, let T X be the set of
megatransactions that contain the set X and let N be
the total number of transactions.

Then S = | T XY | / N and C = | T XY | / |T X | are
the support and confidence for the intertransaction
association rule.

As in the classical case, the problem of mining
intertransaction association rules can be divided in
two parts:

- finding the frequent itemsets
- generating the association rules.
The second problem takes much less

computational time than the first one, so it presents
little interest for research. A solution has been
discussed for example in (Tung et al., 2003). Our
algorithm (like the algorithms mentioned before)
will therefore focus on a solution for the first
problem.

INTERTRASM - A Depth First Search Algorithm for Mining Intertransaction Association Rules

149

3 ALGORITHM DESCRIPTION

We now introduce the InterTraSM algorithm. As we
mentioned before, InterTraSM is an adaptation of
the SmartMiner algorithm described in (Zou, Chu
and Lu, 2002) for intertransaction association rule
mining. Therefore the theoretical foundations of the
two algorithms are very similar. Our main
contribution has been to identify intertransaction
mining as a domain where searching for MFI would
lead to an improvement in performance, and to apply
and customize the existing algorithm to the
intertransaction analysis case; we also provided a
new implementation.

InterTraSM finds maximal frequent itemsets

(MFI) of extended items from a transactional
database. The algorithm uses depth first search and
for performance optimization it uses a dynamic
reordering to eliminate infrequent items from the tail
of a current node. A hash table is also used to save
the itemsets discovered as frequent at node-level, in
order not to go down a tree path that was already
investigated while exploring a maximal frequent
itemset.

As we mentioned the algorithm performs a depth
first search, so at any step it works on a node from a
search tree. We describe below the data managed at
the level of a node used by the algorithm and how
the data is processed.

A node N is identified as X:Y, where X (the
head) is the set of items that have been discovered to
be part of a frequent itemset, and Y (the tail) is the
set of items that still have to be explored. The
purpose of the node is to find maximal frequent
itemsets in the transaction set T(X) – all the
transactions that include X.

The starting node is Φ :E (the empty set and the
set of all the possible extended items).

The entry data for a node are:
- the transaction set T(X)
- the tail Y
- the global data information Ginf, which is the

tail information for the node known so far
(this contains the itemsets that have been
discovered in a previous step to be frequent
in T(X)).

The exit data for a node are:
- the updated GInf
- the discovered maximum frequent itemsets

Mfi.
The data processing at a node N is described

below:

- count the support for each item from Y in the
transaction set T(X)

- remove the infrequent items
- while (Y has at least one element)

- select from Y an item a i to be the head of

the next state S1

- Y 1+i = Y – a i will be the tail for S 1+i
- obtain the auxiliary tail information for
S 1+i by projecting on Y 1 the itemsets that

contain a 0 from the tail information Ginf.
- recursively call the algorithm for the node
N 1+i = Xa i : Y 1+i . The returned values will

be Mfi i and the updated tail information.

- Y = Y 1+i
- end (while)
The processing of the node returns the maximal

frequent itemsets to be Mfi = ∪ a i Mfi i , and the
updated Ginf as the itemsets in the original Ginf that
have not been marked as deleted.

As we mentioned, InterTraSM uses extended
items instead of the intratransaction items used by
SmartMiner. A customization for this case is that the
first node we select while searching in depth from
the root of the tree corresponds only with items from
the first interval (interval 0). This was done because
each frequent itemset has to have at least an item
from interval 0.

We created our own implementation of the
algorithm using C, with a structure similar to the one
for the SmartMiner algorithm described in (Zou,
Chu and Lu, 2002) – but with modifications for the
intertransaction case (The SmartMiner algorithm
was implemented in Java). We felt that writing the
algorithm in C enabled us to better control the
memory use of the algorithm.

4 PERFORMANCE STUDY

We used both synthetic data and real data to evaluate
the performance of the algorithm.

To generate the synthetic data we used the same
generator as the one described in (Luhr, West and
Venkatesh, 2007) to evaluate EFP-Tree, gracefully
provided to us by the authors. It uses the same
method as the one used to evaluate FITI and ITP-
Miner.

The real data consists of two datasets, WINNER
and LOSER, similar to those used in (Lee and

ICSOFT 2008 - International Conference on Software and Data Technologies

150

Wang, 2007). They have been obtained from the
values of ten stock exchange indexes from January
1, 1991 to December 31, 2005. In the WINNER set a
transaction for a trading day contains the stock
indices that rise for the day, and in the LOSER set
we have the stock indices that fall. The stock indices
used are the ASX All Ordinaries Index (ASX),
CAC40 Index (CAC), DAX Index (DAX), Dow
Jones Index (DOW), FT-SE 100 Index (FTS), Hang
Seng Index (HSI), NASDAQ Index (NDQ), Nikkei
225 Index (NKY), Swiss Market Index (SMI), and
Singapore ST Index (STI).

Two synthetic data sets representing sparse and
dense data were generated, with parameters identical
to those used in the evaluation of EFP-Tree.

Table 1 lists the parameters used to create the
data sets used in the experimentation.

Table 1: Parameters used in the generation of the synthetic
data sets.

Parameter Sparse Dense

Number of intratransactions
Size of the intertransaction pool
Average length of intratransactions
Maximum length of intratransactions
Average length of intertransactions
Maximum length of intertransactions
Maximum number of unique items
Maximum interval span of
intertransactions

500
50
5

10
5

10
500

4

200
200
25
50
8

20
100

6

The program was benchmarked under a

Microsoft Windows XP OS, on a PC with Intel
Pentium IV CPU with speed of 3GHz and main
memory of 1GB. The code has been written and
compiled using Microsoft Visual Studio 2003.

Since FITI has been shown to be more
computationally efficient than EH-Apriori and both
EFP-Tree and ITP-Miner have been shown to
outperform FITI, we have only made comparisons
with EFP-Tree and ITP-Miner.

We have compared the execution times of
InterTraSM on the synthetic data sets with the
execution times reported for EFP-Tree in (Luhr,
West and Venkatesh, 2007) for synthetic data
generated with the same parameters by the same
generator (probably different actual data though,
since it is a random generator).

For the synthetic sparse data set we have
gradually lowered the support threshold from 1.6%
to 0.6%, using a fixed intertransaction window size
of 4. For the synthetic dense data set we have
gradually lowered the support threshold from 13% to
8%, using a fixed intertransaction window size of 6.

The execution times for InterTraSM are displayed in
Figure 1 (sparse data) and Figure 2 (dense data).

We have then incremented the intertransaction
window size from w=0 to w=10 with fixed
minimum supports of 1% for the sparse data and
10% for the dense data. The results are displayed in
Figure 3 (sparse data) and Figure 4 (dense data).

Figure 1: Minimum support versus runtime, sparse data
set, with maxspan=4.

Figure 2: Minimum support versus runtime, dense data set,
with maxspan=6.

Figure 3: Intertransaction window size versus runtime,
sparse data set, with support=1%.

INTERTRASM - A Depth First Search Algorithm for Mining Intertransaction Association Rules

151

Figure 4: Intertransaction window size versus runtime,
dense data set, with support=1%

We can see that all the execution times
displayed in these charts are under one second,
while the execution times reported for the EFP-
Tree in (Luhr, West and Venkatesh, 2007) for
synthetic data generated with the same parameters
have values of tens, even hundreds of seconds.
Since the processors used have similar
performances, even accounting for the different
implementation languages (C versus Ruby),
InterTraSM seems to perform at least an order of
magnitude better than EFP-Tree.

We have compared the execution times of
InterTraSM on the real data sets with the execution
times reported for ITP-Miner on transactions
obtained from the same stock indices values.

For both the WINNER and LOSER datasets we
have used an intertransaction window size of 4 and
we have varied the minimum support threshold
from 4% to 12%. The results are displayed in
Figure 5 (WINNER data set) and Figure 6 (LOSER
data set).

Figure 5: Minimum support versus runtime, WINNER
data set, with maxspan=4.

Figure 6: Minimum support versus runtime, LOSER data
set, with maxspan=4.

Comparing the results with those reported for
running ITP-Miner on the same data sets in (Lee
and Wang, 2007), on a processor with similar
performances using Microsoft Visual C++ 6.0, it
seems that there is an order of magnitude
difference in favor of InterTraSM, especially when
the minimum support value decreases. For example
on the LOSER data set with the support threshold
at 4% InterTraSM takes less than 6 seconds, while
the authors reported the ITP-Miner takes about 100
seconds.

5 CONCLUSIONS

In this paper we have proposed a new algorithm for
mining intertransaction association rules called
InterTraSM, an extension of the SmartMiner
algorithm for the intertransaction case. InterTraSM
uses depth first search and mines for maximal
frequent itemsets (from which all the frequent
itemsets can be easily generated). Previous
algorithms have mined for all the frequent itemsets
and they thus have had to count support for an
exponentially large number of frequent itemsets
compared to our algorithm. Experiments with
similar data and on similar machines to those used
for evaluating EFP-Tree and ITP-Miner have
shown that InterTraSM outperforms them by at
least an order of magnitude, especially when the
minimum support threshold is reduced – generating
longer maximal frequent itemsets.

In our future research we want to apply the
algorithm to some more real data sets and see how
it performs. We also want to extend the algorithm
from 1-dimensional to n-dimensional transactional
databases.

ICSOFT 2008 - International Conference on Software and Data Technologies

152

REFERENCES

Agrawal, R., Imielinski, T., Swami, A., 1993. Mining
Association Rules Between Sets of Items in Large

Databases. In Proc. of the ACM SIGMOD Conference
on Management of Data.

Agrawal, R., Srikant, R., 1994. Fast Algorithms for
Mining Association Rules. In Proc. of the 20th Int'l
Conference on Very Large Databases.

Lu, H., Feng, L., Han, J., 2000. Beyond intratransaction
association analysis: mining multidimensional inter-
transaction association rules. In ACM Transactions on
Information Systems. Volume 18 , Issue 4.

Tung, A.K.H., Lu, H., Feng, L., Han, J., 2003. Efficient
mining of intertransaction association rules. In IEEE
Transactions on Knowledge and Data Engineering.
Volume 15, Issue 1.

Lee, A.J.T., Wang, C-S., 2007. An efficient algorithm for
mining frequent inter-transaction patterns. In
Information Sciences: an International Journal.
Volume 177, Issue 17.

Lühr, S., West, G., Venkatesh, S., 2007. Recognition of
emergent human behaviour in a smart home: A data
mining approach. In Pervasive and Mobile
Computing. Volume 3, Issue 2.

Zou, Q., Chu, W., Lu, B., 2002. SmartMiner: a depth first
algorithm guided by tail information for mining
maximal frequent itemsets. In Proc. of the 2002 IEEE
International Conference on Data Mining.

INTERTRASM - A Depth First Search Algorithm for Mining Intertransaction Association Rules

153

